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Monte Carlo methods were used to examine Type I error and power rates of 2 versions (conventional and 
robust) of the paired and independent-samples t tests under nonnormality. The conventional (robust) 
versions employed least squares means and variances (trimmed means and Winsorized variances) to test 
for differences between groups. 
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Introduction 
 
It is well known that the paired-samples t test 
has more power to detect a difference between 
the means of two groups as the correlation 
between the groups becomes larger. That is, as 
the population correlation coefficient, ρ, 
increases, the standard error of the difference 
between the means gets smaller, which in turn 
increases the magnitude of the t statistic (Kirk, 
1999). Equation 1, the population variance of the 
difference between mean values, demonstrates 
how the standard error of the difference between 
the means (

21 XX −σ ) is reduced as the value of ρ 

increases. 
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where jjX

n
j

22 σ=σ  is the population variance of 

the mean for group j ( 2,1=j ). 
It must be kept in mind, however, that 

the independent-samples t test has twice the 
degrees of freedom of the paired-samples t test. 
Generally, an increase in degrees of freedom is 
accompanied by an increase in power. Thus, 
considering the loss of degrees of freedom for 
the paired-samples test, there is the question of 
just how large ρ must be in order for the paired-
samples t test to achieve more power than the 
independent-samples t test.  

Vonesh (1983) demonstrated that the 
paired-samples t test is more powerful than the 
independent-samples test when the correlation 
between the groups is .25 or larger. Furthermore, 
Zimmerman (1997) observed that many authors 
recommend the paired-samples t test only if “the 
two groups are highly correlated” and 
recommend the independent samples test if 
“they are uncorrelated or only slightly 
correlated” (p. 350). Zimmerman argued, 
however, that such authors often fail to take into 
account an important consequence of the use of 
the independent t test on dependent 
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observations. Namely, Zimmerman (1997) noted 
that the independence assumption is violated 
when the independent-samples t test is 
performed on groups that are correlated, even to 
a very small degree, and such a violation of the 
independence assumption distorts both Type I 
and Type II error rates.  

Zimmerman (1997) compared the Type 
I error and power performance of the paired and 
independent-samples t tests for normally 
distributed data, varying the magnitude of ρ. He 
found that a correlation as small as .1 seriously 
distorted Type I error rates of the independent-
samples t test. Thus, according to Zimmerman, 
the practice of employing the independent-
samples t test when groups are slightly 
correlated fails to protect against distortion of 
the significance level and concluded that “a 
correlation coefficient of .10 or .15 is not 
sufficient evidence of independence, not even 
for relatively small sample sizes” (p. 359). 
Zimmerman also demonstrated an example in 
which, even when the correlation between two 
groups was as low as .1, the paired t test was 
more powerful than the independent-samples t 
test. Consequently, contrary to the 
recommendations of the authors he cites (e. g., 
Edwards, 1979; Hays, 1988; Kurtz, 1965), 
Zimmerman advocates the use of the paired-
samples t test even when groups are only 
correlated to a very small degree (i.e., .1), when 
distributions are normal.   

The question regarding how large ρ 
should be in order for the paired-samples t test to 
achieve more power than the independent-
samples t test, when data are not normally 
distributed has not been examined (Wilcox, 
2002). Evaluating the performance of statistics 
under nonnormality is important, given that 
psychological data are often not normal in shape 
(Micceri, 1989; Wilcox, 1990). Hence, the goal 
of this study was to extend Zimmerman's (1997) 
work by examining the Type I error and power 
rates of both the paired-samples and the 
independent-samples t tests when distributions 
were nonnormal, again varying the magnitude of 
ρ. 

An investigation of the performance of 
both the paired and independent-samples t tests 
under nonnormality raises a problem, however. 
Both tests assume normally distributed data in 

the population. Violation of the normality 
assumption leads to distortion of Type I error 
rates and can lead to a loss of power to detect a 
difference between the means (MacDonald, 
1999; Wilcox, 1997). Thus, in addition to an 
examination of the performance of the 
conventional (least squares) versions of the 
paired and independent-samples t tests, the 
performance of a robust version of each of the 
tests was also investigated. 

