
Journal of Modern Applied Statistical
Methods

Volume 17 | Issue 2 Article 18

4-17-2019

Weighted Version of Generalized Inverse Weibull
Distribution
Sofi Mudiasir
University of Kashmir, Srinagar, India, sofimudasir3806@gmail.com

S. P. Ahmad
University of Kashmir, Srinagar, India

Part of the Applied Statistics Commons, Social and Behavioral Sciences Commons, and the
Statistical Theory Commons

Recommended Citation
Mudasir, S., & Ahmad, S. P. (2018). Weighted version of generalized inverse Weibull distribution. Journal of Modern Applied Statistical
Methods, 17(2), eP2691. doi: 10.22237/jmasm/1555506264

https://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/jmasm?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/jmasm/vol17?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/jmasm/vol17/iss2?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.wayne.edu/jmasm/vol17/iss2/18?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/209?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/316?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/214?utm_source=digitalcommons.wayne.edu%2Fjmasm%2Fvol17%2Fiss2%2F18&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/10.22237/jmasm/1555506264


Journal of Modern Applied Statistical Methods 

November 2018, Vol. 17, No. 2, eP2691 

doi: 10.22237/jmasm/1555506264 

 
Copyright © 2019 JMASM, Inc. 

ISSN 1538 − 9472 

 

 

 
doi: 10.22237/jmasm/1555506264 | Accepted: October 31, 2017; Published: April 17, 2019. 

Correspondence: Sofi Mudasir, sofimudasir3806@gmail.com 

 

 

 

2 

EMERGING SCHOLARS 

Weighted Version of Generalized Inverse 
Weibull Distribution 

Sofi Mudasir 
University of Kashmir 

Srinagar, India 

S. P. Ahmad 
University of Kashmir 

Srinagar, India 

 

 
Weighted distributions are used in many fields, such as medicine, ecology, and reliability. 

A weighted version of the generalized inverse Weibull distribution, known as weighted 

generalized inverse Weibull distribution (WGIWD), is proposed. Basic properties 

including mode, moments, moment generating function, skewness, kurtosis, and 

Shannon’s entropy are studied. The usefulness of the new model was demonstrated by 

applying it to a real-life data set. The WGIWD fits better than its submodels, such as length 

biased generalized inverse Weibull (LGIW), generalized inverse Weibull (GIW), inverse 

Weibull (IW) and inverse exponential (IE) distributions. 

 

Keywords: Generalized inverse Weibull distribution, weight function, Shannon’s 

entropy, Akaike and Bayesian information criterion 

 

Introduction 

The Weibull distribution is a widely-used distribution for analyzing lifetime data. 

The Weibull family is a generalization of the exponential family and can model 

data exhibiting monotone hazard rate behavior. If the hazard function of the 

distribution under study is unimodal and non-monotone, then the inverse Weibull 

distribution can be used to analyze such data. The inverse Weibull distribution can 

be used to model a variety of failure characteristics such as infant mortality, useful 

life, and wear-out periods; see Calabria and Pulcini (1994) and Kundu and 

Howlader (2010). de Gusmão, Ortega, and Cordeiro (2009) proposed a three-

parameter generalized inverse Weibull distribution by adding another parameter to 

the standard inverse Weibull distribution. Mudasir, Ahmed, and Ahmad (2015) 

estimated the parameters of the inverse Weibull distribution under different loss 
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https://dx.doi.org/10.22237/jmasm/1555506264
mailto:sofimudasir3806@gmail.com


MUDASIR & AHMAD 

3 

functions. Naqash, Ahmad, and Ahmed (2016) obtained the Bayes estimates of 

generalized inverse Weibull distribution. 

The probability density function of generalized inverse Weibull distribution 

is given by 

 

 ( ) 1
f exp 0; , , 0x x

x x





 
   

+

  
= −       

,  (1) 

 

where α and β are called the scale and shape parameters, respectively. 

