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Estimating a Multilevel Model with
Complex Survey Data: Demonstration
using TIMSS

Julie Lorah
Indiana University Bloomington
Bloomington, IN

Analysis of complex survey data is demonstrated for the multilevel model. Description of
specific aspects of analysis, including plausible values, sampling weights, and replicate
weights is provided. Following this, example TIMSS data and models are described and
results are presented.
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Introduction

Multitudes of complex survey data is available that researchers can use to answer
questions on various topics. Complex survey data are obtained through a more
complex sampling plan involving, for example, cluster and/or stratified sampling
(Skinner & Wakefield, 2017). A complete treatment of complex sampling
techniques is beyond the scope of the present article, but several excellent resources
exist (see, for example, Kalton, 1983; Lee et al., 1989; Lumley, 2010) as well as
guidance specific to international large-scale assessments (see, for example,
Rutkowski, Gonzalez, et al., 2010; Rutkowski, von Davier, & Rutkowski, 2013).
Although there is the potential to learn much by analyzing this type of data, the
analysis itself can be difficult, particularly for applied researchers who are not
trained specifically in complex survey analysis (Skinner & Wakefield, 2017). The
implementation within software packages for analyzing complex survey data has
been slow (Skinner & Wakefield, 2017), additionally complicating the process.
The multilevel model represents a particularly well-suited model for
analyzing complex survey data because it directly models different levels of data
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that can correspond to a cluster sampling design, and as such, the multilevel model
is frequently used for the analysis of complex survey data (Laukaityte & Wiberg,
2018). With a cluster sampling design, the sampling plan includes sampling of
clusters from a population of clusters rather than random sampling from the
population (Lumley, 2010). Clusters sampled at the first stage of sampling are
called primary sampling units (PSU; Lumley, 2010). These clusters may violate the
assumption of non-independence of observations, which is an assumption for many
models, such as linear regression. Ignoring the non-independence is not
recommended because it has the potential to severely inflate Type | error rates
(Snijders & Bosker, 2012). Therefore, a method for accounting for non-
independence is needed. Several options are available including using cluster
membership as a fixed effects (i.e. dummy-coded predictors); replicate weights
which represent a re-sampling method that can correctly estimate standard errors;
multilevel models which directly model a cluster by adding a random error term at
the cluster level; and generalized estimating equations for correct estimation of
standard errors. When questions related to the connection of variables at multiple
levels (such as students and schools) are investigated, multilevel models can be
used (Snijders & Bosker, 2012) as well as generalized estimating equations
approaches (Gardiner et al., 2009; Graubard & Korn, 1994; McNeish, 2019).

The multilevel model offers several advantages over the single-level model
options. For applied researchers, the multilevel model is practical to implement due
to the great number of resources available including its widespread inclusion in
statistical software. Because multilevel models are commonly used in association
with complex survey data (Laukaityte & Wiberg, 2018), audiences may be more
familiar with these analyses. In addition, the model itself is extremely flexible,
easily allowing for the inclusion of additional grouping variables (for example, with
a three-level model); inclusion of cluster-level predictor variables (Laukaityte &
Wiberg, 2017); inclusion of random slopes whereby the relationship between an
individual-level variable and the outcome variable is allowed to vary randomly by
group membership; and investigation of contextual effects by including group-
average predictor variables. Further, by including a random effect for group
membership, evidence related to the degree of nesting, for example by reporting
the intraclass correlation coefficient, can be evaluated.

Estimation of the multilevel model with plausible values, sampling weights,
and replicate weights added for analysis are considered here. Although guidance
regarding analysis of complex survey data is available (for example, Lumley, 2010;
Skinner & Wakefield, 2017), there is little guidance specific to the multilevel model
and software options may be more difficult to find and implement. A notable
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exceptions to this are two papers examining plausible values (Laukaityte & Wiberg,
2017) and sampling weights (Laukaityte & Wiberg, 2018) for multilevel models.
The following treatment is intended primarily as a tutorial for applied researchers.

Plausible Values

When investigating achievement in a large population, it can be more efficient to
use a matrix sampling design, where each subject responds to relatively few items,
rather than creating long assessments for each participant. This matrix sampling
procedure is used in several studies, including TIMSS. Although this design does
not allow for making precise statements about individuals, it does allow for the
more efficient estimation of population characteristics.