The robust versions of the paired and 
independent-samples t tests involve substituting 
robust measures of location and scale for their 
least squares counterparts. Specifically, the 
robust versions of the tests substitute trimmed 
means for least squares means, and Winsorized 
variances for least squares variances. 
Calculation of the trimmed mean, which is 
defined later in Equation 7, involves trimming a 
specified percentage of the observations from 
each tail of the distribution (for symmetric 
trimming), and then computing the average of 
the remaining observations. The Winsorized 
variance, which is defined later in Equation 8, is 
computed by first Winsorizing the observations 
(see Equation 5), which also involves removing 
the specified percentage of observations from 
each end of the distribution. However, in this 
case the eliminated observations are replaced 
with the smallest and largest observation not 
removed from the left and right side of the 
distribution, respectively. The Winsorized 
variance is then computed in the same manner as 
the conventional least squares variance, using 
the set of Winsorized observations. 

Numerous studies have shown that, 
under nonnormality, replacing least squares 
means and variances with trimmed means and 
Winsorized variances leads to improved Type I 
error control and power rates for independent 
groups designs (e.g., Keselman, Kowalchuk & 
Lix, 1998; Keselman, Wilcox, Kowalchuck & 
Olejnik, 2002; Lix & Keselman, 1998; Yuen, 
1974), as well as dependent groups designs (e.g., 
Keselman, Kowalchuk, Algina, Lix & Wilcox, 
2000; Wilcox, 1993). In particular, Yuen (1974) 
was the first to propose that trimmed means and 
Winsorized variances be used with Welch’s 
(1938) heteroscedastic statistic in order to test 
for differences between two independent groups, 
when distributions are nonnormal and variances 
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are unequal. Thus, Yuen’s method helps to 
protect against the consequences of violating the 
normality assumption and is designed to be 
robust to variance heterogeneity. Yuen’s method 
reduces to Welch’s (1938) heteroscedastic 
method when the percentage of trimming is zero 
(Wilcox, 2002). Yuen’s method can also be 
extended to dependent groups. 

It is important to note that while the 
conventional paired and independent-samples t 
statistics are used to test the hypothesis that the 
population means are equal ( 210 : µ=µH ), the 
robust versions of the tests examine the 
hypothesis that the population trimmed means 
are equal ( 210 : ttH µ=µ ). Although the robust 
versions of the procedures are not testing 
precisely the same hypotheses as their 
conventional counterparts, both the robust and 
conventional versions test the hypothesis that 
measures of the typical score are equal. In fact, 
according to many researchers, the trimmed 
mean is a better measure of the typical score 
than the least squares mean, when distributions 
are skewed (e.g., Keselman et al., 2002). 

This study compared (a) the 
conventional (i.e., least squares means and 
variances) paired-samples t test, (b) the 
conventional independent-samples t test, (c) the 
robust (trimmed means and Winsorized 
variances) paired-samples t test, and (d) the 
robust independent-samples t test, based on their 
empirical rates of Type I error and power. As in 
Zimmerman's (1997) study with normal data, it 
was expected that as the size of the correlation 
between the groups increased, both the 
conventional and robust versions of the paired-
samples t tests would perform better than their 
independent-samples counterparts, in terms of 
their ability to maximize power while 
maintaining empirical Type I error rates close to 
the nominal α level. It was also expected, based 
on previous findings (e.g., Keselman, et al., 
1998; Keselman, et al., 2000; Keselman et al., 
2002; Lix et al., 1998; Wilcox, 1993; Yuen, 
1974), that the robust versions of both the paired 
and independent-samples t tests would perform 
better in terms of Type I error and power rates 
than the corresponding conventional versions. 
 
 

Methodology 
 
Definition of the Test Statistics 
Conventional Methods 

Suppose that jn  observations, 

jnjj j
XXX  , , , 21 … , are sampled from population 

j ( 2 ,1=j ). In order to compute the conventional 
independent-samples t test, let ∑= i jijj nXX  
be the jth sample mean ( jni ,,1…= ; ∑= j jnN ). 