The idea of weighted distributions was given by Fisher (1934) and studied by 

Rao (1965) in connection with modeling statistical data where the practice of using 

standard distributions for the purpose was not found to be appropriate. This may 

occur due to the non-observability of some events, damage caused to the original 

observation resulting in a reduced value, or adoption of a sampling procedure which 

gives unequal chances to the units in the original. Weighted distributions were used 

frequently in research related to reliability, bio-medicine, ecology, and branching 

processes can be seen in Patil and Rao (1978), Gupta and Kirmani (1990), Gupta 

and Keating (1985), and Oluyede (1999), and in references therein. Many 

researchers for weighted distributions, such as Shaban and Boudrissa (2007), have 

shown that the length-biased version of the Weibull distribution known as the 

Weibull Length-biased (WLB) distribution is unimodal throughout examining its 

shape, with other properties, Kersey (2010) introduced the weighted inverse 

Weibull distribution and beta-inverse Weibull distribution, and theoretical 

properties of them; Mudasir and Ahmad (2015) studied the structural properties of 

length biased Nakagami distribution. Fatima and Ahmad (2017) studied the 

weighted inverse Rayleigh distribution. Jan, Fatima, and Ahmad (2017) studied the 

weighted Ailamujia distribution and found its applications to real data sets. 

If X is a non-negative random variable with density function f(x) and w(x) is 

a non-negative weight function with finite non-zero expectation, then the 

probability density function of the weighted random variable Xw is given by 

 

 ( )
( ) ( )w f

f , 0w

w

x x
x x


=  ,  (2) 

 

where μw = E(w(x)) < ∞. 

The distribution of Xw is known as the weighted distribution corresponding to 

X. Let 
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 ( )w , Rx x =  .  (3) 

 

Also, 

 

 

( ) ( )
0

1

0

w f

exp

w

w

x x dx

x dx
x



  




  





− −

=

  
 = −     





  

 
 

 

 
 
Figure 1. Probability distribution function of weighted generalized inverse Weibull 
distribution 
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Figure 2. Cumulative distribution function of weighted generalized inverse Weibull 
distribution 
 

 

By substituting y = λ(α / x)β, 

 

 Γ 1w


 

  


 
= − 

 
.  (4) 

 

Substituting the values of equations (1), (3), and (4) into equation (2), 
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 ( )

1 1 exp

f , 0; , , , 0

Γ 1

w

x
x

x x






    
  

   




−− − −
  
−  

  =  
 
− 

 

.  (5) 

 

The density function in equation (5) is the weighted version of generalized inverse 

Weibull distribution (WGIWD). 
 
 

 

 
 
Figure 3. Survival function of the weighted generalized inverse Weibull distribution 
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Figure 4. Hazard rate function of the weighted generalized inverse Weibull distribution 
 

 

The cumulative distribution function (cdf) of (5) is defined as 

 

 ( )

Γ 1 ,

Fw

x
x







 





 
− 

 = ,  

 

where 
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 Γ 1






 
= − 

 
.  

 

The survival function of WGIWD is given by 

 

 ( )

γ 1 ,
2

S
x

x







 



 
− 

 = .  

 

The hazard rate function of WGIWD is given as 

 

 ( )

1 1 exp

h

γ 1 ,
2

x
x

x

x






   






  

 

−− − −
  
−  

  =
 
− 

 

.  

Some Cases of WGIWD 

1. If θ = 1 in (5), the length biased generalized inverse Weibull distribution 

is obtained with the probability density function is given as 

 

 ( )

111 exp

f , 0; , , 0l

x
x

x x





 




  

  


−−
  
−  

  =   .  

 

2. If θ = 0 in (5), the generalized inverse Weibull distribution given in (1) 

is obtained. 

3. If θ = 0, λ = 1 in (5), the inverse Weibull distribution is obtained with 

the probability density function given as 

 

 ( ) 1f exp , 0; , 0x x x
x



  
  − −

  
= −       

.  
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4. If θ = 0, λ = β = 1 in (5), the inverse exponential distribution is obtained 

with the probability density function given as 

 

 ( ) 2
f exp , 0; 0x x

x x

 


 
= −   

 
.  

