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Discriminant Analysis for Repeated Measures Data: 
Effects of Mean and Covariance Misspecification on 
Bias and Error in Discriminant Function Coefficients 

 
Tolulope T. Sajobi Lisa M. Lix Longhai Li William Laverty 

University of Saskatchewan, 
Saskatoon, Canada 

 
 
Discriminant analysis (DA) procedures based on parsimonious mean and/or covariance structures have 
been proposed for repeated measures (RM) data. Bias and means square error of discriminant function 
coefficients (DFCs) for DA procedures are investigated when the mean and/or covariance structures are 
correctly specified and misspecified. 
 
Key words: Multivariate, model misspecification, discriminant function coefficient, mean square error, 

bias. 
 
 

Introduction 
Linear discriminant analysis (DA) is a 
multivariate procedure, originally proposed by 
Fisher (1936), for predicting group membership 
(predictive discriminant analysis; PDA) and/or 
describing group separation (descriptive 
discriminant analysis; DDA) (Huberty & 
Olejnik, 2006) on multiple variables. The 
classical linear PDA procedure has been applied 
to repeated measures (RM) data (Feighner & 
Sverdlov, 2002; Levesque, Ducharme, Zarit, 
Lachance & Giroux, 2008), in which study 
participants are measured on a single variable at 
two or more occasions. Classical linear DA will 
not result in an efficient classification rule in 
multivariate  or  RM data  when  there  is a large 
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number of variables or measurement occasions 
relative to sample size. In recent years, a number 
of PDA procedures for RM data have been 
proposed (Marshall & Baron, 2000; Roy & 
Khatree, 2005a, 2005b, 2007; Tomasko, Helms 
& Snappin, 1999). 

Roy and Khattree (2005a, 2005b) 
developed DA procedures based on 
parsimonious mean and covariance structures for 
both univariate (measurements on one outcome 
variable) and multivariate (measurements on two 
or more outcome variables) RM data to address 
the issue of classification efficiency when 
sample size is small. For univariate RM data, 
they proposed procedures based on constant RM 
mean vectors and either a compound symmetric 
(CS) or first-order autoregressive (AR-1) 
covariance. Though these procedures can result 
in efficient classification rules in high-
dimensional data (Roy & Khatree, 2007), they 
may also result in inflated misclassification error 
rates (MERs) when the mean and/or covariance 
structure is/are incorrectly specified. 

Although these procedures were 
originally developed for PDA, the discriminant 
function coefficients (DFCs) produced can be 
used for DDA, that is, to quantify the relative 
importance of the measurement occasions for 
discriminating among groups (Thomas, 1992). 
In classical linear DA, it is known that bias and 
error variation of DFCs is influenced by a 
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variety of data characteristics, including degree 
and pattern of separation between groups (group 
mean vectors) and magnitude of correlation 
among the outcome variables (Williams & Titus, 
1998; Williams, Titus & Hines, 1991). However, 
to date, there has been little – if any – research, 
regarding the effects of misspecifying the mean 
and/or covariance structure on DDA procedures 
for RM data. Thus, the purpose of this study is 
to investigate the effects of RM mean and/or 
covariance misspecification on bias and error in 
DFCs of DDA procedures based on constant 
mean vectors and/or structured covariance 
matrices in univariate RM data. 
 
Estimation of DFCs in DA Procedures for RM 
Data 

Consider the case of g = 2 groups 
(which can be generalized to g > 2). In general, 
the number of uncorrelated DFC vectors is equal 
to g – 1. Let yij be the p × 1 random vector of 
observed measurements for the ith study 
participant (i = 1, ...,nj; N = n1 + n2) in the jth 
group (j = 1, 2). It is assumed that yij ~ Np(μj, 
Σj), where μj and Σj are the population mean 
vector and covariance for the jth group and are 

estimated by jμ̂ and jΣ̂ , respectively. The 

linear DFC vector is estimated by 
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These quantities are estimated using the least-
squares approach. 

