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Least Absolute Value vs. Least Squares Estimation and Inference Procedures in 
Regression Models with Asymmetric Error Distributions 

 
Terry E. Dielman 

Texas Christian University 
 

 
A Monte Carlo simulation is used to compare estimation and inference procedures in least absolute value 
(LAV) and least squares (LS) regression models with asymmetric error distributions. Mean square errors 
(MSE) of coefficient estimates are used to assess the relative efficiency of the estimators. Hypothesis tests 
for coefficients are compared on the basis of empirical level of significance and power. 
 
Key words: L1 regression, least absolute deviations, robust regression, simulation. 
 
 

Introduction 
 
The use of regression analysis relies on the 
choice of a criterion in order to estimate the 
coefficients of the explanatory variables. 
Traditionally, the least squares (LS) criterion has 
been the method of choice; however, the least 
absolute value (LAV) criterion provides an 
alternative. LAV regression coefficients are 
chosen to minimize the sum of the absolute 
values of the residuals. By minimizing sums of 
absolute values rather than sums of squares, the 
effect of outliers on the coefficient estimates is 
diminished. 

In most previous studies comparing the 
performance of LAV and LS estimation, the 
distributions examined have been symmetric. 
Fat-tailed distributions that introduce outliers 
have been used, but these have typically been 
symmetric fat-tailed distributions (Laplace, 
Cauchy, etc). This study examined the 
performance of LAV and LS coefficient 
estimators when the regression disturbances 
come from asymmetric distributions.  
 Also, hypothesis tests for coefficient 
significance are examined.  For the LAV  
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regression, the tests compared include the 
likelihood ratio (LR) test, the Lagrange 
multiplier (LM) test suggested by Koenker and 
Bassett (1982) and a bootstrap test. The tests are 
compared in terms of both observed significance 
level and empirical power. Four alternative 
variance estimates are considered for the LR and 
bootstrap tests.  The LAV tests are also 
compared with the traditional t-test for LS 
regression. 
 

Methodology 
 
Least Absolute Value Estimation and Testing 

The model considered in this article is 
the linear regression model: 
 

i

K

k
ikki xy εββ ++= 

=1
0  

 
i = 1,2,…,n                         (1) 

 
where yi is the ith observation on the dependent 
variable, xik is the ith observation on the kth 
explanatory variable, and εi is a random 
disturbance for the ith observation. The 
distribution of the disturbances may not be 
normal or even symmetric in this examination. 
The parameters β0, β1, β2,…, βK are unknown 
and must be estimated. For a discussion of 
algorithms to produce LAV coefficient 
estimates, see Dielman (1992, 2005). 
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In matrix notation, the model in (1) can 
be written 

Y = Xβ + ε                         (2) 
 
where Y is an n x 1 vector of values of the 
dependent variable, X is an n x (K+1) matrix of 
values of the explanatory variables, including a 
column of ones for the constant, β is a (K+1) x 1 
vector of the regression coefficients to be 
estimated and ε is an n x 1 vector of 
disturbances. Bassett and Koenker (1978) 
showed that, under reasonable conditions, the 
LAV coefficient estimator has an asymptotic 
distribution that converges to 

))( ,N( 12 −′XXβ λ  where 
n

2λ
 is the asymptotic 

variance of the sample median for a sample of 
size n from the disturbance distribution. 

Equation (2) can be rewritten in the 
following form: 
 

Y = X1β1 + X2β2 + ε                   (3) 
 
The coefficient vector β and the data matrix X 
from equation (2) have been partitioned: β1 is a 
k1 x 1 vector of coefficients to remain in the 
model and X1 is the associated part of the 
original data matrix, X; β2 represents the k2 x 1 
vector of coefficients to be included in a 
hypothesis test, and X2 is the associated part of 
the original data matrix, X. The test considered 
is the basic test for coefficient significance, i.e., 
H0: β2 = 0. In the simulation β2 consists of a 
single coefficient. 

Koenker and Bassett (1982) proposed 
three procedures for conducting hypothesis tests 
on the LAV regression model coefficients. The 
three tests are based on Wald, likelihood ratio 
(LR), and Lagrange multiplier (LM) test 
statistics, each of which has the same limiting 
Chi-square distribution. The LR and LM 
statistics will be examined in the Monte Carlo 
simulation. In previous studies, the Wald test has 
been shown to be inferior to the LR and LM 
statistics in small samples, so it is not included 
in this study (See, for example, Dielman and 
Pfaffenberger, 1988, 1990, 1992; Dielman, 
2006). 