The implication of this design is that individual scores contain a large amount
of uncertainty. In order to model this uncertainty, plausible values are used. Note
that this score uncertainty may be due to matrix sampling designs and/or other
source of uncertainty. The plausible values are often represented with 5 scores per
student (although some datasets may include 20 scores per student; Laukaityte &
Wiberg, 2017); each score representing a random draw from the student’s posterior
distribution which is a function of that student’s item responses as well as
background characteristics (Martin & Mullis, 2012). In other words, the plausible
values represent multiple imputations of the latent construct (Wu, 2005).

The procedure to conduct analyses using a variable measured with plausible
values is given by Martin and Mullis (2012, p. 5). First, the statistic of interest
should be computed with each of M plausible values (for TIMSS 2011 M = 5). The
formula for the imputation variance is given as Var,imp = (1 + 1/M)*Var(ty,..., tm).
This can then be added to the sampling variance to find the correct standard error
for the statistic. It should also be noted that it may be possible to recover population
parameters based on only one plausible value (Rogers & Stoeckel, 2008; Wu, 2005)
although this is not recommended. Further, it is important to know that plausible
values should never be averaged for analysis (Rogers & Stoeckel, 2008). For a more
in-depth treatment regarding use of plausible values for multilevel models with
TIMSS, please see Laukaityte and Wiberg (2017).

Sampling Weights

TIMSS data also includes sampling weights to adjust for unequal probability of
selection. Sampling weights are included in analysis to avoid bias; however, failure
to model with sampling weights does not necessarily produce bias in parameter
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estimates (Snijders & Bosker, 2012). Although guidance typically indicates that
sampling weights should be included in all analyses conducted with a non-random
sample, researchers still disagree as to whether or not and under what conditions
sampling weights should be included (Snijders & Bosker, 2012). In addition to the
impact on bias of point estimates, inclusion of sampling weights in large-scale
assessment data has been shown to decrease sampling precision by about 10%,
thereby slightly increasing standard errors (Meinck & Vanderplas, 2012). Sampling
weights are available at multiple levels (for example, students and schools) and
these weights additionally need to be scaled appropriately (Laukaityte & Wiberg,
2018). Scaling should be applied only for level 1 (student) weights; for a more in-
depth discussion of sampling weights, scaling, and when sampling weights may
impact results with multilevel models using TIMSS, see Laukaityte and Wiberg
(2018).

With a multilevel model, these sampling weights can be included in the
analysis and there are software options that can do this automatically for the
researcher, such as the BIFIEsurvey package in R, which will be explored in the
subsequent demonstration section (BIFIE, 2017). Note that when these weights are
included in the likelihood, the estimation proceeds using a psudo-likelihood (Rabe-
Hesketh & Skrondal, 2006). Other options for including sampling weights are
available in R, including the WeMix package which allows inclusion of weights at
every level of a multilevel model and the RStan package which allows R users to
interface with the Bayesian analyses available in Stan.

Replicate Weights

Many datasets using complex survey designs include replicate weights, which can
be used to adjust for cluster sampling and the implied non-independence of
individual observations. Failure to account for non-independence of observations
could induce downwardly biased standard errors which would inflate Type | error
rates (Snijders & Bosker, 2012). Use of replicate weights essentially represents a
resampling method that can empirically derive unbiased standard error estimates
(Martin & Mullis, 2012). However, multilevel models already account for the non-
independence of data explicitly, so if the grouping variables (i.e., random effects)
corresponding to the multi-stage sampling design are included, use of replicate
weights may be unnecessary (Snijders & Bosker, 2012). It should be noted that
when complex sampling plans are used, it is unlikely that researchers will be able
to directly model the groups associated with the multi-stage sampling due to the
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complexity of the sampling plan. In the present demonstration with TIMSS data,
replicate weights are used.

Data and Model

The data used for the present demonstration analysis is from IEA’s Trends in
International Mathematics and Science Study (TIMSS) 2011 based on the fourth-
grade mathematics data. The models estimated in the present study have been
examined in previous work related to reporting effect size measures for multilevel
models (Lorah, 2018). The reader is referred to Lorah (2018) for more in-depth
description of the data and models, but a brief overview is provided here.