Roy and Khatree (2005a) proposed a 
DA procedure based on constant RM mean 
vectors and CS covariance structure. With a CS 

structure, Σ has diagonal elements σ2 and off-
diagonal elements σ2ρ. For constant RM mean 
vectors, pjj c 1μ =ˆ , the maximum likelihood 

(ML) estimate of cj is 
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where p1 is a p ×  1 vector of ones, T is the 

transpose operator, and jy  is the sample mean 

vector for the jth group. The ML estimates of σ2 

and ρ can be obtained by simultaneously solving 
the following system of equations. 
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where a1 = tr(W1), a2 = tr(W2), b1 = tr(JW1), b2 
= tr(JW2), 

T
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and tr is the trace operator. The DFCs are 
estimated by substituting the ML estimates of Σ 
and jμ  in (1). 

Roy and Khattree (2005a) proposed a 
DA procedure based on constant RM mean 
vectors and AR-1 covariance structure. With an 
AR-1 structure, Σ has diagonal elements σ2, and 
off-diagonal elements σ2ρl, where l is the number 
of lags between measurement occasions. 
Estimates of cj, σ

2, and ρ are obtained by 
simultaneously solving 
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Details of these equations are provided in the 
Appendix. The estimates of the DFCs are 
obtained by substituting the ML estimates of Σ 
and μj in (1). 

For the DA procedure based on constant 
RM mean vectors and unstructured covariance, 
the ML estimate of μj is as shown in equation 3 
and Σ is estimated as 
 

N
j

j
==

2

1ˆ
W

Σ ,                       (11) 

 
where Wj is obtained from (7). 
 

Methodology 
The investigated procedures in the Monte Carlo 
study were: (a) DA procedure based on 
unstructured mean vectors and unstructured 
covariances (UN), (b) DA procedure based on 
constant mean vectors and unstructured 
covariances (STUN), (c) DA procedure based on 
constant mean vectors and CS covariances 
(STCS), and (d) DA based on constant mean 
vectors and AR-1 covariances (STAR). 

The following conditions were 
manipulated in the study: (a) number of repeated 
measurements (p), (b) total sample size (N), (c) 
group sizes, (d) pattern and magnitude of 
correlation among the repeated measurements, 
and (e) RM mean vector configuration. The 
number of groups (g = 2) and the population 
distribution (normal) were fixed. 

The number of RMs was set at p = 3, 5, 
7 and 9. Previous studies have considered values 
of p ranging from 3 to 10 (Roy & Khattree, 
2005a; 2005b; Williams & Titus, 1988). Total 
sample sizes of N = 60, 90 and 120 were 
investigated, giving an N/p ranging from 6.6 to 
40.0. 

Although previous simulation studies 
about DA procedures for RM data have 
primarily focused on equal group size conditions 
(Roy & Khattree, 2005a, 2005b), unequal group 
sizes have also been investigated for 
multivariate designs (Baron, 1991; He & Fung, 
2000). Based on the research of Baron (1991) 
and Lei and Koehly (2003), the unequal group 
sizes selected for this study were (n1, n2) = (24, 
36) for N = 60, (36, 54) for N = 90, and (48, 72) 
for N = 120. 

The standard error of DFCs is known to 
be influenced by the magnitude of correlation 
among the variables (Thomas & Zumbo, 1996). 
Six population correlation structures were 
investigated: (1) Q1: CS structure with 
parameter ρ = 0.3, (2) Q2: CS structure with ρ = 
0.7, (3) Q3: AR-1 structure with ρ = 0.3, (4) Q4: 
AR-1 structure with ρ = 0.7, (5) Q5: unstructured 
with average correlation amongst the off-
diagonal elements of 0.3, and (6) Q6: 
unstructured with average correlation amongst 
the off-diagonal elements of 0.7. 

Pseudorandom observation vectors yij 
were generated from a multivariate normal 
distribution with mean μj and correlation matrix 
Qmj = Qm (m = 1 ,…, 6). A vector of standard 
normal deviates, Cij, was transformed to a vector 
of multivariate observations via 

T .ij j ij= +y μ LC  The Cholesky decomposition 

was used to obtain L, an upper triangular matrix 
of dimension p satisfying the 
equality mjQLL =T  and then yij was multiplied 

by Vj, a diagonal matrix with elements σj to 
obtain multivariate observations with the desired 
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variances and covariances, such that 

.T
jmjjj VQVΣ =  For all investigated conditions 

2
1σ = 2

2σ =1 was selected. The RANNOR 
function in SAS (SAS Institute Inc., 2008) was 
used to generate the standard normal deviates. 