Also let ( ) ( )122 −∑ −= nXXS ji jijj  be the jth 
sample variance. The estimate of the common 
(i.e., pooled) variance is 
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The test statistic for the conventional 
independent-samples t test is 
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which is distributed as a t variable with 

221 −+=ν nn  degrees of freedom, assuming 
normality and homogeneity of variances. 
In order to compute the conventional paired-
samples t test, which assumes that the two 
groups are dependent, let jjX nSS

j
22 = , where 

jXS  is the estimate of the standard error of the 

mean of group j. An estimate of the correlation 
between the two groups is also needed to 
compute the paired-samples t statistic. The 
correlation is defined as 2112 SSSr = , where 
 

)1())(( 221112 −−−∑= nXXXXS ii i , 
 
and n represents the total number of pairs. The 
paired-samples test statistic is 
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which is distributed as a t variable with 1−=ν n  
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degrees of freedom, assuming normality. 
 
Robust Methods 

Suppose, again, that jn  observations, 

jnjj j
XXX  , , , 21 … , are sampled from population 

j. For both the independent-samples and paired-
samples t tests, first let XXX jnjj j )()2()1( ≤≤≤ "  

be the ordered observations of group j, and let γ 
be the percentage of observations that are to be 
trimmed from each tail of the distribution. Also 
let =jg  [ jnγ ], where [x] is the largest integer 

x≤ . To calculate the robust versions of both 
statistics we must first Winsorize the 
observations by letting 
 

jgnijjgn

jgnijjgij

jgijjgij

jjjj

jjj

jj

XXX

XXXX

XXXY

)()(
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 if 
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−−
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The sample Winsorized mean is defined as 
 

∑=
=

jn

i
ij

j
Wj Y

n
Y

1

1 .                      (6) 

 
The sample trimmed mean for the jth group is 
also required to compute the robust versions of 
the paired and independent-samples t tests and is 
defined as 
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−
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where jjj gnh 2−= . The sample Winsorized 
variance for the robust independent-samples t 
test is 
 

( )∑ −
−

=
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22
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where ijY  and WjY  are defined in Equations 5 and 
6, respectively. Finally, let 
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Then the robust independent-samples t test is 
 

21

21

dd

XX
T tt

Y
+

−
= ,                     (10) 

 
which is approximately distributed as a t 
variable with degrees of freedom 
 

( )
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To compute the robust paired-samples t 

test, as enumerated by Wilcox (2002), the paired 
observations must first be Winsorized, as in 
Equation 5. It is important to note that when 
Winsorizing the observations for the paired-
samples t statistic, care must be taken to 
maintain the original pairing of the observations. 
The sample size for the robust version of the 
paired-samples t test is gnh 2−= , where n is the 
total number of pairs. Let 
 

( ) ( )∑ −
−

= i Wjijj YY
hh

d 2

1
1 ,             (12) 

 
and 
 

( ) ( )( )∑ −−
−

= i WiWi YYYY
hh

d 221112 1
1 ,   (13) 

 
where ijY  and WjY  are defined in Equations 6 and 
7, respectively. The test statistic for the robust 
paired-samples t test is 
 

1221

21
)(

2ddd

XX
T tt

PAIREDY
−+

−
= ,             (14) 

 
which is approximately distributed as a t 
variable with 1−=ν h  degrees of freedom. 
 
Simulation Procedures 

Empirical Type I error and power rates 
were collected for the conventional and robust 
versions of the paired and independent-samples t 
tests using a Monte Carlo procedure. Thus, a 
total of four tests were investigated: (a) the 
conventional paired-samples t test, (b) the 
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conventional independent-samples t test, (c) the 
robust paired-samples t test, and (d) the robust 
independent-samples t test. Two-tailed tests 
were performed on each of the four procedures. 

Four variables were manipulated in the 
study: (a) sample size, (b) magnitude of the 
population correlation coefficient, (c) magnitude 
of the difference between groups, and (d) 
population distribution. Following Zimmerman 
(1997), four sample sizes (N) were investigated: 
10, 20, 40, and 80, and population correlations 
(ρ) ranging from -.5 to .5, in increments of .1, 
were induced.  

The difference in the mean (trimmed 
mean) value for the two populations was also 
manipulated. When empirical Type I error rates 
were investigated, there was no difference 
between the groups. When empirical power rates 
were investigated, three values of the effect size 
were investigated; the difference between the 
groups was set at .25, .5, and .75. These values 
were chosen in order to avoid ceiling and floor 
effects, a practice that has been employed in 
other studies (e.g., Keselman, Wilcox, Algina, 
Fradette, & Othman, 2003). 

