
Journal of Modern Applied Statistical Journal of Modern Applied Statistical 

Methods Methods 

Volume 19 Issue 1 Article 24 

1-3-2022 

A New Goodness of Fit Measure Based on Income Inequality A New Goodness of Fit Measure Based on Income Inequality 

Curves Curves 

Shahryar Mirzaei 
Payam Noor University, Tehran, Iran, shahriar_mirzaee54@yahoo.com 

S. M. A. Jahanshahi 
University of Sistan and Baluchestan, Zahedan, Iran, mehdijahanshahi@yahoo.com 

 Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the Statistical 

Theory Commons 

Recommended Citation Recommended Citation 
Mirzaei, Shahryar and Jahanshahi, S. M. A. (2022) "A New Goodness of Fit Measure Based on Income 
Inequality Curves," Journal of Modern Applied Statistical Methods: Vol. 19 : Iss. 1 , Article 24. 
DOI: 10.22237/jmasm/1619482080 

https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm/vol19
https://digitalcommons.wayne.edu/jmasm/vol19/iss1
https://digitalcommons.wayne.edu/jmasm/vol19/iss1/24
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol19%2Fiss1%2F24&utm_medium=PDF&utm_campaign=PDFCoverPages


Journal of Modern Applied Statistical Methods 

May 2020, Vol. 19, No. 1, eP3048. 

doi: 10.22237/jmasm/1619482080 

 
Copyright © 2020 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
doi: 10.22237/jmasm/1619482080 | Accepted: December 14, 2018; Published: January 3, 2022. 

Correspondence: S. M. A. Jahanshahi, mjahan@math.usb.ac.ir 

 

 

 

2 

A New Goodness of Fit Measure Based 
on Income Inequality Curves 

Shahryar Mirzaei 
Payam Noor University 

Tehran, Iran 

S. M. A. Jahanshahi 
University of Sistan and Baluchestan 

Zahedan, Iran 

 

 
This paper uses inequality-measurement techniques to assess goodness of fit in income 

distribution models. It exposes the shortcomings of the use of conventional goodness of fit 

criteria in face of the big income data and proposes a new set of metrics, based on income 

inequality curves. In this note, we mentioned that the distance between theoretical and 

empirical inequality curves can be considered as a goodness of fit criterion. We 

demonstrate certain advantages of this measure over the other general goodness of fit 

criteria. Unlike other goodness of fit measures, this criterion is bounded. It is 0 in minimum 

difference and 1 in maximum distance. Furthermore, there is a consistency between this 

new goodness of fit measure and the other conventional criteria. A simulation study based 

on fitted distribution to real income data is performed in order to investigate some statistical 

properties of the new goodness of fit measure. An empirical study and comparisons are 

also provided. 

 

Keywords: Goodness of fit measure, income distribution, Lorenz curve, Zenga index 

 

Introduction 

Most statistical methods suppose an underlying distribution in the calculation of 

their results and inferences. Therefore, methods for checking that the underlying 

distribution have a special form, i.e., goodness of fit (GOF) tests, has been largely 

studied, becoming a milestone of statistics. During the last few decades, this subject 

has played an important role in many branches of sciences, mainly in engineering, 

management, and economics sciences studies. Indeed, the goal of the GOF tests is 

to check whether the underlying probability distribution, from which a sample is 

drawn, differs from a hypothesized distribution. Therefore, GOF tests determine if 

the empirical distribution of the data satisfies the assumptions of theoretical models. 

https://doi.org/10.22237/jmasm/1619482080
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As is well known, in mathematics, the notion of distance is one of the most 

fundamental concepts. From the scientific and mathematical point of view, 

distances defined as a quantitative degree of how far apart two objects are. 

Nowadays, this concept has also an eminent role in almost all branches of science 

and technology including probability theory and applied statistics. Distance 

measures are essential to solve many pattern recognition problems such as GOF 

problems. GOF measures naturally arises to account for the distances between the 

empirical and assumed theoretical distributions. 

Various distance measures are applicable to compare empirical and 

theoretical distribution functions. The Kolmogorov-Smirnov, Cramer-von Mises, 

Kuiper, and Anderson-Darling test statistics are examples of such measures (see 

Cramér, 1928; Watson, 1961; Marsaglia et al., 2003 for further illustrative about 

these criteria). 