A variety of mean vector conditions 
have been investigated in previous research 
(Titus & Williams, 1988; Roy & Khattree, 
2005a). In this study, three configurations for μ1 

were selected for each value of p (see Table 1); 
for all conditions, μ2 was the null vector. 
Configuration I had constant means for all RM 
occasions in both groups. Configuration II had 
non-constant RM mean with a quadratic, cubic 
or polynomial pattern for the RM occasions in 
the first group and constant means in the second 
group. For configuration III, a monotonic 
decreasing linear pattern was specified for the 
means in the first group and the means in the 
second group were constant. 

Overall, 1,493 combinations of 
simulation conditions were investigated with 
5,000 replications for each combination. The 
study was conducted using SAS/IML software 
(SAS Institute Inc., 2008). 

Two measures of performance were 
used to evaluate the DFCs, namely: mean square 
error (MSE) and norm of the average bias 
(Crouxe & Dehon, 2001). The norm of the 
average bias  is 
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and the MSE is 
 


=

−=
M

k
kM

e
1

2||ˆ||
1

aa ,             (13) 

 
where a is the population vector of DFCs, ||x|| is 
the norm of x and M is the number of 
replications (M = 5,000). Both measures take 
values on the interval [0, ∞ ) and the smaller the 
bias or error in the DFCs the better. To adjust for 
the confounding effect of degree of separation 
between the two group means on bias and error, 
the bias and MSE in the DFCs were 
standardized using the distance between the two 
group mean vectors. Therefore, 
 

|||| 21 μμ −
= bbst ,                     (14) 

and 

|||| 21 μμ −
= eest .                     (15) 

 
Results 

The average standardized MSE and bias values 
are summarized in Tables 2 - 5 for the four 
investigated values of p. As Table 2 shows for p 
= 3, when the observations in both groups are 
sampled from populations with constant mean 
vectors (configuration I), the MSE was smallest 
(and similar) for both the STCS and STAR DA 
procedures, and largest for the UN procedure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 1: Configurations of μ1 Investigated in the Simulation Study 
 

p I II III 

3 (0.5, 0.5, 0.5) (0.5, 1, 0.5) (0.5, 0.25, 0) 

5 (0.5, 0.5, 0.5, 0.5, 0.5) (0.5, 1, 1.5, 1, 0.5) (1, 0.75, 0.5, 0.25, 0) 

7 (0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5) (0.5, 1, 1.5, 2, 1.5, 1, 0.5) (1.5, 1.25, 1, 0.75, 0.5, 0.25, 0) 

9 
(0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 

0.5, 0.5) 
(0.5, 1, 1.5, 2, 2.5, 2, 1.5, 1, 

0.5) 
(2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 

0.25, 0) 

Note: μ2 was equal to the null vector for all conditions 
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When the data were sampled from a population 
with a non-constant mean configuration 
(configurations II or III), MSE and bias were 
smallest for either UN or STCS procedure and 
were substantially larger for STUN and STAR 
procedures. For example, under a CS covariance 
structure when ρ = 0.7 and p = 3, the UN and 
STAR procedures had the smallest and largest 
average MSE, respectively, when data were 
sampled from a population with mean 
configuration II, whereas the UN and STUN 
procedures had the smallest and largest MSE, 
respectively, when data were sampled from a 
population with mean configuration III. 

For DA procedures based on constant 
mean vectors STUN, STCS and STAR, the 
average MSE decreased as the correlation 
among the RMs increased when the mean and 
covariance structure were correctly specified. 
This finding was observed regardless of the 
number of RMs, however, when either the 
covariance or mean structure was misspecified, 
the average MSE increased as the correlation 
among the repeated measurements increased. 
For example, when p = 3 and under AR-1 
population covariance structure, the average 
MSE for UN procedure was 0.35 and 0.64 when 
ρ = 0.3 and ρ = 0.7, respectively, whereas the 
average MSE of STAR procedure were 0.07 and 
0.05 when ρ = 0.3 and ρ = 0.7, respectively, 
when data were sampled from a population with 
constant mean configuration (see Table 2). 

