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In lifetime data, the hazard function is a common technique for describing the 

characteristics of lifetime distribution. Monotone increasing or decreasing, and unimodal 

are relatively simple hazard function shapes, which can be modeled by many parametric 

lifetime distributions. However, fewer distributions are capable of modeling diverse and 

more complicated shapes such as N-shaped, reflected N-shaped, W-shaped, and M-shaped 

hazard rate functions. A generalized family of lifetime distributions, the uniform-

R{generalized lambda} (U-R{GL}) are introduced and the corresponding survival models 

are derived, and applied to two lifetime data sets. The survival model is applied to a right 

censored lifetime data set. 

 

Keywords: Hazard function, T-R{Y} framework, generalized lambda distribution, 

censored data, regression model 

 

Introduction 

Lifetime data are often analyzed using either survival distributions or hazard rate 

functions. The Kaplan-Meier estimator (Kaplan & Meier, 1958) is a popular 

technique to generate a nonparametric survival distribution function. The Nelson-

Aalen estimator (Nelson, 1972; Aalen, 1978) is common for generating a 

nonparametric cumulative hazard rate function. When covariates are involved, 

Cox’s (1972) semiparametric proportional hazards model is the most commonly 

applied survival model. Various fully parametric models have also been developed 

in the literature (see e.g., Lawless, 2003, and references therein). 

The use of fully parametric models is preferred in some settings in which the 

underlying distribution of a lifetime variable follows certain known probability 

distributions. The estimation of the parameters in fully parametric models may be 

obtained through full maximum likelihood. If the parametric models provide a good 

https://dx.doi.org/10.22237/jmasm/1604190060
https://dx.doi.org/10.22237/jmasm/1604190060
mailto:maldeni@wcu.edu
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fit to the data, a more precise and efficient estimation of the parameters can be 

achieved (Klein & Moeschberger, 2003). For instance, as mentioned by Collett 

(2003), “estimates of quantities such as relative hazards and median survival times 

will tend to have smaller standard errors than they would in the absence of a 

distributional assumption,” (p. 151). In addition, the estimated coefficients are 

easily interpreted and clinically meaningful (Hosmer et al., 2008). 

Various parametric lifetime distributions are used in modeling and analyzing 

lifetime data in different areas such as engineering, economics, demography, 

biomedical sciences and other fields concerned with lifetimes. Examples of such 

distributions are the exponential, Weibull, lognormal, log-logistic, and gamma 

distributions. In lifetime studies, the most commonly used measures for describing 

the underlying distribution of a lifetime variable are the survival function or the 

hazard function. Since the survival functions are monotonically decreasing in time, 

the shapes of the hazard function can be used to emphasize the difference among 

lifetime distributions. For this reason, the shape of the hazard function is an 

important characteristic of a lifetime distribution, which can help guide model 

selection (Lawless, 2003). For example, monotonically increasing or decreasing 

hazard function often suggests the lifetime may follow Weibull distribution. 

Similarly, situations in which the hazard function increases initially and then 

decreases (hump-shaped) suggests that the log-logistic and the lognormal 

distributions may be suitable models for the data. 

The three-parameter exponentiated Weibull distribution introduced by 

Mudholkar and Srivastava (1993) has the ability to model bathtub, upside-down 

bathtub, and monotone hazard rates. However, there are situations in which the 

hazard function exhibits some form of more complicated behavior such as N-shape, 

reflected N-shape, M-shape, W-shape, and others. These shapes are in biomedical 

science and reliability engineering; see for example, Bebbington et al. (2009). 

Because most of the well-known distributions do not exhibit these shapes, several 

generalizations, modifications, or extensions to these distributions have been 

proposed in the literature, (see for instance, generalized weighted Weibull by 

Domma et al., 2016; Gumbel-Weibull by Al-Aqtash et al., 2014), and the research 

in this area continues to be quite active. 

Members of the class of T-R{generalized lambda} (T-R{GL}) families of 

distributions introduced by Aldeni et al. (2017), the U-R{GL} family for modeling 

lifetime distributions are considered here. The hazard function of U-R{GL} family 

can be monotonic, bathtub, upside-down bathtub, N-shaped, and bimodal shaped. 

A generalized regression model with the assumption that the lifetime variable 

follows the U-R{GL} distribution is derived to model right censored survival data. 
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The U-R{GL} Family of Lifetime Distributions 

The T-R{GL} families of distributions proposed in Aldeni et al. (2017) based on 

the T-R{Y} framework introduced in Aljarrah et al. (2014) (see also Alzaatreh et 

al., 2014) are defined as follows: 

Let Y be a random variable that follows the four-parameter GL distribution 

proposed by Ramberg and Schmeiser (1974) with quantile function 
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and let FT(x) and FR(x) be the cumulative distribution functions (CDFs) of the 

random variables T and R, respectively, with corresponding PDFs (if they exist) 

fT(x) and fR(x). The CDF (in general) of the random variable X in T-R{GL} families 

of distributions is defined as 
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T, Y ∈ (a, b) for –∞ ≤ a < b ≤ ∞ and, accordingly, the corresponding PDF 

associated with (2) is 
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Aldeni et al. (2017) defined the support regions of the random variable T that 

correspond to different domains of the GL distribution. In particular, if λ1 = 1/2, 

λ2 = 2, and λ3, λ4 > 0, then the random variables T and Y have the support [0, 1]. 