The data used for the present analysis includes 46,475 students (level 1)
nested within ten randomly selected countries (level 2). The outcome variable was
mathematics achievement which is measured with five plausible values. Three
predictor variables included Female (binary measure, 0 = boy & 1 = girl), whether
the student has internet connection at home (binary measure, 0 = no & 1 = yes), and
student confidence with math (continuous).

The country level is modeled as a random effect in the present treatment, but
could also be treated as a fixed effect, due particularly to the large sample size
within each country. Depending on the goals of the researchers, either modeling
choice could be valid; however, in the present model for the purpose of
demonstration, and given that the interest is more in the distribution of countries
rather than individual countries, a random effect was used.

Similar to Lorah (2018), the empty multilevel model, and a multilevel model
with predictors were estimated. These models are:

Math, = B, +Uy; +&; (1)
Mathij =Lf,+p* Femaleij + 3, * Internetij + B, * Conﬁdenceij +Uy; + & (@)

where Mathij is the outcome for student i within country j; o is the intercept; uo; is
random error at level 2 with estimated variance 7%; &ij is random error at level 1 with
estimated variance ¢2; all other $ are slope coefficients.
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Example Demonstration

In order to implement and demonstrate the preceding complexities associated with
complex surveys, the BIFIEsurvey package (BIFIE, 2017) was used with R (R Core
Team, 2014). The R syntax is provided in the Appendix. The BIFIEsurvey package
can automatically handle multiple imputed datasets for each plausible value,
incorporate sampling weights, and incorporate replicate weights and it is
customized particularly for select datasets, including TIMSS. For the present
analysis, both the empty model (1) and full model (2) were estimated adjusting for
these complexities. For analyses using plausible values, all 5 plausible values for
the math achievement outcome are used and kept in their unstandardized form.

For comparison purposes, two analyses were demonstrated without the use of
plausible values, and those used the first math achievement variable only. Sampling
weights are incorporated (“TOTWGT”) and scaled so that the sum of the weights
is equal to the total sample size, in order to produce correct standard error estimates.
The BIFIE.data.jack() function is used to first create a dataset with data, sampling
weights, plausible values, and replicate weight settings specified and then the
BIFIE.twolevelreg() function is used to estimate the multilevel model. By
specifying jktype="JK TIMSS” and keeping the replicate weight variable names
initially used by TIMSS, this function automatically uses the correct variables and
procedures associated with the replicate weights. Results from this analysis are
displayed in Table 1 (last two columns) along with four other incorrect analyses
displayed for comparison purposes and sample R syntax is provided in the
Appendix.

Analysis 1 in Table 1 does not include weights and only uses one plausible
value; analysis 2 additionally incorporates all 5 plausible values; analysis 3 includes
sampling weights (but not plausible values); analysis 4 includes both sampling
weights and plausible values; and finally, analysis 5 add replication weights in
addition to sampling weights and plausible values.

Comparison of analyses 1 and 2 indicates that the addition of plausible values
increases the standard error estimates for fixed effects. This is expected as the
incorporation of plausible values adds a measure of uncertainty regarding student
achievement scores in addition to sampling variability. In addition, in this example,
the addition of plausible values doesn’t show much impact on the intercept and
slope coefficient parameter estimates. This is consistent with the literature, since
using just one plausible value has been shown to typically recover population
parameters (Rogers & Stoeckel, 2008; Wu, 2005).
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Table 1. Comparison of Results from Five Models

5. Add replication

1. Simple analysis 2. Add PV only 3. Add weights only 4. Add PV + weights method
Estimate SE Estimate SE Estimate SE Estimate SE Estimate SE

ICC 0.25 0.25 0.33 0.33 0.33
Intercept 477.30 0.12 477.30 0.37 465.00 0.13 465.00 0.38 465.00 1.68
Female 031 0.11 0.62 0.24 0.08 0.11 0.35 0.26 0.35 1.62
Internet 3223 011 32.28 0.24 26.95 0.10 26.98 0.29 2698 1.19
Confidence 2148 0.11 21.37 0.33 21.27 0.11 20.91 0.40 2091 1.02
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Comparison of analyses 1 and 3 shows the impact of including sampling
weights. Although the sampling weights are expected to slightly increase standard
error estimates (Meinck & Vanderplas, 2012), in this particular example some
standard error estimates are larger and some smaller than for the model excluding
sampling weights, although all estimates are fairly similar. A comparison of the
point estimates for fixed effects shows that inclusion of sampling weights results in
changes to these point estimates. The intercept estimate decreases, possibly
indicating that higher-achieving students were oversampled; analogously, the
coefficient for Internet decreases, possibly indicating that students showing a
stronger relationship between internet access and achievement were oversampled.
The coefficient for Confidence remains about the same, and the coefficient for
Female remains non-significant.