For DA procedures based on structured 
covariances, the average MSE and bias 
increased when the covariance structure was 
misspecified and the mean structures were 
correctly specified, regardless of the number of 
RMs. For example, under an AR-1 population 
covariance structure and when ρ = 0.3 and p = 3, 
the average MSE and bias of STCS procedure 
were 1.3 and 2.0 times the average MSE of 
STAR procedure, respectively, when the data 
were sampled from a population with mean 
configuration I. Similarly, the average MSE and 
bias of DA procedures based on structured 
covariances increased under a correctly specified 
population covariance but a misspecified mean 
structure. For example, when p = 3 and ρ = 0.3 
under an AR-1 population covariance structure, 
the average MSE and bias of the STAR 
procedure when the data were sampled from a 

population with mean configuration II were 6.4 
and 7.0 times the average MSE and bias of 
STAR procedure under a constant mean 
configuration, respectively. 

For the STUN procedure, the average 
bias increased when the mean and covariance 
structures were misspecified, but STCS 
procedure had the smallest MSE when the data 
were sampled from a population with a constant 
mean configuration, regardless of the number of 
RM. For example, when p = 7, under an 
unstructured population covariance structure and 
when ρ = 0.3 and p = 7, the average MSE and 
bias of STUN procedure were 0.70 and 2.75 
times the average MSE and bias of STCS 
procedures, respectively, when the data were 
sampled from a population with a constant mean 
configuration (see Table 4).  

Moreover, for each DA procedure, the 
average MSE and bias due to misspecification of 
the covariance structure increased as the 
magnitude of correlation and number of RMs 
increased. For example, when p = 5 and under a 
CS population covariance structure, the average 
MSEs of STAR procedure were 2.6 and 5.5 
times the average MSE of STCS procedure for ρ 
= 0.3 and ρ = 0.7, respectively, when data were 
sampled from a population with a constant mean 
configuration (see Table 3). The corresponding 
bias values for STAR procedure were 4.2 and 
10.7 times the bias of STCS procedure when ρ = 
0.3 and ρ = 0.7, respectively. Similarly, when p 
= 9, the average MSEs of STCS procedure were 
8,3 and 11.0 times the average MSE of STAR 
for ρ = 0.3 and ρ = 0.7, respectively, whereas the 
corresponding average bias values were 11.0 
times the average bias of STCS procedure when 
ρ = 0.3 and ρ = 0.7 (see Table 5). 

Finally, analyses revealed that the 
average MSE for each of the DA procedures 
decreased as the sample size increased. For 
example, the average MSEs of UN procedure 
were 7.82, 3.77, and 2.50 when N = 60, 90 and 
120 respectively. By contrast, the average bias 
for each DA procedure remained largely 
unchanged as the sample size increased, 
regardless of the mean configuration and 
number of RM. For example, the overall average 
bias of STAR procedure were 2.12, 2.10 and 
2.10 when N = 60, 90 and 120, respectively. 
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Table 2: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 3 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 0.34 0.11 0.07 0.09 
II 0.31 0.45 0.38 0.52 
III 0.52 0.64 0.61 0.63 

0.7 
I 0.65 0.12 0.05 0.09 
II 0.65 1.89 1.81 2.38 
III 1.16 3.00 2.95 2.99 

AR(1) 

0.3 
I 0.35 0.14 0.09 0.07 
II 0.30 0.56 0.33 0.44 
III 0.48 0.43 0.41 0.41 

0.7 
I 0.64 0.13 0.08 0.05 
II 0.66 3.29 2.44 3.10 
III 1.01 1.11 1.06 1.06 

UN 

0.3 
I 0.38 0.13 0.08 0.16 
II 0.34 0.33 0.41 0.53 
III 0.61 1.20 1.25 1.31 

0.7 
I 0.67 0.12 0.05 0.12 
II 0.66 1.47 1.52 2.03 
III 1.29 4.34 4.41 4.48 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.08 0.08 0.07 0.15 
II 0.09 0.52 0.52 0.61 
III 0.13 0.98 0.98 0.98 