The Lagrange Multiplier (LM) test 
statistic for the test of the null hypothesis H0: β2 
= 0 is given by 

LM = 22Dgg′ ,                     (4) 
where g2 is the appropriate portion of the 
normalized gradient of the unrestricted LAV 
objective function, evaluated at the restricted 
estimate, and D is the appropriate block of the 

1)( −′XX matrix to be used in the test. 
The Likelihood Ratio (LR) test statistic 

(assuming the disturbances follow a Laplace 
distribution) is 
 

1 22( )
LR

SAD SAD
λ
−=                (5) 

 
where SAD1 is the sum of the absolute deviations 
of the residuals in the restricted or reduced 
model (i.e., β2 = 0) and SAD2 is the sum of the 
absolute deviations of the residuals in the 
unrestricted model. 

The LR test statistic requires the 
estimation of the scale parameter λ, whereas the 
LM test statistic does not. One often-suggested 
estimator for λ can be computed as follows: 
 

2/

)()1'('ˆ
α

λ
z

]e - [en
 = mmn −−

, 

where, 

4
nz - 

2
1 + n = m ''

2/α                    (6) 

 
where the e(.) are ordered residuals from the 
LAV-fitted model, and 'n  = n – r where r is the 
number of zero residuals. A value of α = 0.05 is 
usually suggested. This estimator will be 
referred to as the SECI estimator. See McKean 
and Schrader (1984), McKean and Schrader 
(1987), Sheather (1987), Dielman and 
Pfaffenberger (1990, 1992) and Dielman and 
Rose (1995, 1996) for discussions and uses of 
this estimator. 

When computing the variance of the 
slope coefficient in a LAV regression, the 
estimator of λ in equation (6) will be used. 
However, four different options in constructing 
this estimator will be considered. These options 
are as follows: 
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SECI1: 1̂λ  uses z = 1.96 (α = 0.05 value) and n′
= total number of observations (n). 

SECI2: 2λ̂  uses t0.025 with n degrees of freedom 

rather than the z value and n′  = total 
number of observations (n). 

SECI3: 3̂λ  uses z = 1.96 (α = 0.05 value) and n′  

= n – r where r is the number of zero 
residuals. 

SECI4: 4λ̂  uses t0.025 with n – r degrees of 

freedom rather than the z value and n′  = n – 
r where r is the number of zero residuals. 

 
The notation L1, L2, L3 and L4 will be used to 
indicate the LR test using variance estimator 1, 
2, 3, or 4. Much of the literature in this area 
recommends using the estimator SECI3. 
However, Dielman (2006) performed a 
simulation study that suggested using SECI2. 
These results were for symmetric distributions 
only. Results for asymmetric distributions will 
be examined in this paper. In addition, the 
bootstrap tests were not included in the previous 
study. 

The bootstrapping methodology 
provides an alternative to the LR and LM tests. 
In a LAV simple regression, for example, a 
bootstrap test statistic for H0: β1 = 0 can be 
computed in several ways (see Li & Maddala, 
1996). The following procedure will be used in 
this study: The model shown as equation (1) is 
estimated (when K = 1 for simple regression) 
using LAV estimation procedures and residuals 

are obtained. The test statistic,
)ˆ(

0ˆ

1

1

β

β

se

−
, is 

computed from the regression on the original 

data, where )ˆ( 1βse  represents the standard error 
of the coefficient estimate. The residuals, ei (i = 
1,2,…,n), from this regression are saved, 
centered, and resampled (with replacement, 
excluding zero residuals), to obtain a new 
sample of disturbances, ei

*. The ei
* values are 

used to create pseudo-data as follows: 
 

e + x +  = y *
ii0

*
i 1̂

ˆ ββ                  (7) 

 

where β̂0  and β̂1
are the initial LAV estimates 

of the intercept and slope. The coefficients in 
equation (7) are then re-estimated to obtain new 

parameter estimates, β̂
*

1
 and β̂

*

0
, and the test 

statistic 
)se(

| - |
 = T *

1

*

1

β

ββ
ˆ

ˆˆ
1

 is computed and saved. 

The process of computing T is repeated a large 
number of times. For a test to be performed at a 
particular level of significance, α, the critical 
value is the (1 -α)th percentile from the ordered 
test statistic values. If the original test statistic is 
larger than this critical value, then the null 
hypothesis that β1 = 0 is rejected. The extension 
to a single coefficient in a multiple regression is 
easily accomplished. 

Although Li and Maddala (1996) 
suggested that the pseudo-data generating 
process can proceed in other ways, the method 
outlined here is fairly typical. Research by van 
Giersbergen and Kiviet (2002) and Dielman and 
Rose (2002) suggest that the aspect of primary 
importance is that the resampling scheme should 
mimic the null distribution of the test statistic to 
be bootstrapped. This suggestion is followed in 
the bootstrap approach used in this paper. 
Results from the traditional LS t-test are 
compared to those from the LAV-based tests.  
 
