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Comparing the means of independent groups is a concern when the assumptions of normal-
ity and variance homogeneity are violated. Robust means modeling (RMM) was proposed 
as an alternative to ANOVA-type procedures when the assumptions of normality and vari-
ance homogeneity are violated. The purpose of this study is to compare the Type I error 
and power rates of RMM to the trimmed Welch procedure. A Monte Carlo study was used 
to investigate RMM and the trimmed Welch procedure under several conditions of nonnor-
mality and variance heterogeneity. The results suggest that the trimmed Welch provides a 
better balance of Type I error control and power than RMM.

Keywords: robust means modeling, Yuen test, trimmed means, nonnormality, heteroscedasticity

The independent samples analysis of variance (ANOVA) is a popular statistical 
analysis in psychology because it is common to examine mean differences across 
multiple groups. Certain assumptions must be met to validly interpret the results of 
the ANOVA, which are: independence of observations, normality of population dis-
tributions, and equal population variances. Although the assumption of independence 
is an issue at the research design level, normality and equal variance are important 
statistical assumptions that should be examined when conducting the ANOVA. 

These assumptions are rarely satisfied with the types of data typically collected 
within psychology and other social science fields (Blanca, Arnau, Lopez-Montiel, 
Bono, & Bendayan, 2011; Golinski & Cribbie, 2009; Keselman et al., 1998, Micceri, 
1989; Wilcox, 1990a, 1990b). The Type I error rates and power of the ANOVA are 
typical research data that are affected by violating assumptions (e.g., Boneau, 1960; 
Glass, Peckham, & Sanders, 1972), and frequently these assumptions are ignored 
(Hoekstra, Kiers, & Johnson, 2012). Nevertheless, ANOVA continues to be used 
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despite the availability of improved methods for comparing central tendencies under 
these circumstances (e.g., Cribbie, Fiksenbaum, Wilcox, & Keselman, 2012; Kesel-
man, Algina, Lix, Wilcox, 1995, 2017; Keselman, Algina, Wilcox, & Deering, 2008).

Assumption violation may result in inaccurate interpretations of true population 
differences for the traditional ANOVA procedure. For example, when one popula-
tion’s variance is much higher than another, especially with unequal sample sizes, the 
empirical probability of Type I errors deviates from the nominal level (Box, 1954, 
Brown & Forsythe, 1974a, 1974b; Wilcox, 1988). The manner in which Type I error 
rates are affected depends on the pairing of sample size and variance heterogeneity. 
Specifically, when small sample sizes are paired with large variance (i.e., negative/
inverse pairing), empirical Type I error rates will be inflated relative to the nominal 
α , whereas when large sample sizes are paired with large variance (i.e., positive/
direct pairing), Type I error rates tend to be too conservative. In instances where the 
homogeneity of variance assumption has been met, deviations from normality tend to 
have little effect on the Type I error rates of the traditional ANOVA, but often decrease 
the statistical power (Harwell, Rubinstein, Hayes, & Olds, 1992; Lix, Keselman, & 
Keselman, 1996). When population variances are unequal and distributions are non-
normal, empirical Type I error rates are extremely aberrant (Cribbie et al., 2012). 

Trimmed Welch Test with Winsorized Variances

Due to the routine violation of assumptions in psychological research, many research-
ers have proposed alternatives to the omnibus ANOVA F test. One method to main-
tain accurate Type I error control and retain power under variance heterogeneity and 
nonnormality is to use trimmed means and Winsorized variances in combination 
with a test that uses a non-pooled standard error and adjusted degrees of freedom 
(trimmed Welch; e.g., Cribbie et al., 2012; Keselman, Kowalchuk, & Lix, 1998; 
Keselman, Algina, Wilcox, & Kowalchuk, 2000; Keselman et al., 2008; Wilcox, 
Keselman, Muska, & Cribbie, 2000). The trimmed Welch test performs well even 
with extremely nonnormal distributions and disparate sample sizes and variances. 
Details on this test statistic are given below.

Let the effective sample size (i.e., the sample size after trimming), be h = N - 2λ 
where λ = [κn], where κ is the proportion of trimming from each tail and [κn] is the 
largest integer ≤ κn. Then, the sample trimmed mean is:
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The sample Winsorized mean is:
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The sample Winsorized variance is:
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Let nj, hj, sWj, and X tj represent the values of n, h, sW, and X t for the jth group, and 
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The null hypothesis when using sample trimmed means is Ho: μt1 = ... = μtJ (i.e., the 
population trimmed means are equal), and is rejected if Ft ≥ F α, J-1, νWt, where:
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Fan and Hancock (2012) noted criticisms with using a non-pooled standard error 
test in combination with trimming extreme observations. Specifically, there should 
be hesitation using trimming because it involves temporarily removing a portion 
of the data. The null hypothesis relates to trimmed, not ordinary, population mean 
differences. Also, the Type I error rates and power of these techniques may not be 
satisfactory with larger degrees of nonnormality. The first two criticisms hold if the 
interest is only in comparing the full distributions of the populations, however if 
the interest is in comparing the bulk of the distributions, and limiting the effects of 
outliers or heavy tailed distributions, then these criticisms do not hold. Moving from 
a traditional null hypothesis (e.g., H0: μ1 = μ2) to a robust null hypothesis (e.g., H0: 
μt1 = μt2, where μt represents the trimmed population mean) has little effect on the 
overall testing strategy (i.e., it simply eliminates the extreme scores from the anal-
ysis). It is typically preferred when the outlying cases have undue influence on the 
results of the analyses. With regard to the final criticism, the trimmed Welch has been 
found to be superior to alternative procedures when distributions are nonnormal and 
population variances are unequal (Cribbie et al., 2012). These potential limitations 
led Fan and Hancock to propose a new structural equation modeling (SEM; Bollen, 
1989) based approach entitled robust means modeling.

Robust Means Modeling

Robust means modeling (RMM; Fan & Hancock, 2012) is a SEM technique inspired 
by Sorbom’s (1974) structured means modeling (SMM). It is a special case of SMM 
where the means being compared are observed variables (e.g., an ANOVA model) 
instead of latent variables (Fan & Hancock, 2012). The SMM approach can be rep-
resented in matrix form by the following model:

	 x = υk + Ʌkξ + δ	 (13)

where x is a p x 1 vector of observed indicators of a latent variable, ξ; υk is a p x 1 
vector of intercepts; Ʌk is a p x 1 vector of factor loadings λ; and δ is a p x 1 vector 
of errors. 

