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Support vector machine (SVM) is used for estimation of regression parameters to modify 
the sum of cross products (Sp). It works well for some nonnormal error distributions. The 
performance of existing robust methods and the modified Sp is evaluated through simulated 
and real data. The results show the performance of the modified Sp is good.

Keywords: support vector machine (SVM), support vector regression (SVR), robust subset 
selection, Sp- statistic, SSp- statistic

Introduction 
Regression models are used in almost all fields for establishing the relationship 
between a variable and a set of variables. Such models are useful tools to predict 
future values of the response variable given the values of predictors. The multiple 
linear regression model is given by

 Y = eX��  (1)

where Y is n  × 1 vector of observations on response variable, X is a known  
n  × k matrix of observations on k  × 1 predictors with 1’s in the first column,  
â  = ( β0,β1,β2,......,βk–1)' is k × 1 vector of unknown regression parameters and e is 
n × 1 vector of unknown errors. The assumptions on the model in (1) are E(e) = 0, 

( ) 2Cov  Iσ=e  Cov(e) = σ2I and e ~ Nn (0, σ2 I ) where, I is the identity matrix of order  
n × n and σ2 is error variance. 
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Important steps in regression are to obtain the estimates of regression parameters, 
choose an appropriate model for the given data and to predict the future values of 
response variable as accurate as possible. Least squares (LS) method is generally used 
for estimation of parameters in linear regression. The performance of least squares 
method is excellent if underlying assumptions are true, while it deteriorates when 
the data contains an outlier and (or) the distribution of error variable is non-normal. 
Huber’s (1981) M-estimator is usually used when error distribution is nonnormal 
but it is close to normal, and Jaeckel’s (1972) rank-based estimator performs well 
for almost any possible distribution of error (Birkes & Dodge, 1993, pp. 111). 

In the set of possible predictors to be included in the model, some of them may 
be redundant and are required to be eliminated based on the observed data, which 
will give sufficient predictive accuracy. This is popularly known as subset selection 
in regression. Miller (2002) indicated fitting a model with a large number of pre-
dictors is neither economical nor practicable and in practice usually a model based 
on a small subset of predictors gives more accurate predictions. 

There is considerable literature on subset selection methods in regression (Hock-
ing, 1976; Thompson, 1978a, b; Rao & Wu, 1989). Standard texts such as Miller 
(2002), Draper and Smith (2003) and Montgomery et al. (2006) provided a good 
description of subset selection methodologies.

The majority of subset selection methods, including the Cross product (Cp) cri-
terion (Mallow, 1973), are based on the LS estimator of β. In view of the perfor-
mance of LS estimator in the presence of outlier and nonnormal error distribution, 
the subset selection methods based on such estimates will select the wrong subset, 
as demonstrated in Ronchetti and Staudte (1994).

Many methods were proposed for the choice of a subset by minimizing a crite-
rion, including those by Akaike (1973), Schwartz (1978), Shibata (1984), Rao and 
Wu (1989), and Kundu and Murali (1996). Some robust subset selection procedures 
were proposed, including the Robust AIC (Ronchetti, 1985) and Robust versions of 
Mallow’s (1973) Cp, called RCp (Ronchetti & Staudte, 1994). Kashid and Kulkarni 
(2002) suggested a more general Sum of Cross products (Sp) criterion for subset 
selection. It uses scaled difference between robust predicted values from subset and 
full model to perform subset selection in linear regression. Their results showed perfor-
mance of Sp is better than Cp in the presence of outliers. Baierl et al. (2007) proposed 
a robust version of BIC based on Huber’s M-estimator and called it as Robust BIC.

These M-estimators works well under certain assumptions. They are not guar-
anteed to produce a good subset selection if the data do not support the underlying 
assumptions. An alternative is to base a subset selection procedure on a data depen-
dent prediction method such as the Support Vector Machine (SVM), the focus of 
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this study. It is a growing area in machine learning introduced by Boser et al. (1992) 
in COLT. The basic task of SVM is to explore data (input-output pairs) and provide 
optimally accurate predictions for unseen data (Nalbantov, 2003). Vapnik  et al. 
(1997) used SVM for regression and called it as Support Vector Regression (SVR). 
The SVR problem is formulated as a convex optimization problem which has the 
advantage of being free from local minima. SVMs based on the ε insensitive loss for 
regression are consistent and robust even for heavy-tailed distributions (Christmann 
et al., 2008, 2009; Messem & Christmann, 2010). SVR is used here for parameter 
estimation and to obtain predicted values from the full model and subset models. 

Support Vector Regression
In SVR, an unknown regression function f (xi) based on data set (xi, yi), i = 1,2,..,n 

of input vectors 1k
i R −∈x  (ith row of design matrix X excluding first element 1) and 

associated target iy R∈ , is estimated in the form,

 ( )   i i iy f e= +x  (2)

where ie  is error term. 
For linear regression, the function can be written as,

 ( )i if b= +x   x w , (3)

where ( ) 1
1 2 1 , , , ' , k

kw w w R b R−
−= … ∈ ∈w  is a bias and ix w  is a dot product of ix  

and  w . 
Thus, Equation (2) becomes,

      ,        1 , 2, ., .i i iy b e i n= + + = …… x w

In matrix notations, 

 Y = eX�� ,

where ( )1 2 1, , , .., 'kb w w w −= …â , Y , X  and e  are the same as defined in Equation 
(1). The above equation is equivalent to Equation (1). 