In the study of income data especially in large sample, it should be noted that 

all models must be rejected at conventional levels of significance. This result, not 

uncommon in applications involving large sample sizes, raises questions about the 

power of these tests (McDonald & Xu, 1995). In such cases, the common GOF test 

statistic is either very large or very small (see Akaike, 1974; Cordeiro et al., 2015). 

Reporting such values is not interesting in scientific reports. 

The use of income inequality indices in the context of GOF test has been less 

considered. Ascher (1990) used a wide selection of tests for exponentially based on 

income inequality indices and compared. Jammalamadaka and Goria (2004) 

introduced a test of goodness-of-fit based on Gini's index of spacings (Gini, 1921). 

Noughabi et al. (2014) introduced a general goodness-of-fit test based on the 

estimated Gini inequality index. 

In this paper, we propose a set of GOF measures using income inequality 

curves which take into account the particular nature of income distributions models. 

The use of these curves in econometrics has been new and can be increased in its 

applications widely. Although these distance measures have not been introduced 

for exactly the same purpose, they have the common property of increasing as the 

two distributions involved move apart. Unlike other GOF measures, these criteria 

are bounded. They are 0 in minimum difference and 1 in maximum distance. The 

results show that the consistency between these new GOF measures and the other 

popular GOF criteria. 

The paper is structured as follows. In the following section, we review the 

concepts of income inequality indices. We also present the sampling estimator of 

the traditional Lorenz curve and the new Zenga inequality curve. We then perform 

GOF using the new proposed measure and compares it with standard measures in 
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the literature. A simulation study to compare the performance of the new measures 

is then constructed. The last section is devoted to a brief conclusion. 

Income Inequality Curves 

The principal curves proposed for inequality measurement are the well-known 

Lorenz (1905) curve, the Bonferroni (1930), and the Zenga (1984, 2007) curves. 

Here, we concentrate on traditional Lorenz curve and the new inequality curve 

proposed by Zenga (2007). 

Let x1,…, xn be an ordered vector of non-negative values representing the 

x1 ≤ x2 ≤…≤ xn distribution of income. Lorenz (1905) introduced an inequality 

curve L(p) based on the ratio between the partial sum and the overall sum of non-

negative income by 
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The Lorenz function  indicates the cumulative percentage of total income held by 

an L(p) cumulative proportion p of the population. 

Zenga (2007) introduced a new inequality curve Z(p) based on the ratio 

between the lower mean M–(p) and the upper mean M+(p) of non-negative income 

by 
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It should be noted that by averaging the inequality curves the inequality measures 

are obtained. For example, the new inequality Zenga index is given by 
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Moreover, these curves and synthetic measures have been extended to the 

continuous variables. 

 

Definition. Let X be a non-negative continuous random variable, with positive 

and finite expected value. The Lorenz curve of X is defined as 

 

 ( )
( )

( ) ( )
0

1
L Q , 0,1

E

p

p u du p
X

=  ,  

 

where Q(.) is the quantile function of distribution function F. 

From such Z(p) curve, the related inequality index Z is defined as 
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Zenga (2007) also showed the link between the Z(p) curve and the L(p) curve: 
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The Zenga and Lorenz curves display interesting graphical representation to show 

inequality in income models (see Arcagni & Porro, 2014). The Zenga curve is a 

flexible curve. The shape of this curve neither has forced values at the endpoints of 

its domain of definition nor is constrained to being non-decreasing and concave on 

the interval [0, 1], as is the case for the Lorenz curve (see Zenga, 2007; Polisicchio 

& Porro, 2009 for further illustrative examples). 

The New GOF Measure 

In this section, we perform a GOF tool for some well-known income distributions 

by using the inequality curves. Then, we shall report the results which compares 
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the proposed measure with the common GOF measures. For more illustration, we 

refer to the ungrouped real income data set with 14,827 observations which is 

generated from real Austrian European Union Statistics on Income and Living 

Conditions (EU-SILC) data from 2006. 

For comparison the good behavior of income distributions, we also fit the 

following income models to total money income of the EU-SILC data. 

 

• The Weibull (W) distribution with density function 
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• The log-normal (LN) distribution with density function 
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• The log-logistic (LL) distribution with density function 
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The aforementioned distributions have been chosen because they have the same 

number of parameters and the same support. Also, they are the most used models 

for representing the income in the literature. 