The model for RMM is a simpler version of the SMM model, because there are 
no latent variables (ξ) and therefore no factor loadings (Ʌk) leaving only:  kx υ δ= +  
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(Fan & Hancock, 2012). The null hypothesis remains H0: 1 2  ... Kυ υ υ= = = , where υ 
represents the population intercepts/means, but the method for comparing the means 
differs. Specifically, the means are constrained to be equal in the SEM model and the 
variances are free to be estimated, thereby removing the homogeneity of variance 
assumption. The SMM model can be estimated through a weighted combination of 
the multi-group maximum likelihood (ML) fit functions:

	 ( )
1

ˆ ˆ , , ,   

K
k

ML k k k k k
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where nk is the sample size of the kth group, N is the total sample size for all groups, 
Sk is the kth group’s observed covariance matrix, mk is the kth group’s observed mean 
vector, Σ̂k is the kth group’s model-implied covariance matrix, μ̂k is the kth group’s 
model-implied vector of means and Fk is the kth group’s ML fit function defined as:

	 ( ) ( ) ( )1 1ln  'ˆ ˆ∑ ln ˆˆ ˆk k k k k k k k k kF tr pS S m mμ μ− − = ∑ + − − + − ∑ −  
	 (15)

where p is the number of observed variables (i.e., 1 for RMM). 
FML can be used to calculate a test statistic that quantifies evidence against the 

null hypothesis of mean equality. Specifically TML = (N – 1)FML  with degrees of 
freedom (df ) = Kp(p+3)/2 – q, where K is the number of groups, p is the number of 
observed variables, and q is the number of parameters estimated for the model (Fan 
& Hancock, 2012). The only parameters estimated in the RMM model are the K 
population variances plus one population mean (constrained to be equal across the K 
groups). Therefore, the df in the RMM model simplifies considerably to K – 1. TML 
follows a χ2 distribution when data are conditionally normal, but it becomes biased 
as data become less normally distributed.

Although traditional ML estimation requires conditional multivariate normality 
to produce unbiased results, there are a number of modified estimation procedures 
designed to alleviate issues stemming from nonnormality (e.g., Browne, 1984; Satorra 
& Bentler, 2001; Yuan & Bentler, 1999). The aim of this study is to test many of the 
original RMM procedures in Fan and Hancock’s (2012).

Asymptotically distribution free (ADF) method

One of the first modifications to ML is Browne’s (1984) ADF method. It is also 
known as arbitrary generalized least squares (AGLS) or weighted least squares 
(WLS). Unlike traditional ML, the ADF method does not require the multivariate 
normality assumption as a condition for its use. The ADF method is based on the 
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generalized least squares approach, but uses a different weight matrix that allows 
for nonnormal data. It can be written as the following weighted fit function for 
multiple groups:

	 ( ) ( )1

1

ˆ '  ˆ

K

ADF k k
k

F Wk k ks σ s σ−

=

= − −∑ 	 (16)

where sk is the p* x 1 vector of first and second moments of the distribution of 
observed means, variances, and covariances (p* = p(p+3)/2), σ̂k is the p* x 1 vector 
of model-implied first and second moments, and 1

kW −  is an inverted p* x p* weight 
matrix of higher moments. For more details about the weight matrix see Browne 
(1984) or Muthén (1989). Using the ADF method, obtain the test statistic

	 ( ) ( )1                                                                17ADF ADFT N F= − 	 (17)

which is distributed as χ2
 with K – 1 df. In theory, the ADF method solves estimation 

issues arising from models with nonnormal data, but simulation studies demonstrate 
that it requires very large sample sizes and may be limited in the number of variables 
in the SEM model to obtain stable estimates for the weight matrix (e.g., Curran, 
West, & Finch, 1996; Finch, West, and MacKinnon, 1997; Muthén, & Kaplan, 1992; 
Olsson, Foss, Troye, & Howell, 2000). 

Modified ADF methods.  Given the issues discussed above concerning the ADF 
method, modifications were proposed to correct for estimation issues resulting from 
small sample sizes. For example, Fan and Hancock (2012) recommended two modi-
fied ADF methods by Yuan and Bentler (1997; 1999). The first statistic (YB1; Yuan 
& Bentler, 1997) modifies the ADF statistic as follows:
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The TYB1 follows a χ2distribution and has the same df as the ADF model (K-1 for the 
RMM model).

Yuan and Bentler’s (1999) second modified ADF statistic (YB2) follows an F 
distribution and can be expressed by the following equation:
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with numerator df = Kp*-q and denominator df = N - (Kp*-q). In RMM, the df simpli-
fies to K-1 for the numerator and N - K +1 for the denominator df (Fan & Hancock). 

Scaling corrections to ML.  The Satorra-Bentler (SB; Satorra & Bentler, 1988) 
rescaled test statistic is another popular alternative to traditional ML estimation, 
which was extended to include mean testing (Satorra, 1992). The new statistic,  
TSB = TMLĉ

–1 where ĉ–1 is a scaling factor that takes into account the model, estima-
tion procedure, and degree of kurtosis. It is approximately distributed as χ2

 with the 
same df as TML  and includes the use of robust standard errors. For technical details 
about the scaling constant see Satorra (1992) or Satorra and Bentler (2001). The SB 
rescaled test has been found to perform well in general, and better than the ADF 
methods with smaller sample sizes (e.g., Hu, Bentler, & Kano, 1992; Curran, West, 
& Finch, 1996). Given these options, RMM is a promising method as it includes 
robust estimation techniques to combat issues with nonnormal data and allows for 
distinct model estimates of population variances. 