Analysis 4 incorporates both plausible values and sampling weights and, as
expected, produces larger standard error estimates than analysis 2 (just plausible
values) or analysis 3 (just sampling weights). Finally, analysis 5 incorporates
replication weights, in addition to the already incorporated plausible values and
sampling weights. Replication weights may be unnecessary if the level two variable
corresponds exactly to the nesting structure in the data (Snijders & Bosker, 2012).
However, in the present analysis, the sampling structure for the data includes, for
example, school membership as a nesting factor, which is not explicitly included in
the multilevel model and therefore replication weights are incorporated.
Examination of analysis 5 indicates that incorporation of replication weights does
not affect the parameter estimates but do increase the standard errors. Since
ignoring the nesting of students within schools represents a violation of the
assumption of independence, it is logical that ignoring this aspect of the data would
result in downwardly biased standard errors. The replication weights should correct
for this and should more accurately represent the precision of these estimates.

Conclusion

A description and explanation are provided of plausible values, sampling weights,
and replicate weights as they apply to analysis of multilevel models. A
demonstration using TIMSS data was provided. Although TIMSS data was used in
the present analysis, the process of estimating a multilevel model with complex
survey data would be analogous for other complex survey data, such as the National
Assessment of Educational Progress (NAEP) or the Program for International
Student Assessment (PISA) and could be applied similarly.
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Appendix A: R Syntax

library(BIFIEsurvey)

#level 2 weights all equal; sum of weights equals level 2 sample size
mydata2$L2WGT<-rep(.1,nrow(mydata2))

#Scale weight variable to sum up to total sample size
mydata2$TOTWGTscale<-mydata2$TOTWGT/ (sum(mydata2$TOTWGT)/nrow(mydata2))

#icreate BIFIE.data objects for each scenario within Table 1

bdatl <- BIFIE.data(data=mydata2) #scenario 1

bdat2<-BIFIE.data(data=mydata2,pv_vars=c("math")) #scenario 2

bdat3 <-BIFIE.data(data=mydata2,wgt="TOTWGTscale") #scenario 3

bdat4 <-BIFIE.data(data=mydata2,wgt="TOTWGTscale",pv_vars=c("math"))
#scenario 4

bdat5 <-BIFIE.data.jack(data=mydata2,wgt="TOTWGTscale",
pv_vars=c("math"), jktype="JK_TIMSS") #scenario 5

#Empty model to compute ICC, scenario 1-5
Mla<-BIFIE.twolevelreg(BIFIEobj=bdatl,dep="mathl",formula.fixed=~1,
formula.random=~1,idcluster="IDCNTRY",wgtlevel2="L2WGT", se=FALSE)
M2a<-BIFIE.twolevelreg(BIFIEobj=bdat2,dep="math",formula.fixed=~1,
formula.random=~1,idcluster="IDCNTRY",wgtlevel2="L2WGT", se=FALSE)
M3a<-BIFIE.twolevelreg(BIFIEobj=bdat3,dep="mathl",formula.fixed=~1,
formula.random=~1,idcluster="IDCNTRY",wgtlevel2="L2WGT", se=FALSE)
M4a<-BIFIE.twolevelreg(BIFIEobj=bdat4,dep="math",formula.fixed=~1,
formula.random=~1,idcluster="IDCNTRY",wgtlevel2="L2WGT", se=FALSE)
M5a<-BIFIE.twolevelreg(BIFIEobj=bdat5,dep="math",formula.fixed=~1,
formula.random=~1,idcluster="IDCNTRY",wgtlevel2="L2WGT")

#Full model, scenario 1-5

M1b<-
BIFIE.twolevelreg(BIFIEobj=bdatl,dep="mathl",formula.fixed=~1+Female
Scale +InternetScale+ ConfScale, formula.random=~1,
idcluster="IDCNTRY", wgtlevel2="L2WGT", se=FALSE)