Here, the performance of these distributions for modelling EU-SILC income 

data are compared. In order to compare the distributions, we consider the following 

information criteria (which are considered by many researchers including Akaike, 

1974; Cordeiro et al., 2015): Akaike Information Criterion (AIC), Bayesian 

Information Criterion (BIC), Hannan-Quinn Information Criterion (HQIC), and 

Consistent Akaike Information Criterion (CAIC). These statistics are given by 
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where ˆ  denotes the log-likelihood function evaluated at the MLEs, k is the number 

of model parameters, and n is the sample size. The model with the lowest values 

for these statistics could be chosen as the best model to fit the data. 

Table 1 provides the maximum-likelihood estimates on real data for the 

parameters of the selected models. The values of Gini and Zenga indices also are 

reported. The last four columns contain the information criteria as GOF measures. 

In general, the smaller the values of these criteria, the better fit the data. The lowest 

value of GOF indices are reported in bold type. 

The results of Table 1 show that since the values of GOF measures are smaller 

for LL model compared to the two other distributions, then the LL model performs 

better fit than LN and W models in terms of information criterion GOF measures. 

The LN model is the second best of three models. The W is, with more information 

criterion values, worse than any of other models. Note that the actual Gini and 

Zenga inequality indices for considered EU-SILC data are 0.2627 and 0.5872, 

respectively. All of the theoretical models considered, have larger estimated Gini 

and Zenga indices, and suggest greater dispersion than empirical real income data. 

The Gini and Zenga indices of the fitted models are higher than the actual ones. 

Note that the LL model also makes the theoretical values closer to the actual ones 

rather than the W and LN models. The inequality indices of the estimated model 

are obtained through numerical procedures. 
 
 
Table 1. Parameter estimates, income measures, GOF statistics for fitted models to EU-
SILC data 
 

   

Income 
measures  GOF criteria 

Model Parameter estimates Gini Zenga  AIC BIC HQIC CAIC 

W ˆ = 2.012α  ˆ = 22472β  0.3026 0.6318  314018 314018 314016 314018 

LN ˆ = 9.771μ  ˆ = 0.549σ  0.2914 0.6293  313483 313498 313488 313484 

LL â = 3.570 b̂ = 17950 0.2791 0.6006  311657 311672 311655 311657 

Empirical   0.2627 0.5872      
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Figure 1. Lorenz and Zenga curves of Weibull, log-normal, and log-logistic models for 
EU-SILC data 
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Figure 2. Distance between Zenga curves as a GOF measure 
 

 

The behavior of the Zenga curves show that the theoretical models 

overestimate the inequality for low incomes and underestimate the inequality for 

high incomes for all of considered models. Remarks of such kind are difficult to be 

observed in the Lorenz curve. In other words, differences between the inequality 

curves of the theoretical and empirical models are not significant and observable in 

Lorenz curve. For this reason, the Zenga curve seems to be a valid alternative to 

the traditional Lorenz curve. 

Here, the basic question is to find a way to measure the distance between 

theoretical and empirical Zenga curves as a GOF measure. In the right panel of 

Figure 2, from a geometric point of view, the new measure can be considered as 

the area between the empirical and the theoretical Zenga curves. This index is 0 in 

minimum difference and 1 in maximum distance. 

A natural distance measure between empirical and theoretical Zenga curves 

(as shown in Figure 2) can be defined as 
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where Z(p) is the empirical Zenga curve and Ẑ(p) is the theoretical Zenga curve. 
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Table 2. The new GOF criteria for fitted models to EU-SILC income data 
 

Model B1 B2 B3 B4 

W 0.098 0.089 0.110 0.099 

LN 0.088 0.081 0.094 0.086 

LL 0.041 0.040 0.047 0.046 

 
 

Since this measure cannot be used to make comparisons across several 

populations that have different units of measurement, we can define other relative 

standardized measures to evaluate the GOF as 
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These relative indices are between 0 and 1.They are 0 in minimum difference and 

1 in maximum distance. 

We report the new GOF criterion based on distance between empirical and 

theoretical inequality curves for W, LN, and LL models for EU-SILC income data 

in Table 2. The lowest value of GOF indices are reported in bold type. 