Performance of the RMM Methods 
Fan and Hancock (2012) evaluated the performance of several RMM procedures in 
comparison to four modified ANOVA procedures along with the traditional ANOVA 
F-test as a reference. The alternative ANOVA procedures included the Welch test 
(Welch, 1951), Brown and Forsythe method (Brown & Forsythe, 1974c), Alexander-
Govern method (Alexander & Govern, 1994), and James’ second order test (James, 
1951). In Fan and Hancock’s study, trimmed means and Winsorized variances were 
incorporated into each of the four ANOVA alternatives. Under various conditions of 
nonnormality and unequal population variances, they found the RMM procedures 
outperformed the traditional methods and alternatives with regard to Type I error 
rates and power when moderate to extreme amounts of nonnormality were combined 
with unequal sample sizes and variances. They reported liberal Type I error rates for 
the modified ANOVA tests including the trimmed Welch, and due to inaccurate Type 
I error rates, power results were not reported. It was, however, noted the power of 
the RMM methods was higher than the ANOVA-based methods, although the power 
difference between the approaches decreased as sample size increased. 

Fan and Hancock’s (2012) results contrasted with previous research demonstrat-
ing that the Welch test with trimmed means and Winsorized variances has accurate 
Type I error rates and adequate power results (e.g., Cribbie et al, 2012; Lix et al., 
1996). Fan and Hancock found slight differences in performance across the RMM 
methods, depending on the condition, but overall the pattern of results was similar 
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for the procedures. For Type I error rates, the RMM methods all provided good 
results, only deviating substantially from the nominal level in a few conditions. 
The results were significantly better than the ANOVA-based methods. The RMM 
method with the highest power was Browne’s (1984) ADF method, followed by the 
two Yuan and Bentler (1997; 1999) statistics. Based on the overall performance of 
all of the methods under study, Fan and Hancock recommended the two Yuan and 
Bentler adjusted ADF methods over the ANOVA-based methods and other RMM 
approaches.

Study Objectives

Given the promising results for RMM procedures, the intent here is to extend the 
findings of Fan and Hancock (2012) in two ways. First, data were simulated from two 
different families of nonnormal distributions not investigated by Fan and Hancock—
the g and h distribution (Hoaglin, 1985) and the χ2 distribution. Results on the per-
formance of the RMM procedures are included when the distribution shapes differed 
across groups (e.g., one group had positively skewed data, another group had nor-
mally distributed or negatively skewed data, etc.). As in Fan and Hancock (2012), 
the trimmed Welch is included, because it is widely recommended for comparing 
population means under nonnormality and variance heterogeneity (Cribbie et al., 
2012; Wilcox, 2017). The poor performance of the trimmed Welch in Fan and Han-
cock was unexpected and deserves further investigation. The expanded conditions 
of the current paper will allow further comparisons between the trimmed Welch and 
the RMM procedures.

Methodology
A Monte Carlo study was constructed to evaluate the performance (i.e., power and 
Type I error rates) of traditional ANOVA-based methods and RMM tests for compar-
ing independent group means across many conditions of nonnormality and variance 
heterogeneity. The ANOVA-based methods included the traditional ANOVA (for 
baseline comparisons only), Welch’s (1951) heteroscedastic procedure with both 
usual means and variances (Welch) and trimmed means (20% symmetric trimming) 
and Winsorized variances (T Welch). The RMM methods included the traditional 
maximum-likelihood (ML) approach based on a χ2 test, a maximum likelihood-based 
Satorra-Bentler corrected test (SB), the asymptotically distribution free (ADF) test, 
and the two sample-size adjusted ADF methods due to Yuan and Bentler (YB1,YB2). 
The study used the open source software R (R Core Team, 2014). The simulation 
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results were organized with the SimDesign package (Chalmers, 2016) and the RMM 
models were evaluated using lavaan (Rosseel, 2012). 

Several variables were investigated in the simulation study, including the number 
of groups (K = 2 or 4), mean pattern (for investigating Type I error rates and power), 
sample sizes, population distribution shapes, and variance heterogeneity. Average 
group sample sizes were 10, 50 and 200 with both equal and unequal sample size 
conditions. Both equal and unequal variance conditions were included. The largest 
to smallest variance ratio was 16:1, which represents extreme levels of variance het-
erogeneity (Keselman et al., 1998). Two different heterogeneous variance conditions 
were included, one for a positively paired variance and sample size and one with a 
negatively paired variance and sample size. In addition to generating data from the 
normal (Gaussian) distribution, we simulated data from the χ2 distribution (with 3 df, 
skewness = 1.64, kurtosis = 4.00 ) and the g and h distribution (Hoaglin, 1985) with a 
positively skewed distribution (g = 1, h = 0, skewness = 6.18, kurtosis = 113.94) and 
its negatively skewed counterpart (g = -1, h = 0). These distributions are expected to 
represent the moderate ( χ2) to extremely skewed (g/h) distributions that behavioural 
science researchers would encounter (Wilcox, 1995). We explored conditions where 
all groups have the same population distribution shape, as well as conditions with 
mixtures of population distribution shapes (e.g., first population normal and second 
population positively skewed for K = 2). 

In total, 420 unique conditions (300 conditions with the g and h distribution and 
120 conditions with the χ2 distribution) were explored. The conditions for the sim-
ulation study are presented in Table 1 and were selected to match common design 
conditions in psychological research. To generate pseudo-random normal variates, 
we used the R function ‘rnorm’ (R Development Core Team, 2016). If Zij is a stan-
dard normal variate, then Xij = μj + σjZij is a normal variate with mean equal to μj 
and standard deviation equal to σj. To generate data from a g- and h-distribution, 
standard unit normal variables (Zij) were converted to the random variable:

	
2

21 ijij hZgZ

ij
eX e

g
−= ,

where g = 1/-1 and h = 0. To obtain a distribution with standard deviation σj, each Xij 
was multiplied by a value of σj (from Table 1). It is important to note that this does 
not affect the value of the null hypothesis when g = 0 (see Wilcox, 1994). However, 
when g > 0, the population mean for a g- and h- variable is:
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Thus, for those conditions where g > 0, μgh was first subtracted from Xij before mul-
tiplying by σj. When working with trimmed means, the proportion of observations 
trimmed from each tail of the distribution was set at .2, and the population trimmed 
mean for the jth group was also subtracted from the variate before multiplying by 
σj. Lastly, it should be noted that the standard deviation of a g- and h-distribution is 
not equal to one, and thus the values enumerated in Table 1 reflect only the amount 
that each random variable is multiplied by and not the actual values of the standard 
deviations (see Wilcox, 1994).

The nominal Type I error rate (α) was set at .05 for all conditions. There were 
5000 replications conducted for each condition.