0.7 
I 0.06 0.05 0.05 0.21 
II 0.14 1.20 1.20 1.38 
III 0.25 2.27 2.27 2.29 

AR(1) 

0.3 
I 0.08 0.08 0.15 0.08 
II 0.09 0.59 0.47 0.56 
III 0.11 0.75 0.77 0.75 

0.7 
I 0.06 0.06 0.22 0.06 
II 0.16 1.61 1.40 1.58 
III 0.16 1.34 1.36 1.34 

UN 

0.3 
I 0.08 0.08 0.15 0.27 
II 0.10 0.42 0.54 0.60 
III 0.18 1.40 1.45 1.47 

0.7 
I 0.06 0.05 0.08 0.27 
II 0.13 1.05 1.10 1.27 
III 0.32 2.77 2.81 2.83 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance. Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Table 3: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 5 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 0.56 0.14 0.05 0.13 
II 0.53 0.96 0.80 1.09 
III 0.63 1.21 1.13 1.16 

0.7 
I 1.10 0.16 0.02 0.11 
II 1.35 4.40 4.19 5.20 
III 1.80 6.06 5.95 6.00 

AR(1) 

0.3 
I 0.56 0.20 0.08 0.05 
II 0.46 0.76 0.37 0.48 
III 0.55 0.57 0.47 0.45 

0.7 
I 1.06 0.21 0.08 0.04 
II 0.96 2.42 1.51 2.01 
III 1.08 0.86 0.76 0.72 

UN 

0.3 
I 0.66 0.20  0.14 0.20 
II 0.64 2.26 1.33 1.67 
III 0.75 1.61 1.63 1.61 

0.7 
I 1.15 0.17 0.03 0.10 
II 1.40 4.81 4.44 5.35 
III 2.04 7.57 7.66 7.76 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.06 0.06 0.05 0.21 
II 0.09 0.60 0.60 0.69 
III 0.12 0.89 0.89 0.91 

0.7 
I 0.04 0.04 0.03 0.23 
II 0.18 1.39 1.39 1.54 
III 0.27 2.08 2.08 2.09 

AR(1) 

0.3 
I 0.09 0.09 0.14 0.07 
II 0.09 0.48 0.38 0.45 
III 0.10 0.55 0.56 0.55 

0.7 
I 0.05 0.05 0.22 0.04 
II 0.11 0.99 0.83 0.95 
III 0.10 0.72 0.74 0.72 

UN 

0.3 
I 0.08 0.08 0.31 0.35 
II 0.11 0.96 0.77 0.86 
III 0.15 1.03 1.08 1.07 

0.7 
I 0.04 0.03 0.07  0.22 
II 0.18 1.45 1.42 1.56 
III 0.30 2.33 2.36 2.37 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance. Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Table 4: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 7 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 0.78 0.19 0.03 0.17 
II 0.90 1.67 1.37 1.77 
III 0.97 1.96 1.81 1.83 

0.7 
I 1.60 0.22 0.02 0.11 
II 2.72 7.68 7.31 8.56 
III 3.29 9.78 9.55 9.61 

AR(1) 

0.3 
I 0.84 0.31 0.08 0.04 
II 0.87 1.16 0.43 0.58 
III 0.83 0.87 0.59 0.58 

0.7 
I 1.56 0.31 0.08 0.03 
II 1.39 2.26 1.09 1.51 
III 1.42 0.96 0.70 0.70 

UN 

0.3 
I 1.23 0.33 0.23 0.45 
II 2.18 4.70 7.21 7.64 
III 2.54 15.77 11.50 11.56 

0.7 
I 1.73 0.24 0.03 0.15 
II 2.94 7.95 7.98 9.36 
III 4.40 14.93 15.59 15.84 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.06 0.06 0.04 0.27 
II 0.11 0.64 0.64 0.72 
III 0.15 0.86 0.86 0.87 

0.7 
I 0.04 0.03 0.02 0.23 
II 0.22 1.48 1.48 1.60 
III 0.31 2.00 2.00 2.00 

AR(1) 

