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Propensity score matching (PSM) has been widely used to mitigate confounding in 
observational studies, although complications arise when the covariates used to estimate 
the PS are only partially observed. Multiple imputation (MI) is a potential solution for 
handling missing covariates in the estimation of the PS. However, it is not clear how to 
best apply MI strategies in the context of PSM. We conducted a simulation study to 
compare the performances of popular non-MI missing data methods and various MI-based 
strategies under different missing data mechanisms. We found that commonly applied 
missing data methods resulted in biased and inefficient estimates, and we observed large 
variation in performance across MI-based strategies. Based on our findings, we recommend 
1) estimating the PS after applying MI to impute missing confounders; 2) conducting PSM 
within each imputed dataset followed by averaging the treatment effects to arrive at one 
summarized finding; 3) a bootstrapped-based variance to account for uncertainty of PS 
estimation, matching, and imputation; and 4) inclusion of key auxiliary variables in the 
imputation model. 
 
Keywords: propensity score matching, missing covariates, multiple imputation, 
confounders, observational studies, causal inference 
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Introduction 

Randomized clinical trials serve as the gold standard for providing strong evidence 
for the effects of new and existing treatments for disease and disease prevention 
(Concato, Shah, & Horwitz, 2000). For numerous reasons including ethical and 
financial costs, however, such trials are not always feasible to conduct. 
Alternatively, observational studies have a long history of providing evidence for 
comparative effectiveness of treatments and interventions, and can also serve as 
justification for conducting a definitive randomized clinical trial (Fleurence, Naci, 
& Jansen, 2010; Holcomb et al., 2013; Lauer & Collins, 2010). The presence of 
confounding, however, can threaten the ability of an observational study to draw 
causal inference (Cochran & Rubin, 1973). Methods based on the propensity score 
(PS), defined as the conditional probability of being assigned a particular treatment 
given the subject’s observed baseline covariates, can be used to mitigate such issues 
(D’Agostino, 1998; Goodman, Schneeweiss, & Baiocchi, 2017; Rosenbaum, 1987; 
Rosenbaum & Rubin, 1983). While the true PS is not typically known, it can be 
estimated using a variety of techniques (Austin, 2011a). Traditionally, PS-based 
methods include matching, inverse probability of treatment weighting (IPTW), 
stratification or subclassification, and covariate adjustment (Austin, 2011a; 
D’Agostino, 1998; Lunceford & Davidian, 2004; Rosenbaum & Rubin, 1984). 
Matching approaches are typically used to estimate the average treatment effect in 
the treated (ATT), whereas weighting, stratification, and covariate adjustment are 
more commonly used to estimate the population average treatment effect (ATE). 
More recently, several new PS-based approaches have emerged (F. Li, Morgan, & 
Zaslavsky, 2018; L. Li & Greene, 2013). Although they often produce results 
similar to those of regression adjustment (Vable et al., 2019), PS-based methods 
have several notable advantages. They allow separation of study design and 
analysis, enable assessment of overlap in covariates and their balance after 
adjustment, and are especially useful when the outcomes are rare and treatment is 
common (Austin, 2011a). PS matching (PSM) – where individuals with comparable 
PSs and discordant exposures are matched to achieve balance in covariates across 
the comparator groups of interest – is one of the more common tools used among 
the PS-based techniques and, thus the primary focus of the study presented here.  

Under the potential outcomes framework (Imbens, 2004; Rubin, 1974), PSM 
produces unbiased estimates of the ATT with the assumptions of strongly ignorable 
treatment assignment (SITA) and Stable Unit Treatment Value Assumption 
(SUTVA) (Rosenbaum & Rubin, 1983). SITA requires 1) the exposure to be 
independent of potential outcomes given a set of covariates (unconfoundedness) 2) 
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the probability of receiving each treatment conditional on any set of covariates to 
be strictly between zero and one (positivity) (Rubin, 1986). SUTVA states that the 
outcome of a subject is not affected by the treatment assignment of other subjects 
(Rubin, 1986). Once these assumptions are met, researchers need to make a series 
of decisions involving matching methods including but not limited to: greedy or 
optimal matching, matching with or without replacement, one-to-one or many-to-
one matching, and the use of calipers (Stuart, 2010). For example, introducing a 
caliper to calibrate the required distance between matched observations can aid the 
quality of matches by discarding units outside the area of common support, further 
reducing the bias; however, caliper matching can also induce potential bias and 
reduce efficiency as a result of incomplete matching (Crump, Hotz, Imbens, & 
Mitnik, 2009; Rosenbaum & Rubin, 1985a, 1985b; Stuart, 2010). In this paper, we 
focus on 1:1 nearest neighbor matching, a commonly used greedy matching 
algorithm, without replacement with caliper.  