Note that different choices of the random variables T and R lead to different families 

of generalized R-distributions. In this paper we consider the random variable T to 

be the standard uniform distribution and define the U-R{GL} family as follows: 
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Let Y be a random variable that follows the GL distribution with quantile 

function in (1), and let T be a random variable that follows the standard uniform 

distribution. For any given random variable R with CDF FR(x) and PDF fR(x), then 

by (2) and (3) the CDF and PDF of the U-R{GL} family of distributions are 

respectively given by 
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where 1 – FR(x) = SR(x) is the survival function of the random variable R. 

The corresponding hazard function of U-R{GL} family is given by 
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When λ3 = λ4 = 1 or λ3 = λ4 = 2, FX(x) = FR(x) and hX(x) = hR(x). 

Examples of the U-R{GL} Family of Lifetime Distributions 

As equation (4) shows, any member of U-R{GL} family is a generalization of the 

random variable R mapping from CDF of R to the quantile function of the 

generalized lambda distribution. Although any continuous distribution of the 

random variable R might be used in the U-R{GL} family, we consider the case 

when R is a nonnegative random variable representing a lifetime. Because the 

Weibull and log-logistic are very attractive distributions in lifetime analysis, we 

propose generalizations to these distributions, namely, the U-W{GL} and 

U-LL{GL} distributions. 

The U-W{GL} Distribution 

If a random variable R follows the Weibull distribution with survival function 

( ) ( )
S e

c
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cc x

R x c x


 
− −−= , then by (4) 

and (5) the CDF and PDF of the U-W{GL} distribution are given by, respectively, 
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The parameters c, λ3, and λ4 are shape parameters, which determine the skewness, 

kurtosis, and bimodality of the U-W{GL} distribution, whereas γ is a scale 

parameter. When λ3 = λ4 = 1 or λ3 = λ4 = 2, the U-W{GL} distribution reduces to 

the Weibull distribution, which has exponential and Rayleigh distributions as 

special cases. 

Figure 1 illustrates different shapes of the U-W{GL} density function when 

γ = 1 and for various values of c, λ3, and λ4. The graphs in Figure 1 indicate that the 

U-W{GL} distribution can be left skewed, right skewed, monotonically decreasing 

(reversed J-shape), unimodal or bimodal. Figure 1 also indicates that the U-W{GL} 

distributions could have four different modal points, namely, one mode at zero, one 

positive mode, two modes: one at zero and the other is positive, or two different 

positive modes. 
 
 

 
 
Figure 1. Plots of U-W{GL} distribution when γ = 1 and for various values of c, λ3, and λ4 

 



ALDENI ET AL 

7 

 
 
Figure 2. Plots of U-W{GL} hazard function for various values of c, λ3, λ4, and γ 
 

 

The hazard function of U-W{GL} distribution is given by 
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In Figure 2, various shapes of U-W{GL} hazard function for different values 

of c, λ3, λ4, and γ are provided. When c = 1, Figure 2 displays six different shapes 

of the hazard rate function of U-W{GL} including constant, decreasing-constant, 

increasing-constant, decreasing-increasing-constant, increasing-decreasing-

constant, or decreasing-increasing-decreasing-constant. The plots in Figure 2 show 

that when c < 1 the hazard function of U-W{GL} is either monotonically 

decreasing or reflected N-shape, and when c > 1 there are five different shapes 

including increasing, J-shape, N-shape, U-shape, and W-shape. As stated before, 

the Weibull distribution has only constant, increasing, or decreasing hazard rates. 

On the other hand, the U-W{GL} exhibits more than ten different shapes of hazard 

rates. 

The U-LL{GL} Distribution 

Let R be a log-logistic random variable with survival function 
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and PDF 
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then by (4) and (5) the CDF and PDF of the U-LL{GL} distribution are given by, 

respectively, 
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The U-LL{GL} distribution has β, λ3, and λ4 as shape parameters and α as a 

scale parameter. It reduces to the log-logistic distribution when λ3 = λ4 = 1 or 

λ3 = λ4 = 2. Some possible shapes of the U-LL{GL} distribution are provided in 

Figure 3. These graphs indicate that the U-LL{GL} distribution can be 

monotonically decreasing (reversed J-shape) with one mode at x = 0, right skewed 

(unimodal) with one mode at x > 0, or bimodal with two different modes at 

x1, x2 > 0. 

The hazard function of U-LL{GL} distribution, is given by 
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Plots of U-LL{GL} hazard function are also given in Figure 3. When β ≤ 1, the 

hazard function is monotone decreasing, and when β > 1, the hazard function can 

be either unimodal or bimodal (M-shaped). 
 
 

 
 
Figure 3. Plots of U-LL{GL} distribution (left) and hazard function (right) when α = 1 and 
for various values of β, λ3, and λ4 
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Some Properties of the U-W{GL} and U-LL{GL} 
Distributions 

Limiting Behavior 

Lemmas 1 and 2 address the limiting behaviors of the PDF and hazard function of 

the U-W{GL} and U-LL{GL} distributions. 