0.3 
I 0.10 0.10 0.14 0.07 
II 0.10 0.44 0.34 0.41 
III 0.11 0.48 0.48 0.48 

0.7 
I 0.06 0.06 0.20 0.04 
II 0.09 0.72 0.57 0.67 
III 0.09 0.51 0.54 0.51 

UN 

0.3 
I 0.04 0.04 0.11 0.29 
II 0.24 1.51 1.55 1.68 
III 0.39 2.48 2.55 2.58 

0.7 
I 0.05 0.05 0.05 0.34 
II 0.14 0.85 0.85 0.94 
III 0.19 1.20 1.20 1.22 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance. Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Table 5: Average standardized MSE and Bias by Covariance Structure, Magnitude of Correlation and 
Mean Configuration for p = 9 

Covariance 
Structure 

ρ  Mean 
Configuration 

MSE 

UN STUN STCS STAR 

CS 

0.3 
I 1.33 0.31 0.03 0.25 
II 1.54 2.56 2.04 2.51 
III 1.64 2.88 2.53 2.59 

0.7 
I 2.18 0.29 0.01 0.11 
II 5.14 11.58 10.97 12.40 
III 6.12 14.07 13.66 13.72 

AR(1) 

0.3 
I 1.19 0.47 0.07 0.04 
II 0.98 1.41 0.51 0.75 
III 1.40 1.38 0.74 0.78 

0.7 
I 2.17 0.46 0.07 0.02 
II 2.05 2.51 0.86 1.22 
III 2.03 1.27 0.69 0.70 

UN 

0.3 
I 1.95 0.47 0.09 0.33 
II 4.73 10.85 12.28 12.84 
III 6.85 35.01 30.47 30.74 

0.7 
I 2.86 0.37 0.01 0.12 
II 8.52 24.32 23.45 25.40 
III 10.07 32.21 31.44 32.00 

Covariance 
Structure 

ρ  Mean 
Configuration 

Bias 

UN STUN STCS STAR 

CS 

0.3 
I 0.07 0.07 0.03 0.33 
II 0.13 0.66 0.66 0.74 
III 0.16 0.84 0.84 0.85 

0.7 
I 0.03 0.03 0.02 0.22 
II 0.29 1.54 1.54 1.64 
III 0.37 1.96 1.96 1.96 

AR(1) 

0.3 
I 0.12 0.12 0.13 0.07 
II 0.09 0.41 0.31 0.40 
III 0.13 0.44 0.44 0.47 

0.7 
I 0.07 0.07 0.19 0.03 
II 0.09 0.58 0.43 0.51 
III 0.10 0.41 0.43 0.41 

UN 

0.3 
I 0.08 0.07 0.22 0.41 
II 0.32 1.46 1.63 1.67 
III 0.43 2.40 2.26 2.27 

0.7 
I 0.04 0.03 0.06 0.23 
II 0.43 2.26 2.25 2.35 
III 0.56 2.98 2.97 2.99 

Notes: See Table 1 for a description of the mean configurations; CS = compound symmetric; AR-1 = first-order 
autoregressive; UN = unstructured; ρ = correlation parameter; UN = unstructured mean and covariance; STUN = 
structured mean and unstructured covariance; STCS = structured mean and CS covariance; STAR = structured 
mean and AR-1 covariance; Numbers in bold correspond to bias and error values of DA procedures for which the 
mean and covariance structures are correctly specified. 
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Conclusion 
This research investigated the effects of RM 
mean and/or covariance structure 
misspecification on bias and error in DFCs for 
DA procedures based on parsimonious mean 
and/or covariance structures. As expected, the 
bias and error in the DFCs of the investigated 
procedures increased when the RM mean and/or 
covariance structures were misspecified. The 
average bias and error variation due to 
misspecification of the RM mean structure was 
greater than the average bias and error variation 
due to RM covariance structure misspecification 
for all of the investigated procedures. Although 
DA procedures based on parsimonious RM 
mean and covariance structures had negligible 
bias when the mean and covariances are 
correctly specified, UN DA procedure had the 
smallest bias when the data were sampled from a 
population with non-constant mean 
configuration.  