There were two population distribution 
conditions. Data for both groups were generated 
either from an exponential distribution or a chi-
squared distribution with one degree of freedom 
( 2

1χ ). Skewness and kurtosis values for the 
exponential distribution are 21 =γ  and 62 =γ , 
respectively. Skewness and kurtosis values for 
the 2

1χ  distribution are 81 =γ  and 122 =γ , 
respectively. 

For the robust versions of both the 
paired and the independent-samples t tests, the 
percentage of trimming was 20%; thus, 20% of 
the observations from each tail of the 
distribution were removed. This proportion of 
trimming was chosen because it has been used in 
other studies (e.g., Keselman et al., 1998; 
Keselman et al., 2000; Keselman et al., 2002; 
Lix et al., 1998) and because 20% trimming has 
previously been recommended (e.g., Wilcox, 
1997). 

In order to generate the data for each 
condition, the method outlined in Headrick and 
Sawilowsky (1999) for generating correlated 
multivariate nonnormal distributions was used. 
First, the SAS generator RANNOR (SAS 

Institute, 1989) was used to generate pseudo-
random normal variates, iZ  ( Ni ,,1…= ). Next, 
the iZ s were modified using the algorithm 
 

ijiij ErrZY −+= 1 ,                  (15) 
 
where the ijE s are pseudo-random normal 
variates. In the case of this study, the ijE s were 
also generated by the SAS generator RANNOR. 
The variable r is determined as in Headrick and 
Sawilowsky (1999), and is dependent on the 
final desired population correlation (ρ). Both 1iY  
and 2iY  are random normal deviates with a 
correlation of 2r . Finally, the ijY s generated for 
the study were further modified in order to 
obtain nonnormally distributed observations, via 
the algorithm 
 

32* )( ijijijij dYYabYaY +−++= ,          (16) 
 
where a, b, and d are constants that depend on 
the desired values of skewness ( 1γ ) and kurtosis 
( 2γ ) of the distribution, and can be determined 
by solving equations found in Fleishman (1978, 
p. 523). The resultant *

ijY s are nonnormal 
deviates with zero means and unit variances, and 
are correlated to the desired level of ρ, which is 
specified when determining r. 

Observations with mean jµ  (or tjµ ) and 
variance 2

jσ  were obtained via 
*

ijjjij YX ×σ+µ= . The means (trimmed means) 
varied depending on the desired magnitude of 
the difference between the two groups. In order 
to achieve the desired difference, constants were 
added to the observations in each group. The 
value of the constants, corresponding to each of 
the four difference conditions investigated, were 
(a) 0, 0, (b) .25, 0, (c) .5, 0, and (d) .75, 0. These 
values were added to each observation in the 
first and second group, respectively. Thus, jµ  
( tjµ ) represents the value of the constants 
corresponding to a given desired difference. 
Variances were set to 12 =σ j  in all conditions. 
When using trimmed means, the empirically 
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determined population trimmed mean tµ was 
subtracted from the *

ijY  variates before 
multiplying by jσ  (see Keselman et al., 2002 
for further discussion regarding the generation 
of variates to be used with trimming). Ten 
thousand replications of the data generation 
procedure were performed for each of the 
conditions studied. 

 
Results 

 
Type I Error Rates 

Each of the four investigated tests was 
evaluated based on its ability to control Type I 
errors, under conditions of nonnormality. In the 
case of the two versions of the independent-
samples t tests, the independence assumption 
was also violated when ρ was not equal to zero. 

In order for a test to be considered robust, its 
empirical rate of Type I error ( α̂ ) had to be 
contained within Bradley's (1978) liberal 
criterion of robustness: α≤α≤α 5.1ˆ5.0 . Hence, 
for this study, in which a five percent nominal 
significance level was employed, a test was 
considered robust in a particular condition if its 
empirical rate of Type I error fell within the 

075.025. −  interval. A test was considered to be 
nonrobust in a particular condition if α̂  fell 
outside of this interval. Tables 1 and 2 display 
the range of Type I errors made by each of the 
investigated tests across all samples sizes (N = 
10, 20, 40, 80), as a function of ρ. We felt it was 
acceptable to enumerate a range across all 
sample sizes investigated because at all values of 
N, a similar pattern of results was observed. 