Description of the Simulation Experiment 

The simulation is based on the model in 
equation (1). The sample sizes used are n = 20, 
30, 40 and 100. The disturbances are generated 
using stable distributions with the following 
combinations of characteristic exponent (alpha) 
and skewness parameter (beta): 
 

Beta = 0.0, 0.4 and 0.8 with Alpha = 1.2 
 

Beta = 0.0, 0.4 and 0.8 with Alpha = 1.8 
 

In addition the normal (beta = 0.0 with 
alpha = 1.2) and Cauchy distributions (beta = 0.0 
with alpha = 1.0) were used. The normal and 
Cauchy distributions serve as extremes. Stable 
distributions are infinite variance distributions 
when the characteristic exponent is less than 2.0, 
so the LAV estimator would be expected to 
outperform LS in these cases. When the 
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characteristic exponent equals 2.0 (and beta is 
zero), the distribution is normal and LS will be 
optimal. For a characteristic exponent close to 
2.0 (and a symmetric distribution), we would 
expect LS to perform relatively better than for 
an exponent near 1.0 (Cauchy disturbances). As 
alpha approaches 1.0, LAV is expected to 
perform better than LS. 

The independent variables are generated 
as independent standard normal random 
variables, independent of the disturbances. 
Bootstrap tests used 199 bootstrap replications. 

The value of 0β  is set equal to zero (without 

loss of generality). In the simple regression, the 

value of 1β  is set equal to 0.0 to assess the level 

of significance and is set equal to 0.2, 0.4, 0.6, 
0.8, 1.0 and 2.0 to examine power. In the 
multiple regressions, all slope coefficients are 
set equal to zero (without loss of generality), 
except for one coefficient which is set equal to 
0.0 to assess the level of significance and is set 
equal to 0.2, 0.4, 0.6, 0,8, 1.0 and 2.0 to examine 
power. For each factor combination in the 
experimental design, 5,000 Monte Carlo 
simulations are used, and the number of 
rejections of the null hypothesis of whether the 
selected slope coefficient is equal to zero is 
counted for each setting. All testing is done 
using a nominal 5% level of significance. 
 

Results 
Estimation 

Table 1 contains ratios of mean square 
errors (MSEs) for estimates of the intercept and 
slope coefficients in simple regressions (K = 1) 
and for the intercept and one of the coefficients 
in the multiple regressions (K = 3 and 5) for 
sample size n = 20 in Panel A, n = 30 in Panel 
B, n = 40 in Panel C, and n = 100 in Panel D. 
The extremes of alpha = 0.0 (Cauchy) and alpha 
= 2.0 (normal) show the range of possibilities 
when distributions are symmetric. LS is always 
preferred to LAV when disturbances are normal. 
The ratio of MSEs is consistently 0.8 except 
when n = 20 and K = 5, in which case the 
preference for LS is even stronger. 

The LAV estimator is preferred over LS 
for alpha of 1.8 and 1.2, although the advantage 
decreases as alpha approaches two (normal 
distribution) as would be expected. The only 

exception to this rule is when n = 20 and K = 5 
when LS is preferred for beta = 0.0 or 0.4, that 
is, when the skewness is less extreme. LAV is 
preferred in all cases when beta = 0.8. 

When alpha = 1.8, the preference for 
LAV over LS increases in all cases as skewness 
increases. When alpha = 1.2 and K = 1, the 
preference for LAV over LS decreases (although 
LAV is still better than LS by a wide margin). 
With alpha = 1.2 and K = 3 or 5, the results are 
mixed in terms of the increase or decrease of the 
preference for LAV over LS based on skewness. 
This may be a result of looking at an efficiency 
measure for only a single coefficient. 
Regardless, LAV is still preferable to LS by a 
wide margin when alpha = 1.2. 
 
Hypothesis Tests 

Tables 2 through 5 contain the median 
percentage of trials in which H0: coefficient = 0 
is rejected for various combinations of test and 
coefficient values for n = 20, 30, 40 and 100, 
respectively, when K = 1. The medians are taken 
over the disturbance distributions. Thus, the 
results for the symmetric distributions (beta = 
0.0) include Stable distributions with alpha = 1.0 
(Cauchy) 1.2, 1.8 and 2.0 (normal). The 
asymmetric distributions include Stable with 
alpha = 1.2 and 1.8 when beta is either 0.4 or 
0.8. When the coefficient value is zero, the 
empirical significance levels can be assessed; 
when it is non-zero, power for the tests can be 
compared. Tables 6 through 9 contain the same 
information for K = 3 while tables 10 through 13 
contain results for K = 5. 

The empirical level of significance for 
the LS t-test never exceeds 0.06 in any of the 
experimental settings (nominal level = 0.05). 
However, the test lacks power when compared 
to the LAV tests. For example, consider Table 5 
with K = 1 and n = 100. All tests have empirical 
level of significance 0.05, but LST has 
considerably lower power. 