Based on the study findings, adopting a 
DA procedure based on unstructured mean 
vectors and covariance matrices when the 
researcher has prior knowledge to suggest that 
the mean longitudinal profile for each group will 
change across the repeated measures occasions 
is recommended. If the mean longitudinal profile 
in each group is not expected to increase or 
decrease across the measurement occasions, then 
either the STCS or STAR procedure are 
recommended because they require estimation of 
the fewer number of parameters, although any of 
the procedures can be expected to perform well 
in terms of both bias and error variation.  

To reduce the effect of mean and/or 
covariance structure misspecification on bias 
and error in the DFCs, preliminary tests of 
model fit could be undertaken before adopting a 
DDA procedure for RM data. Graphical 
exploration of the data, likelihood ratio tests, or 
penalized log-likelihood measures like the 
Akaike information criterion have all been 
proposed to guide the specification of mean and 
covariance structures (Fitzmaurice, Laird & 
Ware, 2004) 
 
Study Limitations 

This research focused on normally 
distributed data. The impact of mean and/or 
covariance misspecification on bias and error in 

the DFCs when data are sampled from non-
normal distribution has not been investigated. 
Although mild departures from multivariate non-
normality are known to have little effect on 
classification accuracy of classical DA 
procedure (Ashikaga & Chang, 1981), 
classification accuracy can be severely affected 
under large departures (Lachenbruch, Sneeringer 
& Revo, 1973; Baron, 1991; McLachlan, 1992). 
Inferences about DFCs of the linear DA 
procedures may also be affected by the degree of 
departure from the assumption of multivariate 
normality (McLachlan, 1992).  

The DA procedures considered in this 
manuscript also focused only on complete data, 
an assumption which may not be satisfied in RM 
studies, which are often characterized by 
missing observations and unbalanced 
measurements occasions (Fairclough, et al., 
1998). In the simulation study, the RM variances 
were assumed to be constant across variables 
and groups. Linear DA procedures rest on the 
assumption of covariance homogeneity (Huberty 
& Olejnik, 2006). Departures from this 
assumption may result in reduced classification 
accuracy (Solberg, 1988). DFCs have been 
shown to be relatively robust to violation of this 
assumption when the data are normally 
distributed (Owen & Chmielewski, 1985), but it 
is not known if this robustness will continue to 
be evident when the covariance and/or mean 
vector is misspecified. 
 
Future Research 

A number of opportunities for future 
research exist in the development of DDA 
procedures for RM data. Although several 
studies have examined the effects of population 
distribution on classification accuracy, there is 
limited investigation of the effects of population 
distribution and other data characteristics on bias 
and error in DFCs. Existing studies in this area 
have only focused on the effects of sample size, 
number of outcome variables, and mean 
configuration on bias and variation in DFCs 
when data were sampled from normally 
distributed data (Williams & Titus, 1991; Owen 
& Chmielewski, 1985). This study investigated 
DA procedures based on constant mean vectors 
and/or structured covariances. However, the 
assumption of a constant repeated measures 
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group mean structure may not be tenable when 
the interest is in the assessment of the relative 
importance of measurement occasions that 
discriminate between groups. DA procedures 
based on non-constant mean vectors and CS or 
AR-1 covariance structures can be further 
investigated. These procedures which assume 
non-constant mean configurations and 
parsimonious structures will be useful for 
assessing the relative importance of information 
collected at each measurement occasions in 
univariate repeated measures studies. 
 
Summary 

Although the adoption of a DA 
procedure based on a parsimonious mean and/or 
covariance structure can reduce the number of 
parameters to estimate, which is beneficial when 
sample size is small (Roy & Khattree, 2005a), 
this study shows that bias and error variation in 
the DFCs can be large, particularly when there is 
misspecification of the RM mean structure. A 
researcher’s choice of a DA procedure for RM 
data is dependent, in part, on the trade-off 
between parsimony in parameter estimation and 
bias and/or error in the DFCs. 
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Appendix 
As described, more details about ML estimation 
of the coefficients of STAR procedure is 
provided here. In (8), 
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nd 1jy  and jpy , are respectively, the first and 

pth elements of the vector jy . In (9) and (10),  
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where Wu,k-1k is the (k-1,k)th element of Wu (u = 
0,…,6) and k = 1,…,p. 

In these equations,  
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