 

Lemma 1. The limits of the U-W{GL} and U-LL{GL} density functions as 

x → ∞ are 0, and the limits as x → 0 are given by 

 

 

( )

( )

( )

( )

3

4 3

3
0

4 3

3

3

4 3

3
0

4 3

3

, 1 or 1

2 , 1 and 1

limf 1 2 , 1 and 1,

1 2 , 1

0, 1 and 1

, 1 or 1

2 , 1 and 1

limg 1 2 , 1 and 1

1 2 , 1

0, 1 and 1

X
x

X
x

c c

c

x c c

c

c c

x



  

 

  



  

   

   

   

  

→

→

  


= 


=  =
 + = =


 

  


= 


=  =
 + = =


 

  

 

Proof. The proof can be found in Appendix A. 

 

Lemma 2. The limits of U-W{GL} and U-LL{GL} hazard functions as x → 0 

are the same as the limits of their densities as x → 0. The limit of U-LL{GL} hazard 

function as x → ∞ is 0, whereas the limit of U-W{GL} hazard function as x → ∞ 

is given by 
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Proof. It is straightforward to show the limits as x → 0 from the relation 

hX(x) = fX(x) / (1 – FX(x)). When x → ∞, the result follows by using L’Hôspital’s 

rule. 

Transformation 

Lemma 3. Let T be a random variable that follows the standard uniform 

distribution, then 

 

(i) The random variable X = γ(–log(1 – FY(T))1/c follows the U-W{GL} 

distribution, whereas the random variable X = α(FY(T) / 1 – FY(T))1/β 

follows the U-LL{GL} distribution. 

(ii) The quantile function of U-W{GL} distribution is 

QX(u) = γ(-log(1 – FY(u))1/c, u ∈ (0, 1) whereas the quantile function of 

U-LL{GL} distribution is QX(u) = α(FY(u) / 1 – FY(u))1/β. 

 

Proof. The result in (i) follows directly from the transformation X = QR(FY(T)), 

where QR(u) = γ(–log(1 – u))1/c and QR(u) = α(u / 1 – u)1/β are the quantile functions 

of the Weibull and log-logistic distributions, respectively. The result in (ii) follows 

by using the relation FX(x) = FT(QY(FR(x))), and then solving FX(QX(u)) = u for 

QX(u). 

Lemma 3 can be used to simulate a random sample x1, x2,…, xn of size n from 

a U-W{GL} distribution or a U-LL{GL} distribution by first generating a random 

sample t1, t2,…, tn from standard uniform distribution and then transforming it to 

U-W{GL} or U-LL{GL} using the relationships X = γ(–log(1 – FY(T))1/c and 

X = α(FY(T) / 1 – FY(T))1/β, respectively, where FY(T) is evaluated numerically for 

different parameter combinations of λ3 and λ4. Note that the median M can be also 

obtained by setting u = 0.5 in the quantile functions in Lemma 3 (ii). 

Moments 

Theorem 1 shows the existence of the rth non-central moments of the U-W{GL} 

and U-LL{GL} distributions. 

 

Theorem 1. The rth non-central moments of the (i) U-W{GL} and 

(ii) U-LL{GL} distributions are given by 
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When λ3 > 1 is an integer, then equation (12) becomes 
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such that E(Xr) exists when r < β and r < λ4β, where 

 

 ( ) ( )
1 11

0
B , 1

baa b t t dt
−−= −   

 

is the beta function. 

 

Proof. The proof can be found in Appendix B. 

Expressions of the statistical measures such as the mean, variance, skewness, 

and kurtosis can be derived from Theorem 1. 
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Parameter Estimation and Simulation for U-W{GL} 
Distribution 

Consider the parameter estimation of the U-W{GL} distribution using the method 

of maximum likelihood. Let x1, x2,…, xn be a random sample of size n from a 

U-W{GL} distribution defined in equation (7) with the vector of parameters 

(λ3, λ4, c, γ)T = θ; then the log-likelihood function is given by 
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= −  and taking the first partial derivatives of equation (14) 

with respect to λ3, λ4, c, and γ, we get 
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The maximum likelihood estimate (MLE) θ̂  of θ is obtained by setting 

equations (15) through (18) to zero and solving them numerically. The NLMIXED 

procedure in SAS is applied in this article. The U-W{GL} reduces to the Weibull 

distribution when λ3 = λ4 = 1 or λ3 = λ4 = 2. To find the MLE, we take the initial 

estimates of parameters λ3 and λ4 to be 2 and the initial estimates of parameters c 

and γ to be the moment estimates of c and γ by assuming the simulated data x1, 

x2,…, xn is from the Weibull distribution. Using the transformation Y = logX, where 

Y follows Type 1 extreme-value distribution, the moment estimates for c and γ are 

 

 
π δ

and exp
6 y

c y
cs


 

= = + 
 

,  

 

where y̅ and sy are the mean and the standard deviation of the sample y1, y2,…, yn, 

and δ = Γ′(1) ≈ 0.57722 is Euler’s constant (Johnson et al., 1994). 