 
Table 1: Range of Proportion of Type I Errors for All Tests Under the Exponential Distribution 

 
Exponential Distribution 

Rho (ρ) 
 

Conventional Procedure 
  

Robust Procedure 
 
 

 
Independent Paired 

 
Independent Paired 

 
-0.5 

 
.116 - .143 .060 - .093 

 
.103 - .108 .051 - .057 

 
-0.4 

 
.100 - .128 .056 - .085 

 
.092 - .099 .052 - .054 

 
-0.3 

 
.089 - .116 .055 - .083 

 
.078 - .092 .047 - .054 

 
-0.2 

 
.081 - .108 .059 - .086 

 
.070 - .080 .049 - .057 

 
-0.1 

 
.071 - .091 .059 - .078 

 
.062 - .067 .049 - .053 

 
           0 

 
.042 - .048 .039 - .049 

 
.038 - .046 .035 - .045 

 
0.1 

 
.035 - .043 .042 - .053 

 
.031 - .038 .031 - .049 

 
0.2 

 
.025 - .029 .044 - .050 

 
.024 - .031 .030 - .052 

 
0.3 

 
.019 - .021 .042 - .053 

 
.017 - .021 .028 - .048 

 
0.4 

 
.011 - .012 .039 - .052 

 
.012 - .016 .03 - .044 

 
0.5 

 
.006 - .007 .04 - .047 

 
.006 - .01 .028 - .045 
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Table 2: Range of Proportion of Type I Errors for All Tests Under the 2
1χ  Distribution 

 
Chi-Squared Distribution ( 2

1χ ) 

Rho (ρ) 
 

Conventional Procedure 
  

Robust Procedure 
 
 

 
Independent Paired 

 
Independent Paired 

 
-0.5 

 
.120 - .171  .068 - .129 

 
.102 - .107 .056 - .073 

 
-0.4 

 
.100 - .161 .060 - .125 

 
.090 - .096 .056 - .068 

 
-0.3 

 
.093 - .145  .063 - .118 

 
.079 - .089 .051 - .066 

 
-0.2 

 
.087 - .135 .067 - .114 

 
.070 - .082 .052 - .067 

 
-0.1 

 
.075 - .114 .064 - .102 

 
.063 - .068 .052 - .058 

 
           0 

 
.038 - .046 .034 - .046 

 
.026 - .045 .025 - .042 

 
0.1 

 
.031 - .041 .033 - .049 

 
.023 - .036 .022 - .042 

 
0.2 

 
.026 - .029 .035 - .046 

 
.020 - .030 .023 - .044 

 
0.3 

 
.020 - .021 .033 - .052 

 
.018 - .023 .023 - .043 

 
0.4 

 
.011 - .015 .035 - .051 

 
.015 - .018 .022 - .046 

 
0.5 

 
.006 - .011 .035 - .045 

 
.009 - .013 .020 - .042 

 
Table 1 displays the range of empirical 

Type I error rates for each test, as a function of 
ρ, under the exponential distribution condition. 
It is apparent from the table that both versions of 
the paired-samples t test maintained Type I 
errors near the nominal level of significance, α. 
In fact, only 6 of 44 values fell outside the range 
of Bradley's 075.025. −  interval for the 
conventional paired t test; none did for the 
robust paired t test. Thus, for data that follow an 
exponential distribution, the robust paired t test 
was insensitive to nonnormality at every value 
of ρ . A comparison of the conventional and 
robust versions of the paired t test in Table 1 
reveals that, in particular, the robust version was 
more effective at controlling Type I errors when 
the population correlation (ρ) between the 
groups was negative. 

Table 1 also shows that the independent-
samples tests were not as robust, overall, as their 

paired-samples counterparts. In fact, the total 
number of values that fell outside of the range of 
Bradley's liberal criterion was 30 and 26 (out of 
44) for the conventional and robust versions of 
the independent t test, respectively. Thus, the 
robust independent t test was indeed slightly 
more robust, overall, than the conventional 
independent t test. Both versions of the 
independent-samples t test were effective at 
controlling Type I errors when the population 
correlation (ρ) was zero; however, this control 
was reduced the more that ρ deviated from zero. 