Using the ε  insensitive loss function (Vapnik, 2001), the regression problem can 
be written in the form of convex optimization problem (Smola & Schölkopf, 2004) as 

 Minimize 1
2

2w  (4)
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 ( )Subject to    –      ,  1 , 2, ., ,i iy b i nε+ ≤ = …x w   (5)

 ( )  –      ,  1 , 2, .,  ,i ib y i nε+ ≤ = …x w   (6)

where   0ε >  is predetermined constant which controls the noise tolerance.
By introducing non negative slack variables iξ  and *

iξ  (which measures the 
deviations of training samples outside ε  insensitive zone), the above optimization 
problem becomes (Vapnik, 2001):

 ( )2 *

1

1Min.   C   
2

n

i i
i

ξ ξ
=

+ +∑w  (7) 

 ( )Subject to    –      i i iy b ε ξ+ ≤ +x w  , (8)

 ( ) *  –      i i ib y ε ξ+ ≤ +x w  , (9)

 *and ,  0,  1 , 2, ., ,i i i nξ ξ ≥ = …  (10)

where C  0>  is the regularization factor which determines (the cost of error) tradeoff 
between flatness of regression function and amount of deviations outside the  ε
insensitive zone which are tolerated. 

Using Lagrange’s multipliers method, the dual of above optimization problem 
can be expressed as (Gunn, 1998),

 ( )( ) ( ) ( )* * ' * *

1 1 1 1

1max.  
2

n n n n

i i j j i j i i i i i
i j i i

yα α α α ε α α α α
= = = =

− − − − − + −∑∑ ∑ ∑x x  (11)

 ( )*

1

Subject to    0 ,
n

i i
i

α α
=

− =∑  (12)

 *and  0   C , 0   C,i iα α≤ ≤ ≤ ≤  (13)

where iα  and *
iα  ,  1 , 2, .,i n= …  are Lagrange’s multipliers that act as forces pushing 

the predictions towards the target value iy . 
Above quadratic programming problem can be solved for obtaining the values 

of iα  and *
iα . Using Karush-Kuhn-Tucker conditions (Smola & Schölkopf, 2004) 

the weight vector is given by

 ( )' *

1

  
nsvn

i i i
i

α α
=

= −∑w x  (14)
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 and ( ) ( )*

1

nsvn

i i i
i

f bα α
=

= − ′ +∑x x x , (15)

where nsvn  denotes the number of support vectors.
The value of bias b is given by (Gunn, 1998),

 ( )1
2 r sb = − +x x w  (16) 

where xr, and xs are the support vectors (i.e. any input vector which has nonzero 
value of either iα  or *

iα  respectively). 
The performance of SVR strongly depends on proper setting of regularization 

parameter ( C ) and the value of ε . Such parameters are called as meta parameters. 
The values of meta parameters C  and ε  are not known in advance and must be 
obtained from the training data. 

Subset selection using SSp statistic

Consider a regression model in Equation (1) as a full model. Partition the X  matrix 
and vector β as 

 � � � � � � � �1 2 1 2= :  and = : '� � � �
� � � �X X X β β β  ,

where ( )1X  is an n p×  matrix of observations on  –1p  predictor variables with 1’s 
in the first column and ( )2X  is an ( )–n k p×  matrix of observations on remaining 
( )–k p  predictor variables. β(1) = (β0. β1, β2,.., βp–1)'  is p × 1 vector of regression 
parameters corresponding to ( p – 1) predictor variables and β(2) is (k – p × 1 vector 
of regression parameters corresponding to remaining (k – p) predictor variables. In 
these notations the full model becomes

 Y X β X β e1 1 2 2  (17)

A subset model based on a ( p – 1) predictors is given by

 Y = X(1) β(1) + e (18)

Similarly, for SVR partition the weight vector w and write the sub model as

 ( ) ( ) ( )1 1 1b= + +XY w e  (19)
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where X (1) is an n × ( p – 1) matrix of the observations on ( p – 1) predictors and  
w(1) is a ( p – 1) × 1 vector of the regression coefficients based on the fitted sub 
model. 