There is little difference in performance 
for skewed and symmetric error distributions. 
When LAV is preferred to LS, the preference is 
due to the presence of outliers from the fat-tailed 
distribution rather than from any lack of 
symmetry in the distributions. 

Among the LAV tests, the bootstrap 
tests and the LM test tend to maintain a median  



DIELMAN 
 

151 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Ratios of mean square error of estimates of intercept and slope (or one of the slope 
coefficients if K = 3 or 5): LS/LAV. Numbers greater than one favor LAV, numbers less than 

one favor LS. Alpha is the characteristic exponent of the Stable distribution; beta is the 
skewness parameter. (Alpha = 2.0 is the normal distribution, Alpha = 0.0 is the Cauchy). 

 

Panel A: Intercept (n = 20)  Panel A: Slope (n = 20) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 102.0    

0.0 

1 69.5   

3 55.9    3 46.3   

5 82.3    5 28.6   

1.2 

1 83.1 68.8 38.1  

1.2 

1 99.1 83.9 52.8 

3 17.8 57.0 21.4  3 13.7 27.6 11.9 

5 25.6 22.2 14.7  5 10.0 10.7 12.8 

1.8 

1 1.3 1.3 1.4  

1.8 

1 1.2 1.2 1.2 

3 1.2 1.2 1.2  3 1.1 1.1 1.1 

5 0.7 0.7 2.5  5 0.7 0.7 1.4 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.4    5 0.5   
   

Panel B: Intercept (n = 30)  Panel B: Slope (n = 30) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 130.8    

0.0 

1 90.4   

3 104.7    3 56.0   

5 1016.7    5 933.9   

1.2 

1 76.8 67.2 37.0  

1.2 

1 71.4 83.4 56.1 

3 64.6 53.3 29.8  3 50.4 43.2 29.7 

5 44.9 37.7 25.6  5 58.0 51.1 38.8 

1.8 

1 1.3 1.3 1.4  

1.8 

1 1.3 1.4 1.5 

3 1.2 1.3 1.4  3 1.2 1.3 1.3 

5 1.1 1.2 1.3  5 1.3 1.3 1.4 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.8    5 0.8   
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Table 1: continued 
 

Panel C: Intercept (n = 40)  Panel C: Slope (n = 40) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 176.2    

0.0 

1 123.8   

3 136.3    3 74.3   

5 130.0    5 109.7   

1.2 

1 53.7 46.0 29.2  

1.2 

1 25.7 24.0 21.0 

3 39.0 35.3 26.2  3 28.8 28.9 29.7 

5 41.2 36.8 26.3  5 22.6 23.0 24.0 

1.8 

1 1.4 1.5 1.6  

1.8 

1 1.2 1.3 1.3 

3 1.4 1.5 1.6  3 1.4 1.4 1.5 

5 1.4 1.5 1.6  5 1.3 1.4 1.4 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.8    5 0.8   

           

Panel D: Intercept (n = 100)  Panel D: Slope (n = 100) 

 Beta 
  Beta 

Alpha K 0.0 0.4 0.8  Alpha K 0.0 0.4 0.8 

0.0 

1 1467.5    

0.0 

1 1017.6   

3 1555.1    3 751.2   

5 1513.6    5 278.5   

1.2 

1 96.4 96.4 76.1  

1.2 

1 57.3 50.7 38.5 

3 119.2 121.6 96.4  3 117.3 132.0 149.6 

5 117.9 121.1 95.4  5 99.4 107.1 115.9 

1.8 

1 2.0 2.3 2.6  

1.8 

1 1.2 1.3 1.3 

3 2.4 2.8 3.0  3 2.5 2.9 3.3 

5 2.4 2.8 3.1  5 2.3 2.6 3.0 

2.0 

1 0.8    

2.0 

1 0.8   

3 0.8    3 0.8   

5 0.8    5 0.8   
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significance level close to nominal. The LR tests 
often deviate considerably from nominal. 
However, LR2 has median significance level 
closer to nominal than the other LR tests in most 
cases. Performance is similar for the LR tests for 
skewed and symmetric distributions. Among the 
bootstrap tests, there is little difference in 
performance for any of the experimental 
settings. 

In choosing among the LAV tests, it 
appears that the LR2 test maintains relatively 
high power - even when the level of significance 
is lower compared to the other tests. Also, the 
LM test is consistently lower in power. This 
negates some of the advantage the LM test 
might have due to the fact that it does not need 
an estimate of the nuisance parameter. As noted, 
the bootstrap tests have levels of significance 
that tend to be close to the nominal level. Power 
for the bootstrap tests can be slightly lower than 
that for LR2, even when the level of significance 
is equal or lower for LR2. Increasing the number 
of bootstrap iterations might improve the power 
of these tests. When sample size is large (n = 
100), there is little difference among any of the 
LAV based tests. These tests still improve on the 
LS t-test even in large samples. 