An inspection of Table 2, which 
displays the range of Type I errors for the tests 
for the 2

1χ  distribution, reveals a pattern of 
results similar to that for the exponential 
distribution. However, all of the tests were 
somewhat less robust under the 2

1χ  distribution 
than the exponential distribution condition. That 
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is, nonrobust liberal values were greater in value 
for 2

1χ  data than for exponentially distributed 
data. Specifically, the total number of values that 
fell outside of Bradley's liberal interval for the 
conventional versions of the paired and 
independent-samples t tests were 12 and 31 (out 
of 44), respectively. The total number of 
nonrobust values for the robust versions of the 
paired and independent-samples t tests were five 
and 28, respectively. 
Power Rates 

The four tests were also evaluated based 
on empirical power rates. Therefore, each test 
was judged on its ability to detect a true 
difference between the trimmed means of the 

groups (in the case of the robust tests), or the 
least squares means of the groups (in the case of 
the conventional tests). Figures 1, 2, and 3 
display the power of each of the investigated 
tests to detect a true difference between the 
(trimmed) means of the groups, as a function of 
the magnitude of the difference between the 
(trimmed) means. The results portrayed in these 
figures were averaged over all sample sizes. 
While the power rates of the tests increased as 
the size of N increased, again, we felt it was 
acceptable to collapse over the sample size 
conditions because the tests showed a similar 
pattern of results in relation to one another for 
all values of N. 
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Figure 1. Probability of rejecting H0 for the conventional and robust paired and independent-samples t 
tests; 0=ρ . 
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Figure 2. Probability of rejecting H0 for the conventional and robust paired and independent-samples t 
tests; 3.0=ρ . 
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Figure 3. Probability of rejecting H0 for the conventional and robust paired and independent-samples t 
tests; 3.0−=ρ . 
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Figure 1 displays the power rates of the 
tests for both the 2

1χ  and the exponential 
distributions when 0=ρ . The upper portion of 
the figure reveals that when data followed an 
exponential distribution, the power functions of 
the four tests were quite similar, with the 
empirical power of the robust versions only 
slightly higher than the corresponding power of 
the conventional versions. However, an 
inspection of the lower portion of Figure 1 
indicates that under the 2

1χ  distribution, the 
power functions of the robust tests were 
considerably higher than those of both 
conventional versions. In addition, Figure 1 
shows that when no correlation existed between 
the groups, the power functions of the 
independent-samples t tests were slightly higher 
than their paired-samples counterparts. 
    Figure 2 shows the power functions of 
the tests for both the 2

1χ  and exponential 
distributions when 3.=ρ . The upper portion of 
Figure 2 indicates that when the data were 
exponentially distributed and positively 
correlated, the power functions of both versions 
of the paired-samples t test were higher than 
those of the independent-samples tests. The 
lower portion of the figure, which displays 
power for the 2

1χ  distribution for this same value 
of ρ, demonstrates that while the power function 
of each of the paired-samples t tests was higher 
than its respective independent-samples 
counterpart, the power rates of both robust tests 
were higher than those of the conventional tests. 
 Figure 3 displays the power rates of the 
tests for the 2

1χ  and exponential distributions 
when 3.−=ρ . Unlike the results obtained for 
positively correlated data, the paired-samples t 
tests showed no apparent power advantage over 
the independent-samples t tests when the groups 
were negatively correlated, for either the 

exponential or the 2
1χ  distributions. In fact, the 

figure shows that the power functions of the 
independent-samples t tests were higher than 
their paired-samples counterparts under both 
distributions. The lower portion of Figure 3 
shows that under the 2

1χ  distribution, while the 
power functions of both versions of the 
independent-samples t test were higher than 
their corresponding versions of the paired-
samples test, the power rates of both robust tests 
were higher than the conventional tests, as was 
the case with the other levels of ρ. 
 