Limits of WGIWD 

1. ( )
1 1

0 0
Γlim limf exp 1w

x x
x x

x






     
  



−− − −

→ →

     
= − −           

  

 

1

1

0
l exp 0

1

im

Γ
x

x
x




 
   






−−
− −

→

  
= − =       − 

 

  

 

2. ( )
1 1

1

1 p

l f exp Γ 1

ex

Γ

im lim

lim

1

w
x x

x

x x
x

x
x









   

 
 

 
  



  






−− − −

→ →

−−
− −

→

     
= − −           

  
= − =        − 

 

  

Mode of WGIWD 

The mode of WGIWD is obtained by finding the first derivative of log(fw(x)) with 

respect to x and equating to zero, i.e. 

 

 ( )( )log f 0w

d
x

dx
= .  

 

Therefore, the mode at x = x0 is given by 
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1

1 1

0

exp

log 0

Γ 1

1

1

x
xd

dx

x

x








   





  







 




 

−− − −
   

−   
    =

  
−     

 =
− +

 
 =  

− + 

  

Moments and Moment Generating Function of WGIWD 

The rth moment about origin and the moment generating function are derived as 

follows: 

 

Theorem 1. If a random variable X has the weighted generalized inverse Weibull 

distribution, then the rth moment about origin is 

 

 ( )
1

Γ 1

Γ 1

r

r

r






 





 +
− 

 =
 
− 

 

 .  

 

Proof.  The rth moment of weighted generalized inverse Weibull 

distribution about the origin is obtained as 

 

 ( )
0

fr

r wx x dx


 =  .  (6) 

 

Using equation (5) in equation (6), 

 

 

1

1

0

exp

Γ 1

r

r x dx
x




 
   

 




− −
+ − −

  
= −       − 

 

   
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Put 

 

 

1

1

1

y
x

x
y

dy
dx

x







 






 − −

 
=  

 

 =

 = −

  

 

As x → 0, y → ∞ and as x → ∞, y → 0, 

 

 

( )

( )
1

0

exp

Γ 1

Γ 1

Γ 1

r

r
r

r

r

r

y y dy

r








 









 





− −






= −
 
− 

 

 +
− 

  =

−


 

 



  (7) 

 

This proves the theorem. 

 

Corollary. If r = 1 is inserted in equation (7), the mean of the WGIWD is 

obtained, which is given by 

 

 
1

1
1

 




 


+= .  (8) 

 

If r = 2 in equation (7), 

 

 
2

2 2
2

 




  


+= .  (9) 

 

The variance is given by 
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2
22

21
2 2






 

 
  

 
+

+

 
= − = 

 
.  (10) 

 

If r = 3 in equation (7), 

 

 
3

3 3
3

 




  


+= ,  (11) 

 

 
( )

3

3

3 3 2 1 1

3
2 3

3 3 1 2 13

3 2

3 2


     



    

 
      


+ + + +

= − +

 +



−

  

=
  (12) 

 

If r = 4 in equation (7), 

 

 
4

4 4
4

 




  


+= ,  (13) 

 

 
( )

4

2 4

4 4 3 1 2 1 1

4
3 2 2 4

4 4 1 3 1 2 14

4 6 3

4 6 3


        



      

 
         


+ + + + + +

= − + −

 = − −



+

   

  (14) 

 

where 

 

 Γ 1s

s




 
= − 

 
  

 

Theorem 2. If a random variable X follows the weighted generalized inverse 

Weibull distribution, then the moment generating function, denoted by MX(t), is 

given by 

 

 ( ) ( )
1

0

Γ 1

M
!

Γ 1

r r

X

r

r

t
t

r














=

 +
− 

 =
 
− 

 

 .  
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Proof.  By definition, 

 

 

( ) ( ) ( )

( )
( )

( )

( )
( )

( ) ( )
1

0

00

0

0

M E e f

M f
!