Results
Due to the large number of conditions, only a subset of the results is presented below. 
Specifically, we present the results for the moderate (average n = 50) and the large 
(average n = 200) sample size condition with four groups for each of the distribution 
types. These conditions were chosen to highlight any simulation conditions that had 
an effect on the Type I error rates. The results when K = 2 mirror those when K = 4. 
The full simulation results can be obtained from the first author. 

Table 1. Simulation Conditions
Distributions
Dist. Patterns
T1 Mean Pattern

Normal, g and h distribution (Positive, Negative Skew), χ2

Same Distribution Shape or Different for Half of the Groups
All population means = 0

K=2 K=4
Variance Pattern 1,1 or 1,16 1,1,1,1 or 1,4,9,16

Avg. n = 10 10,10; 4,16; 16,4 10,10,10,10; 4,8,12,16; 
16,12,8,4

Power Mean Pattern 0, 1.325 0, 0.493, 0.986, 1.479

Avg n = 50 50,50; 20, 80; 80, 20 50,50,50,50; 20,40,60,80; 
80,60,40,20

Power Mean Pattern 0, .566 0, 0.211, 0.422, 0.633

Avg. n = 200 200, 200; 80, 320; 320, 80 200,200,200,200; 
80,160,240,320; 
320,240,160,80

Power Mean Pattern 0, .281 0, 0.105, 0.209, 0.314
Note: The mean patterns for power conditions were calculated for each of the three sample size conditions such 
that the power would be approximately .80 under normality, equal ns and equal group variance. For Type I error 
rates, the raw population means were zero, but the trimmed population means were used for calculating Type I 
error rates for the trimmed Welch test.
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Estimation Issues for the RMM Methods

Nonconvergence rates were minimal for RMM models as they converged in over 
99.9% of the replications across all of the conditions. However, with smaller sam-
ple sizes (average n of 10) the ADF methods exhibited problems with nonpositive 
definite matrices in the majority of conditions (rates as high as 88%). This was no 
longer an issue when the average n per group increased to 50 or 200. 

Type I Error Rates

The nominal Type I error rate was set at .05 for all investigated conditions and 
empirical rates were considered acceptable if they fell within Bradley’s (1978) lib-
eral bounds (i.e., α +/- .5α). All of the tests were found to have accurate Type I error 
rates when all of the groups’ data follow a normal distribution with equal group 
variance and sample sizes. However, once the groups’ data did not follow a normal 
distribution (e.g., extremely positively or negatively skewed), many of the investi-
gated tests no longer demonstrated accurate error rates. The only method found to 
maintain accurate empirical Type I error rates across all of the investigated conditions 
was the trimmed Welch ANOVA.

g and h distribution.  Displayed in Tables 2 and 3 are the empirical Type I error 
rates for each of the tests when data were generated from the g and h distributions 
for average group sample sizes of 50 and 200, respectively. The accuracy of the 
Type I error rates for the RMM methods improves as sample size increases. When 
the average sample size per group was 50 (Table 2), the RMM methods’ empirical 
error rates were found to be more liberal than the nominal α level under several sim-
ulation conditions. For example, in cases where the sample size and variance were 
negatively paired, rates were as high as .180 when the groups’ distribution shapes 
were the same, and as high as .183 when the distribution shapes differed. When the 
average group sample size increased to 200 (see Table 3), the Type I error rates for the 
RMM methods become closer to the nominal α level, but are still somewhat liberal 
(e.g., as high as .10 in negative pairing conditions). As demonstrated in the tables, 
the error rates for the RMM approaches were very similar to one another regardless 
of the method used (e.g., traditional ML versus YB2). 

χ2 distribution.  Displayed in Tables 4 and 5 are the empirical error rates when data 
follow a 2χ distribution with three degrees of freedom for average group sample sizes 
of 50 and 200, respectively. The most notable finding is that the Type I error rates 
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Table 2. g and h Distribution: Omnibus Type I Error Rates for K = 4 and Average n = 50
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
0,0,0,0 50,50,50,50 1,1,1,1 0.055 0.053 0.056 0.059 0.059 0.063 0.054 0.057

50,50,50,50 1,2,3,4 0.067 0.051 0.058 0.055 0.055 0.057 0.052 0.054
20,40,60,80 1,1,1,1 0.048 0.051 0.057 0.058 0.058 0.063 0.055 0.056
20,40,60,80 1,2,3,4 0.017 0.049 0.052 0.052 0.052 0.055 0.049 0.051
80,60,40,20 1,2,3,4 0.202 0.052 0.062 0.058 0.058 0.064 0.057 0.058

1,1,1,1 50,50,50,50 1,1,1,1 0.041 0.059 0.049 0.067 0.067 0.068 0.060 0.063
50,50,50,50 1,2,3,4 0.075 0.102 0.062 0.107 0.107 0.112 0.103 0.105
20,40,60,80 1,1,1,1 0.049 0.075 0.059 0.087 0.087 0.090 0.081 0.084
20,40,60,80 1,2,3,4 0.026 0.071 0.048 0.078 0.078 0.082 0.073 0.076
80,60,40,20 1,2,3,4 0.197 0.156 0.075 0.169 0.169 0.180 0.166 0.172

2,2,2,2 50,50,50,50 1,1,1,1 0.043 0.057 0.050 0.066 0.066 0.069 0.058 0.061
50,50,50,50 1,2,3,4 0.069 0.101 0.061 0.108 0.108 0.112 0.102 0.105
20,40,60,80 1,1,1,1 0.048 0.081 0.061 0.093 0.093 0.098 0.089 0.091
20,40,60,80 1,2,3,4 0.025 0.067 0.053 0.074 0.074 0.076 0.069 0.072
80,60,40,20 1,2,3,4 0.202 0.150 0.075 0.163 0.163 0.171 0.164 0.167

0,0,1,1 50,50,50,50 1,1,1,1 0.048 0.065 0.046 0.071 0.071 0.073 0.066 0.068
50,50,50,50 1,2,3,4 0.077 0.110 0.060 0.117 0.117 0.121 0.112 0.115
20,40,60,80 1,1,1,1 0.056 0.050 0.048 0.055 0.055 0.061 0.054 0.056
20,40,60,80 1,2,3,4 0.029 0.082 0.054 0.091 0.091 0.094 0.085 0.087
80,60,40,20 1,2,3,4 0.184 0.143 0.068 0.151 0.151 0.160 0.151 0.152