The results of Table 2 show that similar results are obtained with the new 

GOF measures. Since the values of GOF measures are smaller for LL model 

compared to other distributions, the results show that the LL model performs better 

fit than LN and W models in terms of the new GOF criteria. Since the proposed 

measure is a general measure, it is natural that the competitors also be general. The 

competitor tests are chosen from the class of tests discussed in D'Agostino and 

Stephens (1986). The test statistics of competitor tests are as follows: The 

Kolmogorov-Smirnov (KS), Cramer-von Mises (CH), Kuiper (V), and Anderson-

Darling (AD) test statistics are, respectively, 
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where 
( )( )0

ˆF , , 1,2, ,i i
Z x i n= =  and F0 is the cumulative distribution function 

under the null distribution. 

In Table 3, we also report the general GOF criteria (KS, CH,V, and AD) for 

W, LN, and LL models for EU-SILC income data. The lowest values of GOF 

criteria are reported in bold type. 

The findings of Table 3 confirm the results of Tables 1 and 2. Since the values 

of these GOF measures are smaller for LL model compared to the two other 

distributions, then the LL model performs better fit than LN and W models. 

For illustrative purposes and use our method to discriminate between the 

distribution functions, we refer to Dey and Kundo (2010). They considered the 

problem of discriminating between the LN and LL distributions to analyze lifetime 

data. They fitted the two distribution functions with the MLEs of the different 

parameters for deferment distribution functions. They analyzed the failure times of 

the air conditioning system of an airplane (in hours): 23, 261, 87, 7, 120, 14, 62, 47, 

225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52, 95. 

They showed from the log-likelihoods, K-S distances, and also from the χ2 

values that the LN distribution is the preferred one for data set. The left panel of 

Figure 3 depicts the empirical Zenga curve for real data set and the theoretical 

Zenga curve for the LN income distribution. In the right panel of Figure 3, the 

corresponding Z(p) curves are drawn for LL model. The behavior of the Zenga 

curves show that the theoretical models overestimate the empirical distribution. 

Therefore, it is clear that based on the distance between the empirical and the 

theoretical Zenga curves, the LN model is the better model. 
 
 
Table 3. The general GOF criteria for fitted models to EU-SILC income data 
 

Model KS CH V AD 

W 0.0725 30.9790 0.1389 202.9310 

LN 0.0682 21.6230 0.1119 140.5570 

LL 0.0172 1.1569 0.0321 15.8796 
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Figure 3. Zenga curves for empirical and fitted distributions for the failure times of the air 
conditioning 
 

 
 
Table 4. The new GOF criteria for fitted models to the failure time’s data 
 

Model B1 B2 B3 B4 

LN 0.0381 0.0359 0.0496 0.0455 

LL 0.0796 0.0722 0.0914 0.0811 

 
 

Here, we provide the new GOF measures based on Zenga curves for LN and 

LL distributions in Table 4. In this case based on the new GOF values, between the 

two distribution  functions, clearly LN is the better choice.  

The results show the consistency between these new GOF measures and the 

other popular GOF criteria. They approach the GOF in different ways. For this 

reason, the distance between inequality curves and the related GOF criterion seem 

to be valid alternative to the other common GOF measures. 

Simulation Results 

This section presents the results of a Monte Carlo experiment designed to measure 

the values of the new indices introduced in the previous section in finite samples. 

To do this, we have assumed as a model for the size distribution of incomes the 

generalized beta of the second kind (GB2) (McDonald & Xu, 1995), which is very 



MIRZAEI & JAHANSHAHI 

13 

flexible, with the ability to take a wide variety of shapes depending on particular 

values of its parameters. Its density is 
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with x > 0, a, b > 0 and where B(p, q) is the Beta function given by 
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This model nests many distributions as special or limiting cases including, among 

others, the beta of second kind (B2), Burr XII or Singh-Maddala (SM), Dagum (D), 

Lomax (Lom), Inverse Lomax (ILom), lognormal (LN), Weibull (W), Pareto, Fisk 

or log-logistic, and exponential (Exp). The details of many of these relationships 

are summarized in McDonald and Xu (1995) and Kleiber and Kotz (2003). Figure 

4 provides a convenient visual summary of some limiting and special case of GB2 

and their relationships. 