The variance estimate used to obtain 
LR2 uses n in the computations rather than n- r 
(where r is the number of zero residuals). This 
adjustment for zero residuals does not appear to 
be necessary. The variance estimates used to 
obtain LR1 and LR2 differ in that LR1 uses the z 
value while LR2 uses the appropriate t value in 
the computations. This provides some 
improvement in test performance for LR2 in 
small samples but the advantage vanishes for a 
sample size of 100. 

 
Conclusion 

 
Previous research examining small sample 
performance of some of the test statistics 
discussed in this article based on symmetric 
error distributions include Dielman (2006), 
Dielman and Pfaffenberger (1988, 1990, 1992), 
Dielman and Rose (1995, 1996, 2002), Koenker 
(1987) and Stangenhaus (1987). The results of 
these studies suggest that, in small samples, the 
LR and LM tests generally outperform the Wald 

test (not considered in the present study) in 
terms of both power and observed significance 
level. 

The LR and LM tests differ in that the 
LR test requires an estimate of the λ parameter 
discussed previously, while the LM test does 
not. However, using a fairly simple estimate of 
this scale parameter, the LR test has generally 
performed as well as, or better than, the LM test. 
In addition to the Wald, LR, and LM tests, 
bootstrap approaches have also been examined 
for inference in LAV regression. Dielman and 
Pfaffenberger (1988) used a bootstrap approach 
to estimate the scale parameter, λ, but the 
significance tests based on these bootstrap 
estimates did not perform particularly well.  

Dielman and Rose (1995) compared a 
true bootstrap test statistic with the LR and LM 
tests, and found that the bootstrap performed 
well in small samples. Dielman and Rose (2002) 
compared the LR, LM and three versions of the 
bootstrap suggested by Li and Maddala (1996) 
along with the LS t-test. They found that the LR 
test performed at least as well as, and often 
better than, the competing tests. Prior results for 
symmetric error distributions are consistent with 
the results from this study for both symmetric 
and asymmetric error distributions. 

If error distributions are suspected to be 
fat-tailed, improvements in estimation and 
inference are possible using LAV estimation 
rather than LS. This is true regardless of whether 
the distributions are symmetric or skewed. When 
choosing a test procedure for LAV estimated 
models, the bootstrap approaches perform 
reasonably well for all cases examined here. If a 
likelihood ratio test is to be used, LR2 seems to 
perform better than the other choices examined 
here. In addition, the LM test performs 
reasonably well in most settings examined 
although the power may be somewhat lower 
than the LR2 test. Differences in performance 
between the LAV based tests are small once the 
sample size reaches 100. 
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Table 2: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 20, K 
= 1 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed (stable 

with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.03 0.07 0.08 0.06 0.06 0.06 0.06 0.06 0.04 
0.2 0.10 0.06 0.10 0.12 0.08 0.08 0.08 0.08 0.09 0.07 
0.4 0.20 0.14 0.21 0.23 0.15 0.16 0.15 0.15 0.18 0.15 
0.6 0.37 0.28 0.38 0.41 0.28 0.29 0.27 0.27 0.31 0.27 
0.8 0.56 0.47 0.57 0.60 0.43 0.46 0.43 0.43 0.47 0.41 
1.0 0.72 0.64 0.73 0.75 0.59 0.62 0.59 0.59 0.61 0.54 
2.0 0.99 0.98 0.99 0.99 0.97 0.98 0.97 0.97 0.94 0.81 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.04 0.03 0.07 0.05 0.05 0.06 0.05 0.05 0.06 0.04 
0.2 0.07 0.06 0.10 0.08 0.08 0.08 0.07 0.07 0.09 0.07 
0.4 0.16 0.13 0.20 0.18 0.15 0.15 0.14 0.15 0.17 0.13 
0.6 0.29 0.26 0.36 0.32 0.27 0.28 0.24 0.25 0.29 0.25 
0.8 0.46 0.44 0.54 0.50 0.41 0.42 0.38 0.40 0.43 0.38 
1.0 0.63 0.60 0.70 0.66 0.57 0.58 0.52 0.55 0.56 0.53 
2.0 0.98 0.98 0.99 0.98 0.97 0.97 0.95 0.96 0.92 0.82 

 