For a subset model, the dual of optimization problem can be expressed as 

 ( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( )( )* * ' * *
1 1 1 1 1 1 1 1 1

1 1 1 1

1max.                   
2

n n n n

j ii i j j i i i i i
i j i i

yα α α α ε α α α α
= = = =

− − − − − + −∑∑ ∑ ∑x x  

 i = 1nai(1) – ai(1) * yi (20)

 
( ) ( )( )*
1 1

1

Subject to :   0
n

i i
i

α α
=

− =∑  (21)

and ( ) ( )
*

1 1and  0   C , 0   C,i iα α≤ ≤ ≤ ≤
 
where ( )1iα  and ( )

*
1iα ,  1 , 2, ,i n= …  are Lagrange’s mul-

tipliers. The weight vector is given by

 ( ) ( ) ( )( ) ( )
' *
1 1 1 1

1

   
nsvn

i i i
i

α α
=

= −∑w x  (22)

and  ( ) ( ) ( )( ) ( ) ( )
*

1 1 1 1
1

nsvn

i i i
i

f bα α
=

′= − +∑x x x . (23)

The value of bias b(1) is given by (Gunn-1998),

 ( ) ( ) ( )( ) ( )1 1 1 1
1
2 r sb = − +x x w  (24)

By obtaining estimates ŵ  of w  and b̂  of b using SVM, the predicted value of 
y based on the full model is given by 

  ŷ ˆˆik i b= +x w ,  1 , 2, ,i n= ……  (25)

The predicted value of y  based on sub model is given by

 ( ) ( ) ( )1  1 1
ˆˆˆip iy b= +x w ,  1 , 2, ,i n= ……  (26)

where ŵ
(1) is the estimator of w(1) , ( )1b̂  is the estimator of ( )1b  and ( )

1
1  

p
i R −∈x   

(i th row of X(1)  excluding first element 1)
Kashid and Kulkarni (2002) defined the Sp Statistic for subset selection based on 

predicted values from full and subset models using M-estimator given by 
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( ) ( )

2

2
1

ˆ
Sp  2

ˆn
ik ip

i

y y
k p

σ=

−
= − −∑ , (27)

where, 2σ  is replaced by its estimate usually based on full model, k and p are num-
ber of parameters in full model and subset model, respectively.

The Sp statistic takes into account closeness of predictions obtained from subset 
model and incorporates the complexity in the form of number of predictors involved 
in the model. The penalty term doesn’t increase with sample size. If the Sp statistic 
is based on the estimates obtained from SVR, its performance is not good. Hence, 
a complexity term is added to the criterion so as to increase its ability to identify 
the correct subset model. The modified Sp statistic is called the SSp statistic and is 
given by

 
( ) ( ) ( )

2

2
1

ˆ
SSp   

ˆ
,

n
ik ip

i

y y
k p g n p

σ=

−
= − − +∑ , (28)

where error variance 2σ  is usually unknown and is to be replaced by its suitable 
estimate. As discussed in Bozdogan and Haughton (1998) the term ( ), g n p  is a non-
negative penalty function which increases as the number of parameters increases. In 
this study, to calculate SSp statistic use SVR estimates which are robust, and thus 
SSp is also robust. 

For ( ), g n p = p , β is replaced by its LS estimate then SSp statistic is equivalent 
to Mallow’s Cp statistic, which is given by 

 Cp 
( ) ( )

2

2
1

ˆ
2

n
i ip

i

y y
n p

σ=

−
= − −∑ . (29)

If ( ),   g n p p=  and  the M estimator of β is used in (28), then SSp statistic is 
equivalent to the Sp statistic. 

Simulation results
The estimation accuracy of SVR strongly depends on selection of meta parameters C  
and ε . When the values of meta parameters C  and ε  are not known they have to be 
obtained from the data itself. There are several methods available in the literature for 
selection of C  amongst which, the method proposed by Desai and Kashid (2015) uses 
C  = MQD for better performance. In the simulations to perform SVR, this method 
was used. Take 6  C 10ε −= ×  and ( ) C MQD Max. Me –  3QD ,  Me  3QD= = + , where 
Me and QD  are median and quartile deviation of y values respectively.



SHIVAJI SHRIPATI DESAI & D N. KASHID

9

A simulation design

The following simulation study is carried out for the performance evaluation of the 
subset selection methods. The observations on predictor variables are generated 
from U(0, 1) and are fixed. Observations on error term are generated from N(0,1), 
students t distribution with 2 d.f., Laplace(0,1), Mixture of Normal {0.2N(5,1) + 
0.8N(0,1)}, standard Cauchy and Slash distributions{ratio of N(0,1) and U(0,1)}.

To obtain the observations on response variable following models are used.

Model-I : 0 1 1 2 2 3 3  Y X X X eβ β β β= + + + +  

Model-II : 0 1 1 2 2 3 3 4 4  Y X X X X eβ β β β β= + + + + +

For model-I, we consider three sets of regression parameters (2, 5, 0, 0), (2, 5, 4, 
0) and (2, 5, 4, 8), and call them as Model-IA, Model-IB and Model-IC respectively. 
For model-II, take four sets of regression parameters (2, 0, 6, 0, 0), (2, 9, 6, 0, 0), 
(2, 9, 0, 4, 8) and (2, 9, 6, 4, 8), and call them as Model-IIA, Model-IIB, Model-IIC 
and Model-IID, respectively. 