In the following we will refer to Monte Carlo samples drawn from a GB2 

distribution with scale parameter equal to b = 20933 and shape parameters equal to 

a = 5.2, p = 0.5, and q = 0.77 which closely mirrors the fitted distribution to EU-

SILC income data. It should be noted that the parameters considered are the 

maximum likelihood estimates of the GB2 distribution based on EU-SILC income 

data. 

Here, we have performed an analysis on comparison the Bias and MSE of the 

new estimates in fitted distribution to real data. For better interpretation, the results 

have been shown in Table 5. 

It is evident that the four estimates are affected by positive bias, that is, they 

overestimate the values of parameters. From the results, we can verify that as the 

sample size increases, the mean estimates of the parameter tend to be closer to the 

true value, since bias and MSE decay toward zero. 
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Figure 4. GB2 size distributions and their interrelations 
 

 
 
Table 5. The comparison of Bias and MSE of the new indices based on Zenga curves 
 

 Β1  Β2  Β3  Β4 

n Bias MSE   Bias MSE   Bias MSE   Bias MSE 

10 0.050671 0.010620  0.027881 0.007167  0.032821 0.055520  0.028882 0.054870 

20 0.025036 0.004340  0.018544 0.003534  0.015735 0.027544  0.032821 0.055285 

30 0.016714 0.002769  0.013247 0.002180  0.012060 0.018751  0.021571 0.035552 

50 0.010233 0.001640  0.008663 0.001314  0.009476 0.001234  0.003282 0.000552 

100 0.004873 0.000818  0.004097 0.000639  0.007543 0.000578  0.008328 0.000761 

500 0.001203 0.000120   0.001003 0.000178   0.009596 0.000119   0.001282 0.000142 
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Figure 5. Distribution of B4 standardized statistic as a function of sample size 
 

 

Here, we study by simulation to what extent the B4 estimator (as an example) 

proposed here give reliable inference. First, in order to see whether the asymptotic 

normality assumption yields a good approximation, simulations were undertaken 

with drawings from the fitted distribution to real data. In Figure 5, graphs are shown 

of the empirical distribution function of 10,000 realizations of the statistic 
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It can be noted that the estimation of the standard error was obtained using 

bootstrapping method. For sample sizes n = 10 and 100 the graph of the standard 

normal cdf is also given as a benchmark in Figure 5. It can be seen that the new 

estimator is consistent and its asymptotic standard normal is good. 

Concluding Remarks 

We constructed a new measure of GOF by measuring distance between empirical 

and theoretical inequality curves. The new measure can be utilized with confidence 

because it has very simple meaning and interesting graphical representation. There 

is also the consistency between these new GOF measure and the other popular 

criteria. Furthermore, this new measure is bounded between 0 and 1. A simulation 
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study based on fitted distribution to real income data shows that the plug-in 

estimator for the new measure is consistent and its asymptotic standard normal is 

good. The results of this paper show that the new measure is a reasonable candidate 

for GOF criterion. We hope that the discussed measure may attract wider 

applications in econometrics and statistics. 

References 

Akaike, H. (1974). A new look at the statistical model identification. IEEE 

Transactions on Automatic Control, 19(6), 716-723. doi: 

10.1109/TAC.1974.1100705 

Arcagni, A., & Porro, F. (2014). The graphical representation of inequality. 

Revista Colombiana de Estadistica, 37(2Spe), 419-436. doi: 

10.15446/rce.v37n2spe.47947 

Ascher, S. (1990). A survey of tests for exponentiality. Communication in 

Statistics – Theory and Methods, 19(5), 1811-1825. doi: 

10.1080/03610929008830292 

Bonferroni, C. E. (1930). Elementi di statistica generale. Libreria Seber, 

Firenze. 

Cordeiro, G. M., Ortega, E. M., & Ramires, T. G. (2015). A new generalized 

Weibull family of distributions: mathematical properties and applications. Journal 

of Statistical Distributions and Applications, 2(1), 1-25. doi: 10.1186/s40488-015-

0036-6 

Cramér, H. (1928). On the composition of elementary errors: First paper: 

Mathematical deductions. Scandinavian Actuarial Journal, 1928(1), 13-74. doi: 

10.1080/03461238.1928.10416862 

D'Agostino, R. B., & Stephens, M. A. (1986). Goodness-of-fit-techniques. 

New York: Marcel Dekker, Inc. 