Table 3: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 30, K 
= 1 for symmetric (with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed (stable with 

beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.04 0.07 0.07 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.11 0.08 0.12 0.13 0.09 0.09 0.10 0.10 0.10 0.09 
0.4 0.26 0.20 0.27 0.28 0.21 0.21 0.21 0.21 0.22 0.21 
0.6 0.48 0.40 0.49 0.50 0.37 0.39 0.38 0.38 0.40 0.41 
0.8 0.69 0.62 0.70 0.71 0.57 0.59 0.57 0.57 0.58 0.61 
1.0 0.84 0.79 0.84 0.85 0.74 0.76 0.74 0.74 0.73 0.77 
2.0 1.00 0.99 1.00 1.00 0.99 1.00 1.00 1.00 0.97 0.97 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.04 0.06 0.07 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.11 0.08 0.11 0.12 0.09 0.09 0.09 0.09 0.09 0.08 
0.4 0.25 0.20 0.26 0.27 0.19 0.20 0.19 0.19 0.21 0.18 
0.6 0.47 0.40 0.48 0.49 0.36 0.37 0.36 0.36 0.41 0.33 
0.8 0.69 0.62 0.69 0.71 0.55 0.58 0.56 0.56 0.60 0.49 
1.0 0.84 0.80 0.85 0.86 0.73 0.75 0.73 0.73 0.76 0.60 
2.0 1.00 1.00 1.00 1.00 0.99 1.00 0.99 0.99 0.98 0.83 
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Table 4: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 40, K 
= 1 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed (stable 

with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.05 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.13 0.14 0.14 0.14 0.11 0.11 0.11 0.11 0.12 0.09 
0.4 0.37 0.38 0.37 0.38 0.30 0.30 0.30 0.30 0.32 0.25 
0.6 0.65 0.66 0.66 0.67 0.56 0.56 0.56 0.56 0.58 0.44 
0.8 0.85 0.86 0.86 0.86 0.78 0.78 0.78 0.78 0.78 0.59 
1.0 0.96 0.96 0.96 0.96 0.92 0.92 0.92 0.92 0.90 0.68 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.13 0.14 0.13 0.14 0.11 0.11 0.11 0.11 0.12 0.09 
0.4 0.35 0.36 0.36 0.37 0.28 0.28 0.27 0.27 0.32 0.25 
0.6 0.64 0.65 0.65 0.66 0.53 0.53 0.53 0.53 0.56 0.44 
0.8 0.85 0.86 0.85 0.86 0.76 0.76 0.77 0.77 0.77 0.59 
1.0 0.95 0.96 0.95 0.96 0.91 0.91 0.91 0.91 0.90 0.68 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.86 

Table 5: Median percentages of rejections of H0: β1 = 0, normal explanatory variable, n = 100, 
K = 1 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.24 0.24 0.24 0.25 0.22 0.22 0.22 0.22 0.23 0.14 
0.4 0.68 0.68 0.68 0.69 0.63 0.63 0.63 0.63 0.64 0.39 
0.6 0.94 0.94 0.94 0.94 0.92 0.92 0.91 0.91 0.92 0.57 
0.8 0.99 1.00 1.00 1.00 0.99 0.99 0.99 0.99 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.22 0.22 0.22 0.22 0.20 0.20 0.19 0.19 0.20 0.14 
0.4 0.63 0.64 0.64 0.64 0.57 0.57 0.56 0.56 0.62 0.39 
0.6 0.94 0.94 0.94 0.94 0.88 0.88 0.88 0.88 0.91 0.57 
0.8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.89 



COMPARISON OF LAV AND LS ESTIMATION AND INFERENCE PROCEDURES 

156 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 6: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 20, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.04 0.09 0.11 0.06 0.06 0.06 0.06 0.06 0.04 
0.2 0.14 0.08 0.14 0.15 0.08 0.08 0.08 0.08 0.11 0.07 
0.4 0.27 0.18 0.27 0.29 0.15 0.16 0.15 0.15 0.20 0.16 
0.6 0.45 0.33 0.45 0.47 0.27 0.29 0.27 0.27 0.34 0.29 
0.8 0.63 0.52 0.64 0.66 0.41 0.45 0.41 0.41 0.49 0.44 
1.0 0.78 0.69 0.78 0.80 0.56 0.62 0.56 0.56 0.62 0.56 
2.0 0.99 0.98 0.99 0.99 0.96 0.97 0.96 0.96 0.92 0.82 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.05 0.08 0.10 0.06 0.06 0.05 0.05 0.06 0.04 
0.2 0.14 0.08 0.13 0.14 0.08 0.08 0.07 0.07 0.10 0.07 
0.4 0.26 0.17 0.25 0.28 0.15 0.15 0.14 0.14 0.20 0.16 
0.6 0.44 0.33 0.42 0.45 0.26 0.29 0.25 0.25 0.33 0.29 
0.8 0.62 0.51 0.61 0.63 0.41 0.44 0.39 0.39 0.48 0.43 
1.0 0.77 0.68 0.76 0.78 0.55 0.61 0.54 0.54 0.62 0.56 
2.0 0.99 0.98 0.99 0.99 0.95 0.97 0.95 0.95 0.93 0.82 