For each sample size 20, 30, 50 and 100 the experiment is repeated 1000 times. 
To evaluate the performance of different methods, the probabilities of selecting the 
optimal and correct models are calculated for various combinations of error distribu-
tions and sample sizes. SSp statistic with six different penalty functions is used. The 
SSp statistic using the penalty functions ( )1 , g n p  p= , ( )2 , g n p  2 p= , ( )3 , g n p  

p n= , ( ) ( )4 ,  1g n p p n= + , ( )5 , g n p  ( ) plog n=  and ( )6 , g n p  ( )( ) 1p log n= +  
is called as SSp1, SSp2, SSp3, SSp4, SSp5 and SSp6 respectively. 

In regression true value of variance is often known. If it is not known, it has to 
be estimated from the data itself. The estimation of variance plays an important 
role in regression. From the available estimators of σ2, use  ( )22

1 1.4ˆ 826MADσ =  
to calculate Sp, where ( )  i iMAD Median r Median r= −  and ˆi i ir y y= −  (Birkes & 
Dodge, 1993). The performance of 2

1σ̂  estimator works well when the M-estimator 
is used for obtaining regression coefficients (Kashid & Kulkarni, 2002). If SVR is 
used for the prediction obtain 2

1ˆ , σ then 2
1σ̂  will under-estimates the true value of 

σ2. This is verified in the simulation study. To improve the performance, define 2
2σ̂  

using SVR estimates as, 

 ( ){ }
2

2
2 60ˆ 1.4826 0.8 P   i

k abs r
n

σ   = × + ×    
 (30)
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where P60 is 60th percentile of absolute residuals, k  and p  are the number of param-
eters of the full and subset model respectively. The performance of 2

2σ̂  using SVR 
estimates is verified in thesimulation study (not shown here). In the simulation study 
for calculation of SSp statistics, use 2

2σ̂ . For clarity of notations, call Sp1 for Sp 
statistic when estimator of variance is 2

1σ̂  and Sp2 for Sp statistic when estimator 
of variance 2

2σ̂  is used. 
The M-estimator is calculated using Huber loss function (Huber,1981) with bend-

ing point 1.345. Also, for comparison purposes, consider the Robust Akaike’s Infor-
mation Criterion (RAIC) (Ronchetti, 1985) and Robust Bayes Information Criterion 
(RBIC) (Baierl et al., 2007). The RAIC is defined as 

 
RAIC 2 2

1i

n

i pr p ρ( );
 (31)

where ρ(·) is Huber function and r yi p i i;
*x β /σ1 1
� ˆ, σ̂  is some robust estimate of 

σ , β͂(1) is the M-estimator of β(1) and ( )
*

1
p

i R∈x  (  thi row of ( )1X ). RBIC is defined as 

 RBIC nlog ρ y plog n
i

n

i
s

i
1

1 1
)*x β  (32)

where, ( )s
iy  is standardized observation obtained by subtracting the median and divid-

ing by 1.486MAD of y values, β͂(1) is the M-estimator of β(1). Due to space constraint 
some of the simulation results are summarized in the Tables 1 to 3 and Figures 1 to 4. 

From Tables 1–3 and Figures 1–4 we observed the following:
For model IA, predictors X2 and X3 are redundant, performance of SSp3 and SSp4 

is better than RAIC, Sp1 and Sp2 and it is compatible with RBIC. For model IB, 
predictor X3 is redundant, performance of SSp3 and SSp4 is better than RAIC, RBIC, 
Sp1 and Sp2 (except for Slash distribution). For sample size 100n =  and Cauchy and 
Slash errors, the performance of SSp3, SSp4, SSp5 and SSp6 is better than RAIC, 
RBIC, Sp1 and Sp2. For Model IC which is full as well as optimal model, perfor-
mance of SSp1 is compatible with Sp1, Sp2, RAIC and RBIC for large sample size. 

For Model IIA, performance of SSp3, SSp4, SSp5 and SSp6 is better than SSp1, 
SSp2, RAIC, Sp1 and Sp2. Also it is compatible with RBIC. The performance of 
SSp2 is better than SSp1, SSp4 is better than SSp3, and SSp6 is better than SSp5 
(except for large sample). For Models IIB and IIC, the performance of SSp3, SSp4, 
SSp5 and SSp6 is better than SSp1, SSp2, RAIC, Sp1 and Sp2, and is compatible 
with RBIC. Model IID is full model and optimal model. For this model, performance 
of SSp1 is compatible with Sp1, Sp2, RAIC and RBIC for large sample size. For 
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Table 1. Probabilities of selecting Optimal and Over fitted (Correct) models for Model I B

Error S.S. Model
SSp with New S.D. and penalty

Sp1 Sp2 RAIC RBICSSp1 SSp2 SSp3 SSp4 SSp5 SSp6

N
(0

, 1
)

20
Optimal 0.633 0.706 0.766 0.759 0.739 0.766 0.757 0.820 0.745 0.873
Correct 0.349 0.261 0.134 0.104 0.200 0.150 0.239 0.172 0.253 0.125

30
Optimal 0.647 0.773 0.913 0.932 0.857 0.889 0.775 0.824 0.797 0.916
Correct 0.353 0.226 0.079 0.056 0.141 0.108 0.225 0.176 0.203 0.084

50
Optimal 0.662 0.772 0.947 0.960 0.882 0.905 0.802 0.827 0.806 0.948
Correct 0.338 0.228 0.053 0.040 0.118 0.095 0.198 0.173 0.194 0.052