A simulation study is conducted to evaluate the MLEs in terms of the average 

bias and standard deviation of the parameter estimates for different parameter 

combinations and sample sizes. Following Lemma 3, a random sample of size n 

from a U-W{GL} distribution can be simulated. Five sample sizes are considered 

(n = 50, 100, 250, 500, 1000) in this simulation. The simulation study is conducted 

for a total of five parameter combinations (λ3, c, λ4) = {(3, 0.8, 2), (5, 3, 0.5), 

(2.5, 2, 3), (5, 1, 5), (4, 4, 3)} when γ = 1. These combinations are considered to 

cover different shapes of the distribution, including monotonically decreasing 

(reversed J-shape), right skewed, left skewed, and bimodal. The MLE of θ is 

computed and the process is repeated 500 times for each sample size and each 

parameter combination. The average bias and standard deviation of the MLEs are 

reported in Table 1. 

In general, the results in Table 1 show that the standard deviations of the 

MLEs decrease as the sample size increases. In addition, the average biases and 

standard deviations of the MLEs are somewhat small and seem to be reasonable. It 

is also noticed that the MLE of the parameter c tend to be overestimated. 
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Table 1. Average bias (standard deviation) for the MLEs when γ = 1 
 

Actual values  Average bias  

λ3 c λ4 n 
λ̂

3
 

ĉ 
λ̂

4
 γ̂  Mode(s) 

3.0 0.8 2.0 50 -0.073(0.399) -0.017(0.078) -0.026(0.281) 0.009(0.131) 
Reversed 
J-shape; 

one 
mode at 

x = 0 

   100 -0.078(0.410) -0.010(0.062) -0.029(0.280) 0.010(0.129) 
   250 -0.060(0.381) -0.008(0.049) -0.021(0.275) -0.002(0.109) 
   500 -0.039(0.372) -0.004(0.039) -0.017(0.267) -0.004(0.103) 
   1000 -0.018(0.353) -0.002(0.035) -0.005(0.251) -0.001(0.096) 

         

5.0 3.0 0.5 50 -0.013(0.728) -0.082(0.331) -0.002(0.066) -0.005(0.058) 
Left-

skewed; 
one 

mode at 
x > 0 

   100 -0.049(0.719) -0.065(0.262) -0.003(0.065) -0.004(0.043) 
   250 -0.012(0.686) -0.038(0.185) -0.004(0.060) -0.004(0.035) 
   500 0.039(0.701) -0.031(0.127) -0.006(0.054) -0.006(0.030) 
   1000 0.044(0.640) -0.021(0.101) -0.004(0.049) -0.004(0.027) 

         

2.5 2.0 3.0 50 -0.014(0.348) -0.046(0.205) -0.022(0.417) -0.001(0.088) 
Right-

skewed; 
one 

mode at 
x > 0 

   100 -0.016(0.342) -0.020(0.163) -0.006(0.441) 0.001(0.067) 
   250 -0.017(0.330) -0.010(0.116) -0.003(0.412) -0.001(0.049) 
   500 -0.022(0.304) -0.004(0.098) -0.012(0.410) -0.000(0.042) 
   1000 -0.002(0.280) -0.004(0.078) -0.014(0.348) -0.001(0.036) 

         

5.0 1.0 5.0 50 0.056(0.717) -0.004(0.088) 0.068(0.718) 0.002(0.115) 
Bimodal; 

two 
modes at 

x = 0, 
x > 0 

   100 0.043(0.656) -0.004(0.069) 0.004(0.685) -0.003(0.098) 
   250 -0.067(0.663) -0.002(0.047) -0.019(0.661) 0.001(0.083) 
   500 -0.061(0.640) -0.001(0.038) -0.030(0.645) -0.000(0.073) 
   1000 -0.058(0.615) -0.002(0.031) -0.038(0.605) -0.001(0.066) 

         

4.0 4.0 3.0 50 0.078(0.539) -0.023(0.410) 0.071(0.412) 0.001(0.045) 
Bimodal; 

two 
different 

modes at 
x > 0 

   100 -0.023(0.558) -0.011(0.333) 0.032(0.399) 0.002(0.031) 
   250 -0.006(0.551) -0.009(0.219) 0.006(0.400) -0.000(0.024) 
   500 -0.019(0.492) -0.007(0.180) -0.022(0.383) -0.001(0.020) 

      1000 -0.009(0.470) -0.011(0.143) -0.026(0.342) -0.001(0.017) 

 
 

A simulation study is also carried out to examine the performance of the 

MLEs for the U-LL{GL} distribution. The study showed that the ML method is 

appropriate for estimating the U-LL{GL} parameters. To save space, the table of 

values is not reported. 

Generalized Regression Models for Survival Data 

In this section, we develop a generalized regression model for lifetime data with 

covariates. The relationship between the explanatory variables or covariates and the 
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lifetime is of interest in the analysis of most censored or uncensored survival data. 

This relationship might be represented as a linear relationship between the log of 

the lifetime and the covariate values, which can be described as follows: 

Consider the lifetime Xi of the ith individual in the sample (i = 1, 2,…, n), and 

let vi = (1, vi1,…, vik)
T be a vector of explanatory variables (the 1 is for the intercept). 

The dependent variable Yi = log(Xi) is related to this set of covariates through a 

regression model. This model can be written as 

 

 Tlog  i i i iY X Z= = +v γ ,  (19) 

 

where γ = (γ0, γ1,…, γk)
T are the unknown regression coefficients of the values of k 

explanatory variables, which have an interpretation similar to those in general linear 

model used in regression analysis, and σ is an unknown scale parameter. The 

quantity Zi is the error variable. If Z follows logistic distribution, the model is the 

log-logistic regression. If Z follows the extreme value distribution, the model is the 

Weibull regression. 