Table 7: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 30, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.06 0.10 0.10 0.06 0.06 0.06 0.06 0.07 0.05 
0.2 0.14 0.09 0.14 0.15 0.08 0.09 0.08 0.08 0.11 0.08 
0.4 0.26 0.20 0.27 0.29 0.16 0.16 0.16 0.16 0.22 0.15 
0.6 0.44 0.36 0.45 0.47 0.28 0.30 0.28 0.28 0.36 0.27 
0.8 0.63 0.55 0.65 0.66 0.43 0.47 0.44 0.44 0.53 0.42 
1.0 0.79 0.72 0.80 0.81 0.59 0.63 0.60 0.60 0.67 0.54 
2.0 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.98 0.96 0.80 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.09 0.06 0.10 0.10 0.06 0.06 0.05 0.05 0.07 0.05 
0.2 0.13 0.09 0.14 0.15 0.08 0.08 0.08 0.08 0.11 0.08 
0.4 0.26 0.20 0.26 0.27 0.15 0.17 0.15 0.15 0.22 0.15 
0.6 0.44 0.36 0.44 0.46 0.27 0.29 0.27 0.27 0.36 0.27 
0.8 0.63 0.55 0.63 0.65 0.43 0.46 0.42 0.42 0.52 0.42 
1.0 0.80 0.72 0.79 0.80 0.59 0.62 0.59 0.59 0.66 0.54 
2.0 0.99 0.99 0.99 0.99 0.97 0.98 0.97 0.97 0.96 0.80 
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Table 8: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 40, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.08 0.08 0.09 0.05 0.05 0.05 0.05 0.06 0.05 
0.2 0.14 0.14 0.14 0.15 0.09 0.09 0.08 0.08 0.12 0.08 
0.4 0.31 0.32 0.32 0.33 0.19 0.19 0.19 0.19 0.26 0.19 
0.6 0.54 0.55 0.55 0.56 0.36 0.36 0.37 0.37 0.45 0.34 
0.8 0.75 0.76 0.76 0.77 0.57 0.57 0.57 0.57 0.65 0.49 
1.0 0.88 0.89 0.89 0.89 0.75 0.75 0.75 0.75 0.79 0.60 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.09 0.08 0.09 0.05 0.05 0.05 0.05 0.06 0.05 
0.2 0.13 0.14 0.14 0.14 0.08 0.08 0.08 0.08 0.12 0.08 
0.4 0.30 0.31 0.31 0.32 0.19 0.19 0.19 0.19 0.25 0.18 
0.6 0.53 0.54 0.54 0.55 0.36 0.36 0.36 0.36 0.44 0.34 
0.8 0.75 0.76 0.75 0.76 0.57 0.57 0.56 0.56 0.63 0.49 
1.0 0.88 0.89 0.88 0.89 0.74 0.74 0.74 0.74 0.78 0.60 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.82 

Table 9: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 100, K = 3 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.25 0.26 0.26 0.27 0.21 0.21 0.21 0.21 0.23 0.14 
0.4 0.68 0.68 0.69 0.69 0.60 0.60 0.60 0.60 0.63 0.38 
0.6 0.94 0.94 0.94 0.94 0.90 0.90 0.90 0.90 0.91 0.57 
0.8 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.05 
0.2 0.24 0.24 0.24 0.25 0.20 0.20 0.20 0.20 0.22 0.14 
0.4 0.67 0.67 0.67 0.68 0.55 0.55 0.56 0.56 0.62 0.38 
0.6 0.93 0.93 0.93 0.93 0.87 0.87 0.88 0.88 0.88 0.57 
0.8 0.99 0.99 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 
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Table 10: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 20, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.18 0.09 0.11 0.13 0.05 0.05 0.05 0.05 0.15 0.06 
0.2 0.21 0.10 0.13 0.15 0.06 0.06 0.05 0.05 0.17 0.07 
0.4 0.27 0.14 0.18 0.20 0.07 0.08 0.07 0.07 0.20 0.09 
0.6 0.35 0.21 0.25 0.28 0.10 0.11 0.09 0.09 0.24 0.14 
0.8 0.45 0.31 0.34 0.37 0.13 0.15 0.14 0.14 0.29 0.20 
1.0 0.56 0.40 0.44 0.47 0.18 0.21 0.19 0.19 0.33 0.28 
2.0 0.90 0.83 0.84 0.86 0.51 0.63 0.56 0.56 0.53 0.65 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.19 0.09 0.10 0.12 0.05 0.05 0.04 0.04 0.15 0.06 
0.2 0.21 0.10 0.12 0.14 0.05 0.05 0.05 0.05 0.17 0.07 
0.4 0.27 0.14 0.16 0.18 0.07 0.07 0.06 0.06 0.20 0.09 
0.6 0.35 0.21 0.23 0.26 0.09 0.10 0.09 0.09 0.23 0.14 
0.8 0.44 0.30 0.32 0.34 0.13 0.15 0.13 0.13 0.28 0.20 
1.0 0.55 0.40 0.41 0.44 0.18 0.20 0.17 0.17 0.32 0.28 
2.0 0.89 0.82 0.82 0.84 0.51 0.62 0.53 0.53 0.51 0.65 