100
Optimal 0.652 0.765 0.976 0.988 0.901 0.927 0.817 0.832 0.822 0.972
Correct 0.348 0.235 0.024 0.012 0.099 0.073 0.183 0.168 0.178 0.028

t-2

20
Optimal 0.589 0.633 0.579 0.560 0.628 0.595 0.653 0.714 0.682 0.702
Correct 0.306 0.208 0.080 0.058 0.137 0.095 0.279 0.184 0.261 0.064

30
Optimal 0.670 0.753 0.835 0.825 0.813 0.833 0.722 0.784 0.721 0.810
Correct 0.312 0.213 0.060 0.039 0.131 0.082 0.269 0.204 0.259 0.031

50
Optimal 0.690 0.786 0.944 0.949 0.891 0.924 0.742 0.794 0.753 0.959
Correct 0.308 0.211 0.042 0.032 0.105 0.068 0.258 0.206 0.246 0.017

100
Optimal 0.712 0.814 0.985 0.990 0.932 0.950 0.752 0.792 0.748 0.991
Correct 0.288 0.186 0.015 0.010 0.068 0.050 0.248 0.208 0.252 0.009

Error S.S.Model
SSp with New S.D. and penalty

Sp1 Sp2 RAIC RBICSSp1 SSp2 SSp3 SSp4 SSp5 SSp6

La
pl

ac
e

20
Optimal 0.621 0.682 0.702 0.692 0.712 0.710 0.669 0.740 0.704 0.878
Correct 0.340 0.243 0.112 0.081 0.172 0.131 0.305 0.224 0.285 0.085

30
Optimal 0.680 0.780 0.894 0.888 0.857 0.885 0.705 0.783 0.748 0.924
Correct 0.316 0.209 0.065 0.055 0.126 0.090 0.295 0.216 0.251 0.057

50
Optimal 0.698 0.808 0.975 0.978 0.920 0.950 0.763 0.815 0.768 0.971
Correct 0.301 0.191 0.024 0.020 0.079 0.049 0.237 0.185 0.232 0.029

100
Optimal 0.752 0.857 0.992 0.994 0.945 0.961 0.778 0.804 0.775 0.976
Correct 0.248 0.143 0.008 0.006 0.055 0.039 0.222 0.196 0.225 0.024

M
ix

tu
re

20
Optimal 0.618 0.703 0.780 0.773 0.740 0.778 0.725 0.807 0.769 0.879
Correct 0.364 0.260 0.119 0.087 0.194 0.134 0.271 0.187 0.231 0.119

30
Optimal 0.649 0.760 0.917 0.936 0.854 0.887 0.773 0.817 0.787 0.905
Correct 0.351 0.240 0.080 0.059 0.144 0.111 0.227 0.183 0.213 0.094

50
Optimal 0.640 0.769 0.948 0.958 0.880 0.906 0.796 0.837 0.812 0.941
Correct 0.360 0.231 0.052 0.042 0.120 0.094 0.204 0.163 0.188 0.059

100
Optimal 0.670 0.778 0.978 0.980 0.902 0.935 0.829 0.848 0.809 0.954
Correct 0.330 0.222 0.022 0.020 0.098 0.065 0.171 0.152 0.191 0.046

C
au

ch
y

20
Optimal 0.545 0.529 0.429 0.385 0.492 0.452 0.539 0.565 0.517 0.240
Correct 0.190 0.123 0.042 0.027 0.081 0.050 0.230 0.147 0.245 0.022

30
Optimal 0.664 0.722 0.617 0.573 0.712 0.671 0.619 0.678 0.609 0.254
Correct 0.255 0.138 0.028 0.020 0.065 0.044 0.275 0.193 0.242 0.005

50
Optimal 0.729 0.802 0.862 0.840 0.881 0.887 0.722 0.780 0.685 0.380
Correct 0.260 0.171 0.020 0.013 0.072 0.046 0.260 0.192 0.287 0.004

100
Optimal 0.762 0.857 0.988 0.986 0.956 0.968 0.713 0.774 0.730 0.581
Correct 0.238 0.142 0.005 0.004 0.041 0.029 0.287 0.226 0.270 0.001

Sl
as

h

20
Optimal 0.374 0.311 0.192 0.159 0.252 0.210 0.399 0.395 0.398 0.114
Correct 0.150 0.085 0.025 0.016 0.054 0.031 0.204 0.106 0.147 0.008

30
Optimal 0.509 0.496 0.311 0.265 0.436 0.373 0.540 0.544 0.487 0.123
Correct 0.203 0.106 0.014 0.009 0.042 0.024 0.199 0.140 0.192 0.000

50
Optimal 0.669 0.704 0.510 0.461 0.659 0.615 0.692 0.718 0.643 0.162
Correct 0.243 0.150 0.008 0.002 0.053 0.032 0.222 0.170 0.240 0.000