M2b<-BIFIE.twolevelreg(BIFIEobj=bdat2,dep="math",formula.fixed=~1+
FemaleScale +

12
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InternetScale+ConfScale, formula.random=~1, idcluster="IDCNTRY",
wgtlevel2="L2WGT", se=FALSE)

M3b< -
BIFIE.twolevelreg(BIFIEobj=bdat3,dep="mathl",formula.fixed=~1+Female
Scale+

InternetScale+ConfScale, formula.random=~1,
idcluster="IDCNTRY",wgtlevel2="L2WGT", se=FALSE)

Mab< -
BIFIE.twolevelreg(BIFIEobj=bdat4,dep="math",formula.fixed=~1+FemaleS
cale +

InternetScale+ConfScale, formula.random=~1, idcluster="IDCNTRY",
wgtlevel2="L2WGT", se=FALSE)

M5b< -
BIFIE.twolevelreg(BIFIEobj=bdat5,dep="math",formula.fixed=~1+FemaleS
cale +InternetScale+ConfScale, formula.random=~1,
idcluster="IDCNTRY", wgtlevel2="L2WGT")

13



COMPLEX SAMPLING WITH MULTILEVEL MODELS

Appendix B: First Six Rows of Dataset

oo e W N Mo e W

o e W

= VI ¥ Y SO PV N

head (mydata2)
X IDCNTRY FullSchID

-1.58162556

0.08803909
-3.51305503
-0.75512412

1 48
2 48
3 48
4 48
L) 48
2] 48
mathS female
450.3125 0
507.1065 9]
451.6919% 0
362.2385 0
350.2854 0
391.1212 0
WGTFACZ WGTFAC3
5 1
5 1
5 1
5 1
5 1
5 1
InternetScale
0.5335917
0.5335917
0.5335917
0.5335917
0.5335917

0.5335917

-0.87574253
0.08803%909

FullStuID mathl math2 math3 mathd
bhrl bhrl0301 386.7395 433.1434 473.8001 422.6886
bhrl bhrl0302 555.8601 542.7€640 505.6931 520.5698
bhrl bhrl0303 416.9616 476.2041 412.7749 432.9446
bhrl bhrl0304 362.23€1 308.9201 323.0889 338.3065
bhrl bhrl0305 370.1522 421.9536 430.0027 394.4468
bhrl bhrl0306 523.9933 396.5503 423.8978 390.1867
internet ConfCont TOTWGT JKZONE JKREP WGTFAC1
1 7.05574 5.747126 1 1 1
1l 10.26444 5.747126 1 1 1
1l 3.34399 5.747126 1 1 1
1l 8.64408 5.747126 1 1 1
1l 8.41228 5.747126 1 1 1
1 10.26444 5.747126 1 1 1
WGTADJ1 WGTADJZ WGTADJ3 HOUWGT FemaleScale
1.111111 1 1.034483 1.621471 -0.9964237
1.111111 1l 1.034483 1.621471 -0.9964237
1.111111 1l 1.034483 1.621471 -0.9964237
1.111111 1 1.034483 1.621471 -0.9964237
1.111111 1l 1.034483 1.621471 -0.9964237
1.111111 1 1.034483 1.621471 -0.9964237

ConfScale L2ZWGT TOTIWGTIscale

(== = B )

e =l el

0.1 0.130659%92

0.1306992
0.1306992
0.1306992
0.1306592
0.1306992

14



	Estimating a Multilevel Model with Complex Survey Data: Demonstration using TIMSS
	Recommended Citation

	Estimating a Multilevel Model with Complex Survey Data: Demonstration using TIMSS
	Cover Page Footnote

	eq01
	eq02
	table1
	ref_bifie_2017
	ref_gardiner_et_al_2009
	ref_graubard_korn_1994
	ref_kalton_1983
	ref_laukaityte_wiberg_2017
	ref_laukaityte_wiberg_2018
	ref_lee_et_al_1989
	ref_lorah_2018
	ref_lumley_2010
	ref_martin_mullins_2012
	ref_mcneish_2019
	ref_meinck_vandenplas_2012
	ref_r_2014
	ref_rabehesketh_skrondal_2006
	ref_rogers_stoeckel_2008
	ref_rutkowski_et_al_2010
	ref_rutkowski_et_al_2013
	ref_skinner_wakefield_2017
	ref_snjiders_bosker_2012
	ref_wu_2005