The U-W{GL} and U-LL{GL} Regression Models 

Let X be a lifetime variable that follows the U-W{GL} distribution in (7); then the 

survival function for the U-W{GL} distribution is given by 

 

 ( ) ( )( ) ( )( )
3 4

3 4

1
S 1 1 e e , 0, , , , 0

2

c c
x x

X x x c
 

 
  

− − 
= − − +   

 
.  (20) 

 

If we take the log transform of X, and redefine the parameters as c = 1 / σ and γ = eu, 

then Y follows the form of a log linear model such that Y = log(X) = μ + σZ, where 

Z is the standardized log(U-W{GL}) distribution with PDF 

 

 ( ) ( ) ( )
3 41 1

e e e

3 4

1
π e e 1 e e

2

z z zz

Z z
 

 
− −

− − − 
= − +

  
.  (21) 

 

Thus, the underlying PDF and survival function, respectively, for Y, are 

 

 ( ) ( )( ) ( )( ) ( )( )

( )
( )( )

( )
3 41 1

e e e

3 4

1
f e e 1 e e

2

y y yy

Y y
     

 
 

 


− − −
− −

− − − − 
= − + 

 
,  (22) 

 

where y, u ∈ ℝ and σ, λ3, λ4 > 0; and 
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.  (23) 

 

It is clear that the log(U-W{GL}) distribution in (22) reduces to log-Weibull (or 

extreme-value) when λ3 = λ4 = 1 or λ3 = λ4 = 2. 

To incorporate covariates into the U-W{GL} model, we use the log-linear 

model (19) for the lifetime Xi, where Zi has the standardized log(U-W{GL}) 

distribution (21) such that T

i i=μ v γ  and σ, λ3, λ4 > 0 are unknown parameters, or 

equivalently, ( )Texpi i iX Z= +v γ , which follows the U-W{GL} distribution in 

(7). 

Similarly, if X follows the U-LL{GL} density function in (10), then 

Y = log(X) has the log(U-LL{GL}) distribution. The density function of Y, 

parameterized in terms of β = 1 / σ and α = eu, is given by 

 

 ( )
( )

( )( )

( )

( ) ( )

3
4

1 1

3 42

1 e e 1
g

2 1 e 1 e1 e

y y

Y y y
y
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− −− −

− −
−

         = +      + +     +   

,  (24) 

 

where y, u ∈ ℝ and σ, λ3, λ4 > 0. The survival function of Y is given by 

 

 ( )
( )

( ) ( )

3
41 e 1

S 1
2 1 e 1 e

y

Y y y
y

  

   

−

− −

    
 = − +    + +    

.  (25) 

Maximum Likelihood Estimation 

Let the random variables Xi and Ci denote the lifetime and censoring time of ith 

individual, and the response Yi represents a log-lifetime or a log-censoring time for 

ith individual, i.e. Yi = min{log(Xi), log(Ci)} for i = 1, 2,…, n. Consider a sample of 

n independent observations. If all the observations are uncensored, then the log 

likelihood for the model parameters θ = (λ3, λ4, σ, γT)T based on the log(U-W{GL}) 

distribution in (22) can be written as 
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θ

  (26) 

 

where ( )T

i i iz y = − v γ . If some of the observations are right censored, then let C 

and F be the sets of censored and uncensored observations, respectively. If we 

assume non-informative censoring such that the observed lifetimes and censoring 

times are independent, then the log-likelihood function for the vector of parameters 

(λ3, λ4, σ, γT)T = θ is given by: 
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  (27) 

 

where r is the number of uncensored observations. The MLE θ̂  of θ can be 

obtained by maximizing the log-likelihood function in (26) or (27). We use 

NLMIXED procedure in SAS to obtain the estimate θ̂ . Initial values for γ and σ 

are taken from the fit of the Weibull regression model with λ3 = λ4 = 1. 

Following the same construction, the log-likelihood function of the 

parameters (λ3, λ4, σ, γT)T = τ based on the log(LL-W{GL}) distribution in (24), is 

given by 
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if all the observations are uncensored and 
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if some of the observations are censored. 

Applications 

Fitting Distributions Without Covariates 

Two examples are provided to illustrate the flexibility of the U-W{GL} and U-

LL{GL} distributions in fitting real data. We recall that the distributions exhibit 

different hazard shapes. In the first application, we illustrate the applicability of 

modelling a data set with reflected N-shaped hazard rate function using the U-

W{GL}distribution. In the second application, an example of bimodal data is 

provided comparing the fits of U-W{GL} and U-LL{GL} distributions with other 

models. The NLMIXED procedure in SAS is used to estimate the parameters. 