100
Optimal 0.723 0.809 0.841 0.818 0.902 0.909 0.732 0.763 0.719 0.286
Correct 0.275 0.177 0.003 0.002 0.058 0.037 0.263 0.231 0.271 0.001
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Table 2. Probabilities of Selecting Optimal and Over fitted (Correct) models for Model II C

Error S.S. Model
SSp with New S.D. and penalty

Sp1 Sp2 RAIC RBICSSp1 SSp2 SSp3 SSp4 SSp5 SSp6

N
(0

, 1
)

20
Optimal 0.549 0.647 0.741 0.744 0.698 0.729 0.694 0.779 0.735 0.867
Correct 0.436 0.322 0.170 0.137 0.247 0.190 0.303 0.214 0.262 0.125

30
Optimal 0.597 0.688 0.872 0.895 0.788 0.832 0.752 0.812 0.774 0.908
Correct 0.403 0.312 0.124 0.098 0.211 0.165 0.248 0.188 0.226 0.092

50
Optimal 0.609 0.722 0.935 0.948 0.850 0.891 0.792 0.836 0.822 0.959
Correct 0.391 0.278 0.064 0.050 0.149 0.108 0.208 0.164 0.178 0.041

100
Optimal 0.612 0.734 0.982 0.986 0.882 0.916 0.820 0.848 0.852 0.977
Correct 0.388 0.266 0.018 0.014 0.118 0.084 0.180 0.152 0.148 0.023

t-2

20
Optimal 0.581 0.638 0.607 0.576 0.640 0.622 0.650 0.725 0.666 0.692
Correct 0.334 0.215 0.089 0.064 0.152 0.106 0.286 0.174 0.267 0.079

30
Optimal 0.635 0.725 0.867 0.864 0.813 0.856 0.730 0.815 0.731 0.873
Correct 0.353 0.254 0.077 0.060 0.154 0.102 0.269 0.179 0.260 0.052

50
Optimal 0.672 0.772 0.934 0.928 0.875 0.898 0.743 0.792 0.751 0.968
Correct 0.325 0.224 0.033 0.026 0.113 0.086 0.253 0.204 0.249 0.022

100
Optimal 0.662 0.788 0.988 0.992 0.912 0.942 0.742 0.804 0.773 0.990
Correct 0.338 0.212 0.012 0.008 0.088 0.058 0.258 0.196 0.227 0.008

La
pl

ac
e

20
Optimal 0.607 0.670 0.714 0.698 0.711 0.719 0.669 0.756 0.671 0.824
Correct 0.354 0.259 0.118 0.092 0.180 0.130 0.297 0.189 0.304 0.113

30
Optimal 0.634 0.758 0.894 0.911 0.840 0.873 0.699 0.788 0.737 0.936
Correct 0.364 0.240 0.094 0.067 0.156 0.120 0.301 0.209 0.262 0.060

50
Optimal 0.668 0.775 0.956 0.957 0.890 0.923 0.740 0.815 0.756 0.978
Correct 0.332 0.225 0.038 0.031 0.108 0.074 0.260 0.185 0.244 0.022

100
Optimal 0.718 0.810 0.982 0.990 0.938 0.960 0.762 0.808 0.777 0.979
Correct 0.282 0.190 0.018 0.010 0.062 0.040 0.238 0.192 0.223 0.021

M
ix

tu
re

20
Optimal 0.561 0.657 0.749 0.760 0.713 0.745 0.701 0.798 0.734 0.879
Correct 0.425 0.316 0.165 0.124 0.242 0.186 0.293 0.192 0.263 0.116

30
Optimal 0.563 0.685 0.868 0.897 0.789 0.833 0.751 0.814 0.797 0.914
Correct 0.437 0.315 0.130 0.101 0.211 0.166 0.249 0.186 0.203 0.086

50
Optimal 0.615 0.717 0.930 0.942 0.852 0.885 0.788 0.844 0.803 0.936
Correct 0.385 0.283 0.068 0.055 0.148 0.115 0.212 0.156 0.197 0.064

100
Optimal 0.642 0.760 0.974 0.984 0.902 0.924 0.844 0.860 0.836 0.971
Correct 0.358 0.240 0.026 0.016 0.098 0.076 0.156 0.140 0.164 0.029

C
au

ch
y

20
Optimal 0.506 0.485 0.393 0.349 0.465 0.419 0.535 0.534 0.520 0.245
Correct 0.233 0.152 0.049 0.036 0.098 0.054 0.235 0.142 0.228 0.018

30
Optimal 0.673 0.739 0.745 0.710 0.773 0.772 0.685 0.752 0.617 0.366
Correct 0.285 0.185 0.040 0.032 0.109 0.067 0.253 0.170 0.297 0.010

50
Optimal 0.697 0.790 0.808 0.769 0.854 0.849 0.688 0.762 0.693 0.492
Correct 0.281 0.169 0.018 0.013 0.071 0.046 0.289 0.205 0.295 0.004

100
Optimal 0.756 0.848 0.982 0.980 0.958 0.966 0.744 0.804 0.700 0.604
Correct 0.242 0.150 0.002 0.002 0.040 0.030 0.252 0.192 0.300 0.000