 

Table 11: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 30, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.14 0.08 0.13 0.14 0.05 0.05 0.05 0.05 0.08 0.04 
0.2 0.20 0.13 0.18 0.20 0.08 0.08 0.07 0.07 0.11 0.07 
0.4 0.35 0.26 0.34 0.36 0.15 0.16 0.15 0.15 0.19 0.16 
0.6 0.55 0.46 0.55 0.57 0.26 0.30 0.28 0.28 0.34 0.30 
0.8 0.74 0.66 0.74 0.75 0.42 0.47 0.45 0.45 0.50 0.45 
1.0 0.86 0.81 0.86 0.87 0.58 0.64 0.61 0.61 0.64 0.58 
2.0 1.00 0.99 1.00 1.00 0.96 0.98 0.97 0.97 0.95 0.82 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.14 0.08 0.12 0.13 0.05 0.05 0.05 0.05 0.07 0.04 
0.2 0.19 0.13 0.17 0.19 0.07 0.08 0.08 0.08 0.10 0.07 
0.4 0.35 0.26 0.33 0.34 0.15 0.16 0.15 0.15 0.20 0.16 
0.6 0.55 0.46 0.53 0.55 0.27 0.30 0.27 0.27 0.34 0.30 
0.8 0.73 0.65 0.72 0.73 0.41 0.46 0.43 0.43 0.50 0.45 
1.0 0.86 0.81 0.85 0.86 0.57 0.63 0.59 0.59 0.64 0.58 
2.0 1.00 0.99 1.00 1.00 0.96 0.98 0.97 0.97 0.95 0.82 
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Table 12: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, n 
= 40, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and skewed 

(stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.11 0.12 0.12 0.13 0.06 0.06 0.06 0.06 0.07 0.05 
0.2 0.20 0.21 0.21 0.21 0.10 0.10 0.10 0.10 0.13 0.09 
0.4 0.44 0.45 0.44 0.45 0.24 0.24 0.24 0.24 0.30 0.23 
0.6 0.69 0.70 0.70 0.71 0.45 0.45 0.45 0.45 0.53 0.42 
0.8 0.87 0.87 0.88 0.88 0.66 0.66 0.67 0.67 0.73 0.57 
1.0 0.95 0.96 0.96 0.96 0.82 0.82 0.83 0.83 0.86 0.67 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.85 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.12 0.12 0.11 0.12 0.06 0.06 0.06 0.06 0.06 0.05 
0.2 0.20 0.21 0.20 0.21 0.10 0.10 0.10 0.10 0.13 0.09 
0.4 0.43 0.44 0.43 0.44 0.23 0.23 0.23 0.23 0.30 0.23 
0.6 0.69 0.70 0.69 0.70 0.44 0.44 0.44 0.44 0.52 0.42 
0.8 0.87 0.87 0.87 0.88 0.65 0.65 0.65 0.65 0.72 0.57 
1.0 0.95 0.96 0.96 0.96 0.82 0.82 0.82 0.82 0.85 0.67 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.85 

 

Table 13: Median percentages of rejections of H0: coefficient = 0, normal explanatory variable, 
n = 100, K = 5 for symmetric (stable with beta = 0.0 for alpha = 1.0, 1.2, 1.8, and 2.0) and 

skewed (stable with beta = 0.4 and 0.8 for alpha = 1.2 and 1.8) distributions. 
Panel A: Symmetric Distributions 

Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.05 
0.2 0.28 0.28 0.29 0.29 0.19 0.19 0.19 0.19 0.21 0.14 
0.4 0.72 0.72 0.72 0.73 0.58 0.58 0.58 0.58 0.61 0.39 
0.6 0.95 0.95 0.95 0.95 0.88 0.88 0.88 0.88 0.89 0.57 
0.8 0.99 0.99 1.00 1.00 0.98 0.98 0.98 0.98 0.98 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 

Panel B: Skewed Distributions 
Beta LR1 LR2 LR3 LR4 B1 B2 B3 B4 LM LST 
0.0 0.08 0.08 0.08 0.08 0.05 0.05 0.05 0.05 0.05 0.06 
0.2 0.27 0.27 0.27 0.28 0.18 0.18 0.19 0.19 0.20 0.15 
0.4 0.70 0.70 0.70 0.71 0.55 0.55 0.56 0.56 0.61 0.39 
0.6 0.94 0.94 0.94 0.95 0.87 0.87 0.87 0.87 0.89 0.58 
0.8 1.00 1.00 0.99 0.99 0.98 0.98 0.98 0.98 0.99 0.67 
1.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.73 
2.0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.88 
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