Kevlar 49/Epoxy Strands Failure Times Data (Pressure at 90%) 

In Table 2, the data set (n = 101), which is obtained from Andrews and Herzberg 

(1985), represents the stress-rupture life in hours of Kevlar 49/epoxy strands when 

subjected to a constant sustained pressure at the 90% stress level until failure. Al-

Aqtash et al. (2014) applied the Gumbel-Weibull (GW) distribution to fit the data, 
 
 
Table 2. Failure times (in hours) of 101 Kevlar 49/epoxy strands at 90% stress level 
 

0.01, 0.01, 0.02, 0.02, 0.02, 0.03, 0.03, 0.04, 0.05, 0.06, 0.07, 0.07, 0.08, 
0.09, 0.09, 0.10, 0.10, 0.11, 0.11, 0.12, 0.13, 0.18, 0.19, 0.20, 0.23, 0.24, 
0.24, 0.29, 0.34, 0.35, 0.36, 0.38, 0.40, 0.42, 0.43, 0.52, 0.54, 0.56, 0.60, 
0.60, 0.63, 0.65, 0.67, 0.68, 0.72, 0.72, 0.72, 0.73, 0.79, 0.79, 0.80, 0.80, 
0.83, 0.85, 0.90, 0.92, 0.95, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.10, 1.10, 
1.11, 1.15, 1.18, 1.20, 1.29, 1.31, 1.33, 1.34, 1.40, 1.43, 1.45, 1.50, 1.51, 
1.52, 1.53, 1.54, 1.54, 1.55, 1.58, 1.60, 1.63, 1.64, 1.80, 1.80, 1.81, 2.02, 
2.05, 2.14, 2.17, 2.33, 3.03, 3.03, 3.34, 4.20, 4.69, 7.89 
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and recently, the data was fitted to the exponentiated power generalized Weibull 

(EPGW) distribution by Peña-Ramírez et al. (2018), and the results were compared 

to some competitors. 

The empirical behavior of the hazard rate function for sample data can be 

visualized by using the graph of total time on test (TTT). The TTT-plot is obtained 

through the plot of [i / n, T(i / n)] where 

 

 ( )
( ) ( ): :1

:1

T , 1, ,

i

j n i nj

n

j nj

T n i T
i i n
n T

=

=

 + −
  = =



,  

 

and the Tj:n are the order statistics of the sample, j = 1, 2,…, n. If the observations 

are generated from a life distribution with constant failure rate; the TTT-plot is 

approximately straight diagonal line. It is concave (convex) lying above (below) 

the diagonal line for life distributions with increasing (decreasing) hazard rates. The 

bathtub-shaped hazard rate corresponds to the TTT-plot first being convex then 

concave (s-shape). For details about the TTT-plot, we refer the reader to Aarset 

(1987). 

The TTT-plot in Figure 4 indicates decreasing-increasing-decreasing 

(reflected N-shaped) hazard rate. This suggests that U-W{GL} distribution can fit 

the failure rates properly; while Weibull distribution cannot. 
 
 

 
 
Figure 4. TT plots of Kevlar 49/epoxy strands failure data 
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Table 3. Parameter estimates and fit statistics for Kevlar 49/epoxy strands failure times 
data (standard errors in parentheses) 
 

Distribution U-W{GL} *GW EPGW 

Parameter estimates ( )ˆ = 0.1701 0.0851γ  ( )ˆ = 1.8064 0.5037β  ( )ˆ = 0.1666 0.0332α  

 ( )ˆ = 0.6734 0.0716c  ( )ˆ = 3.2713 0.6459σ  ( )ˆ = 0.1201 0.0145β  

 ( )ˆ
3 = 26.3132 22.3672λ  ( )ˆ = 0.9200 0.1594α  ( )ˆ = 0.1000 0.0738λ  

 ( )ˆ
4 = 0.4468 0.1504λ  ( )ˆ = 0.2071 0.1072λ  ( )ˆ = 5.8580 0.1589γ  

Log-likelihood – 98.55 – 100.23 – 99.55 

AIC 205.1 208.5 207.1 

K-S statistic 0.0576 0.0687 0.0623 

p-value 0.8909 0.7266 0.8279 

 
 

 
 (a) (b) 
 
Figure 5. Kevlar 49/epoxy strands data; (a) estimated survival functions; (b) estimated 
hazard functions 
 

 

In order to evaluate the performance, the U-W{GL} distribution is compared 

with GW and EPGW distributions. All of these distributions have hazard functions 

with reflected-N shape. The MLEs, the log-likelihood value, the AIC, the 

Kolmogorov-Smirnov (K-S) statistic, and the p-value of the K-S for the fitted 

distributions are presented in Table 3. The results in Table 3 indicate that all three 

models fit the data equally well. However, based on the lowest AIC, K-S statistic, 

and highest log-likelihood value, and as shown in Table 3, the U-W{GL} 

distribution provides the best fit to the data, followed successively by the EPGW 

and GW distributions. 

The plots of the empirical and estimated survival functions, and the estimated 

hazard rate functions of the three distributions are depicted in Figure 5. The plot in 
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Figure 5b reveals that the U-W{GL} hazard rate function has reflected N-shaped, 

and this is in agreement with the TTT-plot in Figure 4. 

Old Faithful Eruption Data 

The data set in this application is based on a sample of 222 interval times (in 

minutes) between eruptions of the Old Faithful Geyser at Yellowstone National 

Park, Wyoming, USA. The data is measured during August 1978 and August 1979; 

see Chatterjee et al. (1995) for more details. Four distributions are used to fit the 

data: the five-parameter U-W{GL} distribution, the four-parameter U-W{GL} 

distribution, the U-LL{GL} distribution, and GW distribution. All of these 

distributions have the ability to fit a bimodal data. The MLEs and goodness of fit 

statistics are given in Table 4, and the estimated PDFs and CDFs are shown in 

Figure 6. It can be seen that the five-parameter U-W{GL} provides the best fit 

followed by U-LL{GL} based on all three measures, log-likelihood, AIC and 

Bayesian Information Criterion (BIC). In this application, adding the location 

parameter δ to the four-parameter U-W{GL} distribution improves the fit with a 

big increase in the log-likelihood value and a big decrease in AIC. Moreover, the 

likelihood ratio test indicates that δ is significantly different from zero (the results 

are not reported). However, adding location parameter to the U-LL{GL} 

distribution did not improve the fit in this application, and it might work in other 

applications. 