Sl
as

h

20
Optimal 0.330 0.281 0.160 0.123 0.229 0.177 0.382 0.345 0.375 0.125
Correct 0.157 0.080 0.030 0.021 0.047 0.033 0.173 0.092 0.197 0.016

30
Optimal 0.548 0.565 0.448 0.404 0.550 0.505 0.582 0.626 0.531 0.195
Correct 0.278 0.183 0.040 0.025 0.093 0.062 0.244 0.155 0.240 0.007

50
Optimal 0.610 0.673 0.524 0.485 0.657 0.620 0.647 0.691 0.688 0.294
Correct 0.283 0.170 0.023 0.013 0.071 0.049 0.249 0.176 0.260 0.002

100
Optimal 0.702 0.802 0.828 0.804 0.914 0.916 0.736 0.788 0.724 0.349
Correct 0.294 0.190 0.004 0.004 0.048 0.034 0.254 0.202 0.268 0.000
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Table 3. Probabilities of selecting Optimal (and Correct model) for Model II D
S.

 S
iz

e

Error

Sp-(SVR with New S.D.) with penalty

Sp1 Sp2 RAIC RBICSSp6 SSp6 SSp6 SSp6 SSp6 SSp6

20

N(0, 1) 0.991 0.977 0.936 0.919 0.963 0.953 0.997 0.992 1.000 0.999
t2 0.926 0.886 0.739 0.694 0.836 0.771 0.935 0.899 0.957 0.798
L(0, 1) 0.966 0.944 0.871 0.839 0.914 0.888 0.966 0.944 0.986 0.960
Mixture 0.987 0.984 0.941 0.915 0.973 0.947 0.994 0.990 1.000 0.999
Cauchy 0.777 0.669 0.499 0.433 0.588 0.530 0.758 0.664 0.753 0.266
Slash 0.510 0.401 0.208 0.159 0.310 0.226 0.527 0.420 0.572 0.147

30

N(0, 1) 1.000 0.997 0.984 0.972 0.992 0.987 1.000 1.000 1.000 1.000
t2 0.971 0.957 0.857 0.805 0.924 0.896 0.975 0.962 0.991 0.910
L(0, 1) 0.997 0.990 0.939 0.919 0.968 0.952 0.995 0.992 0.999 0.994
Mixture 0.997 0.995 0.976 0.961 0.989 0.984 1.000 0.999 1.000 1.000
Cauchy 0.884 0.827 0.593 0.536 0.753 0.678 0.852 0.808 0.884 0.308
Slash 0.710 0.607 0.308 0.248 0.475 0.389 0.665 0.584 0.754 0.167

50

N(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
t2 0.999 0.999 0.991 0.988 0.997 0.997 0.999 0.999 0.999 0.973
L(0, 1) 1.000 1.000 0.999 0.998 0.999 0.999 1.000 1.000 1.000 1.000
Mixture 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cauchy 0.984 0.978 0.898 0.874 0.960 0.946 0.985 0.978 0.967 0.365
Slash 0.939 0.897 0.621 0.562 0.802 0.744 0.928 0.901 0.882 0.144

10
0

N(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
t2 0.999 0.999 0.999 0.999 0.999 0.999 1.000 1.000 1.000 0.999
L(0, 1) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Mixture 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Cauchy 0.996 0.996 0.981 0.978 0.991 0.990 1.000 1.000 0.997 0.469
Slash 0.994 0.991 0.857 0.824 0.959 0.945 0.994 0.994 0.977 0.237

large samples almost all criteria select optimal model with probability 1 except for 
Cauchy and Slash errors. For small samples ( 20n = ) the performance of RBIC is 
greater than SSp so, for a small sample size it is suggested to use RBIC.  

In the simulation, for every model there are six different values of probabilities of 
selecting optimal model corresponding to six different error distributions. For sample 
size 100n = , obtain the average and standard deviation of these six probabilities for 
each model. The results are reported in Table 4. 

From the summary statistics it is observed that when full model is an optimal 
model then SSp1 and SSp2 perform better than all other statistics considered in this 
simulation. When full model is not an optimal model then SSp3 and SSp4 works 
better than others.
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Figure 1. Probabilities of selecting optimal model : Model-I A

Real Data Application

Example 1: To observe the performance of various criteria, consider Brownlee’s 
stack loss data (Hand et al., 1994, pp 156) which contains observations from 21 days 
operation of a plant for the oxidation of ammonia as a stage in the production of nitric 
acid. The predictor variables are X1= air flow, X2= cooling water inlet temperature  
(o C), X3= acid concentration (%) and the response variable Y = stack loss. Stack 
loss is the percentage of the ingoing ammonia that escapes unabsorbed.
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As mentioned in Montgomery et al. (2006, p. 396) observation no. 21 is an 
influential observation because it has a standardized residual of  –2.64 from LS fit 
(Rousseuw & Leroy, 1987, p. 226/227; Rousseuw & van Zomeren, 1990). For a sin-
gle outlier, replace observation 21 by 7.5 instead of original value 1.5. As a result, 
standardized residual corresponding to observation no. 21 becomes 4.01 from LS 
fit, which indicates that observation no. 21 is a potential outlier. Similarly, for two 
outliers, replace observation 21 by 7.5 and observation14 by 6 instead of original 
value 1.2, the corresponding standardized residuals from LS fit are 2.63 and 2.56 
respectively, which indicates that observations 21 and 14 are outliers. 