M
!

Γ 1

M
!

Γ 1

tx tx

X w

r

X w

r

r

X r

r

r r

X

r

t e x dx

tx
t x dx

r

t
t

r

r

t
t

r
















 

=



=



=

= =

 =

 =

 +
− 

  =
 
−

 













  

 

This proves the theorem. 

Standard Deviation and Coefficient of Variation 

By using the value of equation (10), 

 

 
1

2

1
2

1
 



 


  

 
+

+

 
= − 

 
.  (15) 

 

The coefficient of variation is defined as the ratio of the standard deviation to 

the mean. Usually, it is denoted by C.V and is given by 

 

 .C V



= .  (16) 

 

By using the value of equations (15) and (8) in equation (16), 

 

 
( )2

2 1

1

.C V
  



  



+ +

+

−
= .  
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Skewness and Kurtosis 

Skewness in terms of moments of frequency distribution is given by 

 

 
2

3
1 3

2





= .  (17) 

 

By substituting the value of equations (10) and (12) in equation (17), 

 

 
( )

( )

2
2 3

3 1 2 1

1 3
2

2 1

3 2     

  

     


  

+ + + +

+ +

− +
=

−
,  

 

 ( )

( )
3
2

1 1

2 3

3 1 2 1

1
2

2 1

3 2     

  

 

     


  

+ + + +

+ +

=

− +
 =

−

  

 

Kurtosis is given by 

 

 4
2 2

2





= .  (18) 

 

By substituting the value of equations (10) and (14) in equation (18), 

 

 

( )

3 2 2 4

4 1 3 1 2 1
2 2

2

2 1

4 6 3        

  

        


  

+ + + + + +

+ +

− + −
=

−
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Table 1. Mean, variance, mode, harmonic mean (HM), standard deviation (STD), 
coefficient of variation (CV), coefficient of skewness (CS), and coefficient of kurtosis (CK) 
 

α β λ θ Mean Variance Mode HM STD CV CS CK 

1 5 1 0 1.16423 0.13376 0.96419 0.85893 0.36573 0.31414 3.53507 48.09151 

2 12 5 1 2.44575 4.92882 2.28705 2.13866 2.22009 0.90773 1.87428 10.48306 

3 13 6 2 3.70396 12.76274 3.46459 3.20104 3.57249 0.96450 1.92437 10.83551 

4 14 7 3 4.96756 23.85802 4.64735 4.25309 4.88446 0.98327 1.97100 11.16541 

5 15 8 4 6.23065 38.17854 5.82957 5.29441 6.17887 0.99168 2.01433 11.47340 

7 16 10 5 8.79611 77.22640 8.23013 7.42856 8.78785 0.99906 2.05455 11.76039 

9 17 13 6 11.41719 130.87461 10.68234 9.59351 11.44004 1.00200 2.09187 12.02751 

11 18 14 7 13.92412 195.18381 13.02714 11.65105 13.97082 1.00335 2.12650 12.27595 

13 20 16 8 16.20590 264.23568 15.25821 13.76022 16.25532 1.00304 2.06380 11.57867 

15 22 18 9 18.44890 342.21604 17.46109 15.86089 18.49908 1.00271 2.01321 11.04287 

Harmonic Mean of WGIWD 

The harmonic mean is usually denoted by H and is given as 

 

( )

1

0

1 1
f

Γ 1

1
Γ 1

w x dx
H x

H 












=

 
− 

  =
 −
− 

 



  

Shannon’s Entropy of the WGIWD 

The concept of Shannon’s entropy is the central role of information theory. For a 

random variable entropy is defined in terms of its probability distribution and is a 

good measure of uncertainty. If X is a non-negative continuous random variable 

with the probability density function f(x), then the Shannon’s entropy of X is 

defined as 

 

 
( )( ) ( ) ( )

( )( )( )

H f f log f

E log f

x x x dx

x



−

= −

= −


  (19) 

 

provided the integral exists. 
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Theorem 3. If the random variable X has a weighted generalized inverse Weibull 

distribution with the probability density function defined in (5), then the Shannon’s 

entropy of WGIWD is 

 

 ( )( )
1 1

H f log log log Γ 1 ψ 1 1w x
     


     

        − −
= + + − + − − +        

        
,  

 

where 
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 
 
 

.  