Based on the log-likelihood, AIC, and BIC, the five-parameter U-W{GL} 

provides the best fit. However, the four-parameter U-W{GL} provides the best fit 

based on the K-S statistic and its corresponding p-value. 
 
 

 
 (a) (b) 
 
Figure 6. Old Faithful geyser data; (a) estimated PDFs; (b) estimated CDFs 
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Table 4. Parameter estimates and fit statistics for the Old Faithful geyser data (standard errors in parentheses) 
 

Distribution 5-parameter U-W{GL} U-W{GL} U-LL{GL} GW 

Parameter estimates 
( )

ˆ = 41.2633

0.8888

δ
 

( )

ˆ = 67.7890

2.6828

γ
 

( )

ˆ = 51.2860

1.1723

α
 

( )

ˆ = 1.0464

0.1750

β
 

 

( )

ˆ = 16.5181

2.7814

γ
 

( )

ˆ = 6.0178

0.6100

c
 

( )

ˆ = 16.9121

1.3172

β
 

( )

ˆ = 3.6629

0.4222

σ
 

 

( )

ˆ = 1.8103

0.1963

c
 

( )

ˆ
3 = 10.1946

3.9505

λ
 

( )

ˆ
3 = 903.11

691.71

λ
 

( )

ˆ = 10.3794

1.1996

α
 

 

( )

ˆ
3 = 59.9887

34.2785

λ
 

( )

ˆ
4 = 1.2695

0.4612

λ
 

( )

ˆ
4 = 0.3552

0.07591

λ
 

( )

ˆ = 69.6984

1.8891

λ
 

 
( )

ˆ
4 = 0.5842

0.1520

λ
    

Log-likelihood – 845.15 – 857.65 –849.95 – 855.90 

AIC 1700.3 1723.3 1707.9 1719.8 

BIC 1717.3 1736.9 1721.5 1733.4 

K-S statistic 0.0729 0.0575 0.0916 0.0703 

p-value 0.1885 0.4542 0.0482 0.2226 
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Regression Models for Modeling Right-Censored Survival Time 

Two generalized regression models are provided to fit “Times to Weaning of 

Breast-Fed Newborns” data (n = 927), which contains information regarding 

mothers who decide to breastfeed their first-born infants (see Klein & 

Moeschberger, 2003, section 1.14). This data consists of a total of 8 covariates, 

which include demographic variables: race of mother, education of mother, and age 

of mother at child’s birth, behavioral variables: smoking and alcohol drinking status 

of mother, and other explanatory variables: year of child’s birth, poverty status of 

mother, and lack of prenatal care status. The duration time of breast feeding 

(measured in weeks) is the response variable. 

There were some censored cases defined by a binary variable (1 if the breast 

feeding was completed, and 0 if not). According to Klein and Moeschberger (2003), 

model selection criterion based on the AIC approach suggested that race of mother, 

smoking status of mother, and poverty are all significant factors related to the 

response variable. The predictor variable ‘race of mother’, which has three 

categories (black, white, and other), is coded by two indicator variables as vi1: black 

(1 if the mother is black, 0 if otherwise), vi2: white (1 if the mother is white, 0 if 

otherwise), and the referent group is when the race of mother is neither black nor 

white. The two binary covariates: smoking and poverty status of mother are coded 

so that vi3: smoking (1 if smoking at birth of child, 0 otherwise), and vi4: poverty (1 

if mother is in poverty, 0 otherwise). We fit the U-W{GL}, U-LL{GL}, Weibull, 

and log-logistic models to the data. The log linear model is defined as 

 

 0 1 1 2 2 3 3 4 4 , 1,2, ,927i i i i i iY v v v v Z i     = + + + + + = ,  

 

where Zi has the appropriate distribution for each of the four models. 

Provided in Table 5 are the estimates of the model parameters, the 

corresponding standard errors and p-values, and AIC and BIC criteria for all four 

models. Because the Weibull and log-logistic models are nested in the U-W{GL} 

and U-LL{GL} models, respectively, we use the likelihood ratio test to test the 

appropriateness of these models. 