0,0,2,2 50,50,50,50 1,1,1,1 0.050 0.063 0.049 0.070 0.070 0.072 0.065 0.067
50,50,50,50 1,2,3,4 0.080 0.112 0.059 0.120 0.120 0.124 0.113 0.117
20,40,60,80 1,1,1,1 0.064 0.059 0.059 0.068 0.068 0.074 0.066 0.069
20,40,60,80 1,2,3,4 0.026 0.072 0.051 0.078 0.078 0.080 0.075 0.076
80,60,40,20 1,2,3,4 0.195 0.156 0.069 0.165 0.165 0.175 0.165 0.167

1,1,2,2 50,50,50,50 1,1,1,1 0.060 0.126 0.054 0.133 0.133 0.139 0.128 0.131
50,50,50,50 1,2,3,4 0.090 0.144 0.066 0.151 0.151 0.158 0.146 0.149
20,40,60,80 1,1,1,1 0.064 0.148 0.062 0.157 0.157 0.162 0.154 0.156
20,40,60,80 1,2,3,4 0.029 0.131 0.060 0.142 0.142 0.145 0.134 0.138
80,60,40,20 1,2,3,4 0.200 0.163 0.075 0.174 0.174 0.183 0.175 0.177

Note: Dist = 0 is the normal distribution, Dist = 1 is a positively skewed distribution with g = 1 and h = 0, and Dist 
= 2 is the negatively skewed distribution for g = 1 and h = 0. Rates outside of Bradley’s liberal bounds are bolded. 

for all of the procedures are better than those observed in similar conditions but with 
data generated from the g and h distribution. The RMM methods’ error rates improve 
with the larger sample size condition whereby they only fall outside of Bradley’s 
liberal bounds when the average n is 50 in the negative pairing conditions, and are 
still less than 2α. When the sample size increases to 200, the RMM error rates are 
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Table 3. g and h Distribution: Omnibus Type I Error Rates for K = 4 and average n = 200
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
0,0,0,0 200,200,200,200 1,1,1,1 0.050 0.052 0.054 0.052 0.052 0.052 0.052 0.052

200,200,200,200 1,2,3,4 0.073 0.050 0.051 0.052 0.052 0.053 0.051 0.051
80,160,240,320 1,1,1,1 0.057 0.056 0.052 0.057 0.057 0.058 0.057 0.058
80,160,240,320 1,2,3,4 0.019 0.050 0.050 0.051 0.051 0.052 0.050 0.050
320,240,160,80 1,2,3,4 0.195 0.051 0.051 0.052 0.052 0.053 0.052 0.052

1,1,1,1 200,200,200,200 1,1,1,1 0.048 0.058 0.048 0.060 0.060 0.061 0.058 0.059
200,200,200,200 1,2,3,4 0.068 0.073 0.050 0.074 0.074 0.075 0.073 0.073
80,160,240,320 1,1,1,1 0.047 0.067 0.049 0.068 0.068 0.068 0.067 0.067
80,160,240,320 1,2,3,4 0.021 0.061 0.050 0.062 0.062 0.062 0.061 0.061
320,240,160,80 1,2,3,4 0.189 0.098 0.057 0.100 0.100 0.101 0.100 0.100

2,2,2,2 200,200,200,200 1,1,1,1 0.046 0.055 0.057 0.058 0.058 0.058 0.056 0.056
200,200,200,200 1,2,3,4 0.071 0.076 0.059 0.078 0.078 0.079 0.077 0.078
80,160,240,320 1,1,1,1 0.046 0.067 0.050 0.069 0.069 0.070 0.068 0.069
80,160,240,320 1,2,3,4 0.024 0.062 0.049 0.064 0.064 0.065 0.063 0.063
320,240,160,80 1,2,3,4 0.201 0.095 0.056 0.098 0.098 0.100 0.097 0.098

0,0,1,1 200,200,200,200 1,1,1,1 0.052 0.063 0.050 0.065 0.065 0.066 0.063 0.063
200,200,200,200 1,2,3,4 0.070 0.074 0.050 0.075 0.075 0.075 0.074 0.075
80,160,240,320 1,1,1,1 0.057 0.055 0.053 0.058 0.058 0.059 0.057 0.057
80,160,240,320 1,2,3,4 0.024 0.068 0.052 0.070 0.070 0.071 0.068 0.069
320,240,160,80 1,2,3,4 0.194 0.095 0.051 0.097 0.097 0.100 0.097 0.098

0,0,2,2 200,200,200,200 1,1,1,1 0.049 0.056 0.055 0.057 0.057 0.057 0.056 0.056
200,200,200,200 1,2,3,4 0.063 0.052 0.050 0.054 0.054 0.056 0.053 0.054
80,160,240,320 1,1,1,1 0.052 0.078 0.056 0.080 0.080 0.082 0.079 0.079
80,160,240,320 1,2,3,4 0.024 0.055 0.051 0.057 0.057 0.057 0.055 0.056
320,240,160,80 1,2,3,4 0.197 0.058 0.050 0.061 0.061 0.062 0.060 0.061

1,1,2,2 200,200,200,200 1,1,1,1 0.048 0.076 0.052 0.077 0.077 0.078 0.076 0.076
200,200,200,200 1,2,3,4 0.074 0.085 0.053 0.086 0.086 0.087 0.085 0.086
80,160,240,320 1,1,1,1 0.054 0.096 0.053 0.097 0.097 0.099 0.096 0.097
80,160,240,320 1,2,3,4 0.023 0.086 0.054 0.087 0.087 0.088 0.086 0.087
320,240,160,80 1,2,3,4 0.211 0.106 0.062 0.107 0.107 0.110 0.108 0.108
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accurate in all of the variance-sample size pairings. The trimmed Welch procedure’s 
error rates are accurate across all conditions regardless of sample size. 