Conclusion 
 
Four different statistics for testing the difference 
between two groups were investigated based on 
their power to detect a true difference between 
two groups and their ability to control Type I 
errors. The primary objective for conducting the 
study was to determine which of the tests would 
perform best when the data for the two groups 
were correlated and the assumption of a normal 
distribution of the responses was violated.  

Although empirical Type I error and 
power rates are two separate measures of a test’s 
effectiveness, in order to evaluate the overall 
performance of the investigated procedures, 
power and Type I error rates must be considered 
concomitantly. The reason for this is that if a test 
does not maintain the rate of Type I errors at or 
around the nominal α level, this can cause a 
distortion in power. Figures 4 and 5 provide a 
summary of the results for the exponential and 

2
1χ  distributions, respectively. These figures 

were included to allow the reader to easily 
examine the Type I error and power rates of 
each of the distributions concurrently. 
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Figure 4. Probability of rejecting H0 as a function of ρ and the magnitude of the difference between 
(trimmed) means for the conventional and robust paired and independent-samples t tests exponential 
distribution. 
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Figure 5. Probability of rejecting H0 as a function of ρ and the magnitude of the difference between 
(trimmed) means for the conventional and robust paired and independent-samples t tests under the 2

1χ  
distribution.
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As the results indicated, the only time 
the independent tests maintained the Type I error 
rate close to the nominal level was when there 
was no correlation between the groups; this 
ability grew worse as ρ got larger. In fact, the 
Type I error control of the independent t tests 
began to break down when the correlation 
between the groups was as small as 1.± . Thus, 
with the exception of the 0=ρ  condition, both 
the robust and the conventional versions of the 
independent t test were quite poor at controlling 
Type I errors. Because of this distortion of the 
Type I error rate, the powers of the independent 
tests are not interpretable (Zimmerman, 1997) 
when ρ is not equal to zero.  

Both versions of the paired t test, 
however, did a much better job of controlling 
Type I errors than their independent-samples 
counterparts when there was a correlation 
between the groups, for nonnormal data. 
Because the paired-samples t tests maintained 
Type I errors close to the nominal level, the 
empirical power rates of the paired t tests, unlike 
those of the independent tests, can be taken to 
accurately represent their ability to detect a true 
difference between the groups. Thus, as 
expected, when power and Type I error rates are 
both taken into account, it can be said that the 
paired t tests were more effective than their 
independent samples counterparts when groups 
were correlated, even when this correlation was 
low (i.e., 1.± ). This finding agrees with 
Zimmerman's (1997) results for normally 
distributed data.  
 Furthermore, the robust paired-samples t 
test was more effective, in terms of Type I error 
control, than the conventional paired test. The 
robust paired test was also consistently more 
powerful than the conventional version, and this 
power advantage increased as skewness and 
kurtosis in the population increased. Therefore, 
as expected, the robust version of the paired-
samples t test performed better than the 
conventional version of the test, for nonnormal 
data. This result is supported by many other 
studies involving trimmed means and 
Winsorized variances (e.g., Keselman, et al., 
1998; Keselman, et al., 2000; Keselman et al., 
2002; Lix et al., 1998; Wilcox, 1993; Yuen, 
1974). 

In conclusion, there need only be a 
small positive or negative correlation between 
two groups in order for the paired t test to be 
more effective than the independent t test when 
the data are nonnormal. In fact, although Vonesh 
(1983) showed that there needs to be a 
correlation of at least .25 in the population for 
the paired t test to be more powerful than the 
independent test, when the distortion of Type I 
error rates, resulting from the application of the 
independent-samples t test on dependent data, 
was taken into account, the paired-samples t 
tests performed best when the correlation was as 
low as 1.± . Thus, just as Zimmerman (1997) 
cautions when dealing with normal data, 
researchers should take care to ensure that their 
data is not correlated in any way when using the 
independent t test on nonnormal data, lest the 
existence of even a slight dependence alters the 
significance level of the test.  In addition, given 
that the population distributions were not normal 
in shape, the robust version of the paired t test 
performed the best under all the conditions that 
were studied. Thus, based on the results of this 
investigation, it is recommended that researchers 
use the robust paired-samples t test, which 
employs trimmed means and Winsorized 
variances, when dealing with nonnormal data. 
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