Figure 2. Probabilities of selecting optimal model: Model-I C
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For original and outlier data, calculate the SSp statistic with various penalties and 
2
2ˆ ,σ  Sp statistic using SVR (with C  = MQD and ε  = C  ×10-6) estimates and M-  

estimator, also Cp statistic using LS. Sp1 refers to the Sp statistic using M estimator 
and 2

1σ̂  and Sp2 for Sp statistic using M estimator and 2
2ˆ .σ  Also, for comparison 

purpose, calculate RAIC and RBIC for the original and outlier data. The results are 
presented in the Table 5. 

For the original data, all statistics Sp, Cp, SSp with all penalties, Sp1, Sp2, RAIC 
and RBIC select the subset {X1, X2}. For one outlier, statistics Sp, SSp with all 

Figure 3. Probabilities of selecting optimal model : Model-II A



SHIVAJI SHRIPATI DESAI & D N. KASHID

17

penalties and RAIC select the same subset {X1, X2} but Cp, Sp2 and RBIC select 
wrong subset {X1}. For two outliers, statistics SSp with all penalties select the same 
subset {X1, X2}, while others select wrong subsets. In particular, Sp and Cp select 
subset {X1, X2, X3} and Sp1, Sp2, RAIC and RBIC select subset {X1}. 

Example 2: Consider the wine quality data from Montgomery et al. (2006, Table 
B.14, p. 578), which contains 38 observations on response variable wine quality (Y) 
based on five predictor variables as clarity (X1), aroma (X2), body (X3), flavor (X4) 

Figure 4. Probabilities of selecting optimal model : Model-II B
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Table 4. Summary Statistics for probability of selecting optimal model for sample size 
n=100
Model Statistic SSp1 SSp2 SSp3 SSp4 SSp5 SSp6 Sp1 Sp2 RAIC RBIC

Model IA
Average 0.591 0.730 0.971 0.975 0.898 0.925 0.610 0.658 0.602 0.970
S.D. 0.058 0.057 0.009 0.007 0.033 0.027 0.056 0.033 0.086 0.025

Model IB
Average 0.712 0.813 0.960 0.959 0.923 0.942 0.770 0.802 0.767 0.793
S.D. 0.044 0.039 0.059 0.069 0.025 0.022 0.046 0.033 0.042 0.294

Model IC
Average 0.999 0.998 0.973 0.967 0.993 0.992 0.999 0.998 0.996 0.759
S.D. 0.002 0.004 0.062 0.077 0.015 0.019 0.002 0.004 0.010 0.354

Model IIA
Average 0.476 0.641 0.973 0.979 0.979 0.905 0.469 0.538 0.467 0.956
S.D. 0.093 0.079 0.011 0.009 0.009 0.038 0.045 0.028 0.079 0.039

Model IIB
Average 0.569 0.715 0.987 0.990 0.901 0.933 0.612 0.666 0.608 0.896
S.D. 0.082 0.081 0.006 0.007 0.042 0.033 0.059 0.031 0.072 0.107

Model IIC
Average 0.682 0.790 0.956 0.956 0.918 0.937 0.775 0.819 0.777 0.812
S.D. 0.053 0.040 0.063 0.075 0.027 0.022 0.046 0.028 0.060 0.272

Model IID
Average 0.998 0.998 0.973 0.967 0.992 0.989 0.999 0.999 0.996 0.784
S.D. 0.003 0.004 0.057 0.071 0.016 0.022 0.002 0.002 0.009 0.342

and oakiness (X5). Test  this data for outliers and multicollinearity using Minitab. 
This data contains only one influential observation, which is observation 20 that 
has a standardized residual of 2.74. Apply the procedure described in Example 1 
for subset selection to this original data. Use all the considered criteria SSp with all 
penalties, Cp, Sp, Sp1, Sp2, RAIC and RBIC, and select the subset {X2, X4, X5}.

For a single outlier, replace observation 20 by 39.5 instead of original value 7.9, 
as a result its standardized residual become 5.51, which indicates that observation 20 
is a potential outlier. Apply the same procedure for this outlier data. Using the criteria 
SSp2, SSp3, SSp4, SSp5 and SSp6, select the subset {X2, X4, X5}. The criteria Sp1, Sp2 
and RAIC select a different subset {X1, X3, X4, X5} and RBIC selects the subset {X4}.

Discussion
The modified Sp criterion was used for subset selection in regression in the presence 
of outliers and/or error distribution is non normal. Implementation of modified Sp 
criterion requires a penalty term. The choices for the penalty terms are not limited 
to those mentioned in this paper. A more suitable penalty can give superior perfor-
mance than listed here. The proposed modification makes the criterion free from 
assumption of the distribution of errors and is even mitigates the effect of outliers. 
The simulation results confirm these findings.
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