Power Rates

Fan and Hancock (2012) did not report power results for the trimmed Welch because 
their simulation study reported inaccurate error rates for the test. This was not the case 
in this simulation, and therefore power results are presented for the same conditions 
investigated above. Power rates are in bold when the error rates for the same condi-
tions in the previous section fell outside of Bradley’s liberal bounds. The population 
means are different for the average n = 50 and average n = 200 conditions because 
the mean pattern reflects power rates of approximately .80 for homoscedastic and 
normally distributed data with equal sample sizes per group. Taking this approach 
means that there is no power increase by increasing sample size from 50 to 200, 
because the conditions use different population means to assess power. 

g and h distribution.  Presented in Tables 6 and 7 are the power results under the 
same conditions used for Type I error rates for the two sample sizes when data 
follow the g and h distribution. When all assumptions have been met, the trimmed 
Welch has somewhat lower power than the other procedures by about 8% (which is 
expected because of the reduced effective sample size with trimming). With skewed 
data, however, the trimmed Welch demonstrates comparable, and for many condi-
tions, superior power rates compared to the RMM methods. This pattern of results 

Table 4. χ2 Distribution: Omnibus Type I Error Rates for K = 4 and Average n = 50
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
1,1,1,1 50,50,50,50 1,1,1,1 0.050 0.057 0.051 0.063 0.063 0.067 0.059 0.061

50,50,50,50 1,2,3,4 0.067 0.065 0.054 0.068 0.068 0.071 0.065 0.067
20,40,60,80 1,1,1,1 0.053 0.060 0.056 0.070 0.070 0.074 0.066 0.068
20,40,60,80 1,2,3,4 0.023 0.054 0.056 0.058 0.058 0.060 0.055 0.057
80,60,40,20 1,2,3,4 0.212 0.083 0.070 0.092 0.092 0.101 0.092 0.095

0,0,1,1 50,50,50,50 1,1,1,1 0.051 0.054 0.049 0.059 0.059 0.062 0.055 0.057
50,50,50,50 1,2,3,4 0.072 0.069 0.051 0.073 0.073 0.076 0.070 0.072
20,40,60,80 1,1,1,1 0.046 0.049 0.054 0.058 0.058 0.064 0.056 0.059
20,40,60,80 1,2,3,4 0.021 0.055 0.058 0.061 0.061 0.065 0.056 0.058
80,60,40,20 1,2,3,4 0.205 0.077 0.064 0.083 0.083 0.093 0.085 0.088

Note: Dist=1 is the χ2 distribution with 3 degrees of freedom, and Dist=0 is the normal distribution
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was also true when the RMM methods were found to have liberal error rates. For 
all procedures, unequal variances drastically decreases power to detect population 
mean differences. As with Type I error rates, the RMM procedures exhibited similar 
power rates to one another, such that one procedure did not consistently outperform 
the others. 

χ2 distribution.  Presented in Tables 8 and 9 are the power results for outcomes that 
follow a χ2 distribution with three df. A similar pattern of power results was observed 
as those discussed above when data were generated from the g and h distribution.
The power results for the trimmed Welch and RMM approaches were similar across 
the conditions and the different RMM procedures were almost identical.

Conclusion
Given the popularity of comparing mean differences and prevalence of assumption 
violation in research in the behavioural sciences (e.g., Blanca et al., 2011; Golinski & 
Cribbie, 2009; Keselman et al., 1998; Micceri, 1989), it is important that researchers 
have viable alternatives to the traditional ANOVA. A recent study proposed another 
robust statistical tool for comparing mean differences called robust means model-
ing (Fan & Hancock, 2012). Given their somewhat surprising results regarding the 
trimmed Welch test, the aim of the current study was to replicate their findings and 
extend this area of research in a few important ways; namely by examining Type I 
error and power rates with other families of distributions (e.g., g/h, χ2) and exploring 
the performance when the populations have differing distribution shapes. 

Table 5. χ2 Distribution: Omnibus Type I Error Rates for K = 4 and Average n = 200
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
1,1,1,1 200,200,200,200 1,1,1,1 0.051 0.053 0.052 0.054 0.054 0.054 0.053 0.053

200,200,200,200 1,2,3,4 0.069 0.055 0.049 0.056 0.056 0.056 0.055 0.056
80,160,240,320 1,1,1,1 0.052 0.055 0.050 0.057 0.057 0.058 0.057 0.057
80,160,240,320 1,2,3,4 0.021 0.049 0.053 0.049 0.049 0.051 0.049 0.050
320,240,160,80 1,2,3,4 0.196 0.058 0.050 0.059 0.059 0.060 0.060 0.060

0,0,1,1 200,200,200,200 1,1,1,1 0.048 0.049 0.048 0.050 0.050 0.051 0.049 0.050
200,200,200,200 1,2,3,4 0.065 0.048 0.051 0.049 0.049 0.049 0.048 0.048
80,160,240,320 1,1,1,1 0.051 0.051 0.057 0.053 0.053 0.055 0.053 0.053
80,160,240,320 1,2,3,4 0.019 0.053 0.046 0.055 0.055 0.055 0.054 0.054
320,240,160,80 1,2,3,4 0.201 0.061 0.055 0.064 0.064 0.065 0.064 0.064
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Table 6. Power Results for g and h distributions with K = 4 and average n = 50
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
0,0,0,0 50,50,50,50 1,1,1,1 0.810 0.803 0.731 0.814 0.814 0.818 0.805 0.809

50,50,50,50 1,2,3,4 0.156 0.190 0.176 0.206 0.206 0.214 0.194 0.200

20,40,60,80 1,1,1,1 0.687 0.675 0.595 0.696 0.696 0.708 0.690 0.697

20,40,60,80 1,2,3,4 0.054 0.187 0.165 0.203 0.203 0.209 0.191 0.195

80,60,40,20 1,2,3,4 0.311 0.150 0.138 0.165 0.165 0.177 0.164 0.169

1,1,1,1 50,50,50,50 1,1,1,1 0.833 0.881 0.999 0.888 0.888 0.893 0.882 0.885

50,50,50,50 1,2,3,4 0.111 0.116 0.488 0.131 0.131 0.138 0.122 0.126
20,40,60,80 1,1,1,1 0.756 0.846 0.984 0.858 0.858 0.862 0.853 0.856

20,40,60,80 1,2,3,4 0.029 0.217 0.513 0.232 0.232 0.237 0.219 0.225
80,60,40,20 1,2,3,4 0.275 0.085 0.320 0.101 0.101 0.109 0.099 0.102