Dey, A. K., & Kundu, D. (2010). Discriminating between the log-normal 

and log-logistic distributions. Communications in Statistics – Theory and 

Methods, 39(2), 280-292. doi: 10.1080/03610920902737100 

Gini, C. (1921). Measurement of inequality of incomes. Economic Journal, 

30(121), 124-126. doi: 10.2307/2223319 

Jammalamadaka, S. R., & Goria, M. N. (2004). A test of goodness-of-fit 

based on Gini's index of spacings. Statistics and Probability Letters, 68(2), 177-

187. doi: 10.1016/j.spl.2004.02.009 

https://doi.org/10.1109/TAC.1974.1100705
https://doi.org/10.15446/rce.v37n2spe.47947
https://doi.org/10.1080/03610929008830292
https://doi.org/10.1186/s40488-015-0036-6
https://doi.org/10.1186/s40488-015-0036-6
https://doi.org/10.1080/03461238.1928.10416862
https://doi.org/10.1080/03610920902737100
https://doi.org/10.2307/2223319
https://doi.org/10.1016/j.spl.2004.02.009


MIRZAEI & JAHANSHAHI 

17 

Kleiber, C., & Kotz, S. (2003). Statistical size distributions in economics 

and actuarial sciences. New York: John Wiley. doi: 10.1002/0471457175 

Lorenz, M. O. (1905). Methods of measuring the concentration of wealth. 

Publications of the American Statistical Association, 9(70), 209-219. doi: 

10.1080/15225437.1905.10503443 

Marsaglia, G. T., Sang, W. W., & Wang, J. (2003). Evaluating 

Kolmogorov's distribution. Journal of Statistical Software, 8(18), 1-4. doi: 

10.18637/jss.v008.i18 

McDonald, J. B., & Xu, Y. J. (1995). A generalization of the beta 

distribution with applications. Journal of Econometrics, 66(1-2), 133-152. doi: 

10.1016/0304-4076(94)01612-4 

Noughabi, H. A., Arghami, N. R., & Borzadaran, G. R. M. (2014). A test of 

goodness of fit based on Gini index. Istatistik Journal of The Turkish Statistical 

Association, 7(1), 23-32. Retrieved from 

https://dergipark.org.tr/en/pub/ijtsa/issue/39090/458821 

Polisicchio, M., & Porro, F. (2009). A comparison between Lorenz L(p) 

curve and Zenga I(p) curve. Statistica Applicata, 21(3-4), 289-301. Retrieved 

from https://www.sa-ijas.org/rivista/en/Vol21num3-4.html 

Watson, G. S. (1961). Goodness-of-fit tests on a circle. Biometrika, 48(1/2), 

109-114. doi: 10.2307/2333135 

Zenga, M. (1984). Tendenza alla massima ed alla minima concentrazione 

per variabili casuali continue. Statistica, 44(4), 619-640. 

Zenga, M. (2007). Inequality curve and inequality index based on the ratios 

between lower and upper arithmetic means. Statistica & Applicazioni, 5(1), 3-27. 

https://doi.org/10.1002/0471457175
https://doi.org/10.1080/15225437.1905.10503443
https://doi.org/10.18637/jss.v008.i18
https://doi.org/10.1016/0304-4076(94)01612-4
https://dergipark.org.tr/en/pub/ijtsa/issue/39090/458821
https://www.sa-ijas.org/rivista/en/Vol21num3-4.html
https://doi.org/10.2307/2333135

	A New Goodness of Fit Measure Based on Income Inequality Curves
	Recommended Citation

	table1
	figure1
	figure2
	table2
	table3
	figure3
	table4
	figure4
	table5
	figure5
	ref_akaike_1974
	ref_arcagni_porro_2014
	ref_ascher_1990
	ref_bonferroni_1930
	ref_codeiro_et_al_2015
	ref_cramer_1928
	ref_dagostino_stephens_1986
	ref_dey_kundu_2010
	ref_gini_1921
	ref_jammalamadaka_goria_2004
	ref_kleiber_kotz_2003
	ref_lorenz_1905
	ref_marsaglia_et_al_2003
	ref_mcdonald_xu_1995
	ref_noughabi_et_al_2014
	ref_polisicchio_porro_2009
	ref_watson_1961
	ref_zenga_1984
	ref_zenga_2007