 

Proof.  Shannon’s entropy is defined as 
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  (20) 

 

From equation (7), 

 

 ( ) ( )
1

E 1x 


 
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−
−  

= − 
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0

E log log fwx x x dx
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=    
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1

1

0

log( ) exp

Γ 1

x x dx
x
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 
   
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By substituting y = λ(α / x)β, 
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1 1
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   
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.  (22) 

 

Substituting the value of equations (21), (22) in equation (20), 
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This proves the theorem. 

Entropy Estimation 

The probability density function of weighted generalized inverse Weibull 

distribution is 
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  (23) 

 

On comparing equations (20) and (23), 

 

 ( )( )
( )g

ˆ
lo

H fw

L
x

n
= − .  (24) 

Akaike and Bayesian Information Criterion 

For comparing different models, use the concept of Akaike information criterion 

(AIC) and Bayesian information criterion (BIC). The model which has the smallest 

values of AIC and BIC is considered the best model. Suppose there is a statistical 

model of some data set. Let L be the maximized value of the likelihood function for 

the model. Let K be the number of estimated parameters in the model. Then AIC 

and BIC of the model are given by 

 

 ( )AIC 2 2logK L= − ,  (25) 

 

 ( ) ( )BIC log 2logK n L= − ,  (26) 

 

where n is the number of observations or equivalently the sample size. 

From equation (24), 

 

 ( ) ( )( )log Ĥ fwL n x= −   

 

Then, for the weighted generalized inverse Weibull distribution, 
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( ) ( )( )

AIC 2 2 H f
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ˆ

ˆC l g 2 H f
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w

K n x

K n n x

= +

= +
  

Example: Real-Life Data 

Consider a real-life data set to establish the superiority of WGIWD over other 

distributions. The data set, given by Lee and Wang (2003), represents remission 

times (in months) of a random sample of 128 bladder cancer patients. For 

establishing the superiority of WGIWD, the calculated values of AIC and BIC are 

presented in Table 2 for the following data: 0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 

23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 

7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 

5.32, 7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 

1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 

46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 

17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 

1.76, 3.25, 4.50 , 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 

3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

From Table 2, the weighted generalized inverse Weibull distribution has the 

smallest AIC and BIC values as compared to other models. It may be concluded 

the weighted generalized inverse Weibull distribution provided the best fit to this 

specific data set. The histogram for the above data set and estimated densities of 

WGIWD, LGIWD, GIWD, IWD and IED have been plotted in Figure 5. 
 
 
Table 2. AIC, BIC for different models 
 

 Estimates  Shannon’s 
entropy 

  

Model Alpha Beta Lambda Theta −2log l AIC BIC 

WGIWD 1.0522 0.7767 1.8851 0.0929 888.3770 3.4700 896.3770 896.8060 

LGIWD 2.5031 1.4185 0.1410 - 957.4330 3.7400 963.4330 963.7550 

GIWD 0.0738 0.8409 22.0745 - 891.7850 3.4830 897.7850 904.4280 

IWD 4.9649 0.6894 - - 898.5740 3.5100 902.5740 907.0020 

IED 2.4847 - - - 920.7650 3.5970 922.7650 924.9760 
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Figure 5. Plots for the histogram and estimated densities 
 

Conclusion 

The weighted version of generalized inverse Weibull distribution, known as 

weighted generalized inverse Weibull distribution (WGIWD), was introduced. The 

new model was compared with other sub-models by using real life data set and it 

was concluded the new model provides the best fit for a specific data set as 

compared with other models. 
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