2,2,2,2 50,50,50,50 1,1,1,1 0.820 0.875 0.999 0.882 0.882 0.884 0.876 0.879
50,50,50,50 1,2,3,4 0.252 0.445 0.598 0.457 0.457 0.465 0.448 0.454
20,40,60,80 1,1,1,1 0.726 0.779 0.997 0.795 0.795 0.802 0.790 0.792
20,40,60,80 1,2,3,4 0.119 0.362 0.576 0.374 0.374 0.383 0.367 0.373
80,60,40,20 1,2,3,4 0.407 0.455 0.506 0.469 0.469 0.481 0.467 0.471

0,0,1,1 50,50,50,50 1,1,1,1 0.846 0.841 0.951 0.855 0.855 0.860 0.844 0.849
50,50,50,50 1,2,3,4 0.100 0.112 0.326 0.124 0.124 0.129 0.115 0.118
20,40,60,80 1,1,1,1 0.740 0.717 0.857 0.744 0.744 0.757 0.733 0.742
20,40,60,80 1,2,3,4 0.030 0.127 0.289 0.138 0.138 0.145 0.131 0.134
80,60,40,20 1,2,3,4 0.250 0.100 0.231 0.120 0.120 0.126 0.114 0.117

0,0,2,2 50,50,50,50 1,1,1,1 0.796 0.845 0.911 0.855 0.855 0.857 0.848 0.852
50,50,50,50 1,2,3,4 0.252 0.414 0.440 0.426 0.426 0.433 0.416 0.422
20,40,60,80 1,1,1,1 0.711 0.722 0.821 0.739 0.739 0.749 0.734 0.739
20,40,60,80 1,2,3,4 0.118 0.347 0.335 0.360 0.360 0.366 0.350 0.354
80,60,40,20 1,2,3,4 0.396 0.414 0.376 0.434 0.434 0.447 0.433 0.438

1,1,2,2 50,50,50,50 1,1,1,1 0.768 0.868 0.989 0.874 0.874 0.876 0.868 0.871
50,50,50,50 1,2,3,4 0.263 0.431 0.547 0.439 0.439 0.448 0.434 0.437
20,40,60,80 1,1,1,1 0.704 0.826 0.968 0.835 0.835 0.841 0.832 0.835
20,40,60,80 1,2,3,4 0.120 0.438 0.546 0.451 0.451 0.457 0.441 0.445
80,60,40,20 1,2,3,4 0.412 0.416 0.475 0.432 0.432 0.444 0.430 0.435

Bolded values indicate conditions where the Type I error rates were unacceptable.
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Table 7. Power Results for g and h distributions with K = 4 and average n = 200
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
0,0,0,0 200,200,200,200 1,1,1,1 0.803 0.799 0.729 0.801 0.801 0.803 0.799 0.800

200,200,200,200 1,2,3,4 0.145 0.196 0.174 0.200 0.200 0.202 0.197 0.199
80,160,240,320 1,1,1,1 0.700 0.696 0.623 0.701 0.701 0.703 0.699 0.700
80,160,240,320 1,2,3,4 0.052 0.192 0.164 0.195 0.195 0.196 0.193 0.193
320,240,160,80 1,2,3,4 0.318 0.172 0.151 0.177 0.177 0.180 0.176 0.177

1,1,1,1 200,200,200,200 1,1,1,1 0.808 0.839 0.999 0.840 0.840 0.842 0.839 0.840
200,200,200,200 1,2,3,4 0.123 0.135 0.514 0.137 0.137 0.139 0.136 0.137
80,160,240,320 1,1,1,1 0.736 0.790 0.993 0.795 0.795 0.797 0.793 0.794
80,160,240,320 1,2,3,4 0.040 0.198 0.536 0.202 0.202 0.203 0.198 0.200
320,240,160,80 1,2,3,4 0.273 0.090 0.393 0.094 0.094 0.097 0.092 0.094

2,2,2,2 200,200,200,200 1,1,1,1 0.819 0.847 0.999 0.849 0.849 0.850 0.847 0.848
200,200,200,200 1,2,3,4 0.224 0.354 0.593 0.357 0.357 0.358 0.355 0.356
80,160,240,320 1,1,1,1 0.700 0.718 0.998 0.724 0.724 0.727 0.721 0.722
80,160,240,320 1,2,3,4 0.084 0.272 0.552 0.276 0.276 0.278 0.273 0.275
320,240,160,80 1,2,3,4 0.378 0.342 0.502 0.347 0.347 0.349 0.346 0.347

0,0,1,1 200,200,200,200 1,1,1,1 0.827 0.823 0.949 0.827 0.827 0.829 0.824 0.825
200,200,200,200 1,2,3,4 0.117 0.141 0.362 0.145 0.145 0.146 0.141 0.143
80,160,240,320 1,1,1,1 0.721 0.709 0.861 0.715 0.715 0.719 0.713 0.715
80,160,240,320 1,2,3,4 0.033 0.140 0.307 0.144 0.144 0.145 0.140 0.141
320,240,160,80 1,2,3,4 0.268 0.102 0.257 0.105 0.105 0.108 0.105 0.105

0,0,2,2 200,200,200,200 1,1,1,1 0.784 0.812 0.931 0.816 0.816 0.817 0.813 0.814
200,200,200,200 1,2,3,4 0.212 0.329 0.419 0.332 0.332 0.333 0.330 0.331
80,160,240,320 1,1,1,1 0.690 0.709 0.843 0.715 0.715 0.718 0.714 0.715
80,160,240,320 1,2,3,4 0.086 0.276 0.321 0.279 0.279 0.280 0.277 0.278
320,240,160,80 1,2,3,4 0.365 0.314 0.349 0.318 0.318 0.322 0.318 0.320

1,1,2,2 200,200,200,200 1,1,1,1 0.774 0.832 0.998 0.835 0.835 0.836 0.832 0.833
200,200,200,200 1,2,3,4 0.216 0.338 0.557 0.341 0.341 0.344 0.340 0.341
80,160,240,320 1,1,1,1 0.695 0.783 0.989 0.786 0.786 0.787 0.785 0.786
80,160,240,320 1,2,3,4 0.086 0.334 0.541 0.339 0.339 0.340 0.335 0.336
320,240,160,80 1,2,3,4 0.370 0.314 0.462 0.318 0.318 0.322 0.318 0.320

Bolded values indicate conditions where the Type I error rates were unacceptable.