In the fitted U-W{GL} regression model, the parameter estimates 

corresponding to vi1, vi2, vi3, and vi4 in the log linear model indicate that the duration 

of breast feeding (1) for non-white mothers is shorter than for white, (2) for mothers 

who were smoking at birth of child is shorter, and (3) for mothers in poverty is 

longer. The variable ‘Mother is poor’ seems to provide more impact on the duration 

of breast feeding than the variable ‘Mother is Black.’ 
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Table 5. Parameter estimates and fit statistics for Times to Weaning of Breast-Fed Newborns data (standard errors in 
parentheses) and [p-values in brackets] 
 

Model λ
3

 λ
3

 σ  γ
0
 γ

1
 γ

2
 γ

3
 γ

4
 AIC BIC 

U-W{GL} 0.9657 0.1266 0.7181 1.7452 0.0115 0.2475 -0.2890 0.2278 2838.4 2877.1 
 (0.0970) (0.0263) (0.0403) (0.1163) (0.1264) (0.0992) (0.0778) (0.0879)   

 [0.7236] [<.0001] [<.0001] [<.0001] [0.9276] [0.0128] [0.0002] [0.0097]   

U-LL{GL} 13.2993 1.3008 0.5164 1.2875 0.3737 0.4408 -0.2878 0.0671 2840.3 2879 
 (4.4876) (0.3137) (0.0193) (0.1775) (0.1265) (0.0938) (0.0810) (0.1038)   

 [0.0061] [0.3376] [<.0001] [<.0001] [0.0032] [<.0001] [0.0004] [0.5180]   

Weibull 1.0000 1.0000 1.0146 2.5737 0.1862 0.3770 -0.3234 0.1587 2855.1 2884.1 
   (0.0258) (0.0884) (0.1275) (0.0960) (0.0768) (0.0886)   

   [0.5715] [<.0001] [0.1448] [<.0001] [<.0001] [0.0737]   

Log logistic 1.0000 1.0000 0.6848 2.0273 0.2522 0.4394 -0.3406 0.0878 2900.1 2929.1 
   (0.0188) (0.1013) (0.1494) (0.1116) (0.0909) (0.1041)   

   [<.0001] [<.0001] [0.0918] [<.0001] [0.0002] [0.3990]   
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Table 6. Likelihood ratio tests for the Times to Weaning of Breast-Fed Newborns data 
 

Model Hypotheses LR statistic p-value 

U-W{GL} vs Weibull H0: (
3
λ ,

4
λ ) = (1, 1) vs H1: H0 is false 20.7 3.2 × 10-5 

U-LL{GL} vs log-logistic H0: (
3
λ ,

4
λ ) = (1, 1) vs H1: H0 is false 63.8 < 0.00001 

 
 

A comparison of the U-W{GL} and U-LL{GL} regression models with their 

sub-models using likelihood ratio statistics in Table 6 indicates that the extra 

parameters (λ3, λ4) of the U-W{GL} and U-LL{GL} models are jointly significant. 

Thus, the U-W{GL} and U-LL{GL} models outperform the Weibull and log-

logistic models in fitting the duration time of breast feeding. The two extra 

parameters give the flexibility for fitting real-world data. 

Conclusion 

The U-R{GL} family of lifetime distributions based on the T-R{GL} families of 

distributions is proposed. Generalizations to Weibull and log-logistic distributions, 

namely, the U-W{GL} and U-LL{GL} distributions are introduced and studied. 

The U-W{GL} can exhibit diverse and more complicated shapes such as N-shape, 

reflected N-shape, and W-shape hazard rate functions, whereas the U-LL{GL} can 

exhibit M-shape hazard rate function. These different hazard rate functions provide 

more flexibility to the U-W{GL} and U-LL{GL} distributions over the Weibull 

and log-logistic distributions, respectively. Some properties are studied, and 

regression models based on these distributions are presented. The distributions are 

applied to fit two real data sets without covariates. The survival models are applied 

to fit a right censored lifetime data set with covariates. The results show that the 

flexibility provided by the U-W{GL} and U-LL{GL} models could be very useful 

in describing different types of lifetime data. 
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Appendix A. Proof for Lemma 1 

Proof. When x → ∞, the U-W{GL} and U-LL{GL} density functions go to 0. The 

U-W{GL} density can be expressed as 
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Using Maclaurin series expansion of the exponential function 
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The U-LL{GL} density can be expressed as 
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Therefore, 
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This completes the proof. 

Equation Section (Next)
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Appendix B. Proof for Theorem 1 

Proof. (i) First, we will find the expected value of (x / γ)r: 
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Using the substitution t = (x / γ)r, equation (B1) can be written as 
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Using the substitution u = λ4t, integral I2 in equation (B2) becomes 
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By applying the generalized binomial expansion to integral I1 in equation (B2), we 

obtain 
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Using the substitution u = (k + 1)t, integral I1 becomes 
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By adding I1 and I2, and considering E[(X / γ)r] = γrE[Xr], then we have 
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The summation in (B3) will be finite when λ3 > 1 and an integer, and the summation 

will stop at λ3 – 1. Thus, equation (B3) becomes 

 

 ( ) ( ) ( )
( )

3 1
( ) 13

4 3

0

1
E 1 1 1

2

r
k r cr r c

k

r
X k

kc

 
 

−
− +−

=

 −   
=  + + − +   

    
   

 

(ii) 

 

 

( )

( )( )

( )

( )

( )

( )( )

( )

( )

( )

3

4

0

1
1

3

20

1
1

4

20

E g

2 11

1
2 11

r r

X

r

r

X x x dx

x x
x dx

xx

x x
x dx

xx

 



 



   



   





−
−



−
−



  = 

 
  

=    +  +  
  

 
  

+ −   +  +  
  







  (B4) 

 

Using the substitution u = (x / α)β / [1 + (x / α)β], then equation (B4) can be written 

as 
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This completes the proof. 
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