RMM Procedures

Although Fan and Hancock (2012) recommended the YB1 or YB2 approaches as 
the better performing tests, we found little deviation in the performance of the dif-
ferent RMM methods. Type I error rates for the procedures were similar and there 
was no noticeable power advantage of any other approaches under the conditions 
investigated. The degree of similarity between the regular ML approach and the 
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Table 8. Power Rates for the χ2 distribution with K = 4 and average n = 50
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
1,1,1,1 50,50,50,50 1,1,1,1 0.802 0.802 0.827 0.814 0.814 0.820 0.803 0.809

50,50,50,50 1,2,3,4 0.134 0.145 0.166 0.158 0.158 0.166 0.150 0.154
20,40,60,80 1,1,1,1 0.715 0.733 0.714 0.751 0.751 0.758 0.743 0.747
20,40,60,80 1,2,3,4 0.041 0.190 0.195 0.206 0.206 0.211 0.193 0.198
80,60,40,20 1,2,3,4 0.288 0.093 0.122 0.107 0.107 0.116 0.104 0.109

0,0,1,1 50,50,50,50 1,1,1,1 0.812 0.797 0.784 0.813 0.813 0.817 0.800 0.806
50,50,50,50 1,2,3,4 0.119 0.140 0.167 0.154 0.154 0.161 0.144 0.149
20,40,60,80 1,1,1,1 0.704 0.684 0.656 0.708 0.708 0.719 0.697 0.705
20,40,60,80 1,2,3,4 0.039 0.154 0.169 0.169 0.169 0.175 0.159 0.164
80,60,40,20 1,2,3,4 0.285 0.104 0.117 0.125 0.125 0.135 0.120 0.125

Bolded values indicate conditions where the Type I error rates were unacceptable.

Table 9. Power Rates for the χ2 distribution with K = 4 and average n = 200
Distribution n σ ANOVA Welch T Welch ML SB ADF YB1 YB2
1,1,1,1 200,200,200,200 1,1,1,1 0.806 0.803 0.841 0.806 0.806 0.807 0.804 0.804

200,200,200,200 1,2,3,4 0.147 0.163 0.188 0.166 0.166 0.168 0.163 0.165
80,160,240,320 1,1,1,1 0.692 0.700 0.743 0.706 0.706 0.708 0.703 0.705
80,160,240,320 1,2,3,4 0.045 0.191 0.196 0.194 0.194 0.195 0.192 0.193
320,240,160,80 1,2,3,4 0.315 0.130 0.143 0.134 0.134 0.136 0.133 0.135

    0,0,1,1 200,200,200,200 1,1,1,1 0.799 0.793 0.789 0.796 0.796 0.798 0.793 0.795
200,200,200,200 1,2,3,4 0.136 0.160 0.176 0.165 0.165 0.167 0.161 0.163
80,160,240,320 1,1,1,1 0.704 0.695 0.674 0.703 0.703 0.707 0.701 0.702
80,160,240,320 1,2,3,4 0.040 0.166 0.185 0.170 0.170 0.172 0.166 0.168
320,240,160,80 1,2,3,4 0.294 0.127 0.137 0.131 0.131 0.133 0.130 0.132

Bolded values indicate conditions where the Type I error rates were unacceptable.

ADF methods was somewhat surprising because ML requires the assumption of 
conditionally normally distributed data. If one were to choose between the methods, 
the regular ML approach or Satorra-Bentler corrected ML test might therefore be 
preferable with smaller sample sizes because, according to our observations, they 
did not exhibit any problems with nonpositive definite matrices, whereas this was 
sometimes an issue for the ADF methods.

Distribution shape had an effect on the performance of the RMM methods. Empir-
ical Type I error rates were better when data followed a χ2 (with three df) distribution 
compared to the positively or negatively skewed g and h distribution. However, this 
may be due to severity of nonnormality as the χ2 distribution is less skewed than the  
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g and h distributions used in the current study. Sample size also influenced the 
empirical Type I error rates in that the tests became overly conservative with smaller 
sample sizes. Given that the methods use ML estimation and the ADF methods are 
notorious for requiring larger sample sizes, it is possible that the models produces 
more biased estimates in smaller sample sizes, which manifested in the poorer Type 
I error rates. 

Trimmed Welch versus RMM

The most noteworthy finding is the difference between the performance of the 
trimmed Welch ANOVA and the RMM methods in the current study compared to 
what was reported in Fan and Hancock (2012). Specifically, they reported inconsis-
tent and often extremely liberal Type I error rates for the trimmed Welch, whereas 
we found that the rates were very stable around the nominal α level. In fact, the 
trimmed Welch was the only procedure with empirical Type I error rates inside an 
acceptable range under all of the conditions tested. Our results regarding the Type 
I error rates of the Welch test on trimmed means agree with the results of several 
previous simulation studies including Cribbie, Wilcox, Bewell & Keselman (2007), 
Cribbie et al. (2012), Lix and Keselman (2006), and Wilcox (1995), and therefore 
we are confident that the Welch test on trimmed means is not overly liberal with 
heteroscedastic and/or skewed distributions. Additionally, the trimmed Welch had 
comparable or higher power than the RMM tests, including conditions where the 
RMM’s Type I error rates were more liberal than the nominal α rate. 

One important consideration when comparing the trimmed Welch procedure to 
the RMM approaches is that of effect size. Reporting statistical significance tests 
does not allow for an indication of the magnitude of group differences. Published 
ANOVA results often include the raw group means (or mean differences) as the 
effect size measure when data are normally distributed (or have similar distribution 
shapes) and group variances are approximately equal. However, reporting raw mean 
differences may not be the best choice under assumption violations, as means are 
sensitive to nonnormality and outliers. Reporting trimmed means, however, is an 
intuitive and appropriate effect size when conducting the trimmed Welch. It has an 
easy interpretation for applied researchers who are accustomed to reporting means 
or mean differences. In contrast, an appropriate measure of effect size in conjunction 
with the RMM procedures is unclear. Reporting raw means with RMM methods is 
somewhat inconsistent as they do not account for the nonnormality or heterogeneity 
of the data.
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