Once balance of covariates has been achieved in the matched samples, an 
analysis can be conducted to estimate the treatment effect and its variance. In 
contrast to a simple comparison between the treatment groups within the matched 
samples, a regression-based treatment effect estimator removes residual imbalance 
in covariates between treatment groups by adjusting for confounders in the model 
after matching (Ho, Imai, King, & Stuart, 2007; Schafer & Kang, 2008; Stuart, 
2010; Wan, 2019). The variance estimation of the treatment effect in the context of 
PSM is not straightforward and remains controversial despite the large body of 
literature devoting attention to this issue (Abadie & Imbens, 2006, 2008, 2016; 
Abadie & Spiess, 2016; Austin, 2008; Austin & Small, 2014; Hill & Reiter, 2006; 
Ho et al., 2007; Lechner, 2002; Schafer & Kang, 2008; Stuart, 2008, 2010). In 
addition to the uncertainty in the treatment effect estimation, researchers disagree 
on how to account for uncertainty in the PS estimation (Abadie & Imbens, 2016; 
Stuart, 2010) or in the matching process (Abadie & Spiess, 2016; Hill & Reiter, 
2006; Lechner, 2002), if at all. Based on the current literature, we considered two 
variance estimators as relevant choices: a robust cluster variance estimator (Abadie 
& Spiess, 2016) to account for the clustering induced by matched observations as 
well as a bootstrapped-based estimator (Austin & Small, 2014; Efron & Tibshirani, 
1994) as it takes into account uncertainties in both the PS estimation and the 
matching process. 

The statistical validity of PSM is threatened in the presence of missing data 
(D’Agostino Jr, 2004; D’Agostino Jr & Rubin, 2000; Ibrahim, Lipsitz, & Chen, 
1999; Rosenbaum & Rubin, 1984). For example, if systematic missingness exists 
among measured confounders, the estimated ATT may be biased. The most 
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common approaches to handling partially observed confounders in PSM include 
complete-case analyses (CC), complete-variable analysis (CVA), and single 
imputation methods (Choi, Dekkers, & le Cessie, 2019). In the former, subjects 
missing at least one confounder are excluded from the analysis (Malla et al., 2018; 
White & Carlin, 2010). Importantly, CC produces unbiased estimates when data 
are missing completely at random (MCAR), i.e. missingness is not related to either 
observed or unobserved data. In contrast to CC, CVA is a different method that 
involves excluding confounders with missingness from the analysis. Single 
imputation methods have also been applied in this context, although less frequently 
than CC and CVA (Choi et al., 2019). Multiple imputation (MI) is a reasonably 
flexible method for handling missing data with good statistical properties that leads 
to unbiased and efficient estimators of parameters of interest when the data are 
missing at random (MAR), i.e., when the missingness is related to observed data 
only and specifically not unobserved data conditional on the observed (Little & 
Rubin, 2014). MI may also be applicable when data are missing not at random 
(MNAR), i.e., when missingness is related to unobserved variables, although 
researchers need to explicitly model the missing data mechanisms under MNAR 
(Collins, Schafer, & Kam, 2001). The implementation of MI even in the simplest 
of contexts and particularly in the context of PSM, however, requires that the user 
makes numerous decisions which can greatly impact the results (Van Buuren, 
2018). Among the two modelling approaches of MI, our study focuses on fully 
conditional specification instead of joint modeling for its flexibility to 
accommodate multiple data types and its increase in application (Azur, Stuart, 
Frangakis, & Leaf, 2011).  

As alluded to above, MI presents unique issues in the context of PSM. To 
incorporate the PS when using MI, one has to (1) estimate the PS and (2) integrate 
the PS into the analysis to obtain the treatment effect. There are multiple options 
for applying MI in the estimation step. Specifically, it is not clear whether one 
should impute the confounders first and then estimate the PS, referred to as a 
passive approach (Van Buuren, 2018), or whether one should impute the PS as if it 
were any other variable, referred to as an active approach (Von Hippel, 2009). The 
question of imputing in the presence of derived variables is not new and has been 
discussed in previous contexts, including for imputing interaction terms and higher-
order terms (Desai, Mitani, Bryson, & Robinson, 2016; Mitani, Kurian, Das, & 
Desai, 2015; S. R. Seaman, Bartlett, & White, 2012; Von Hippel, 2009; White, 
Royston, & Wood, 2011). However, the approach utilized in the context of PSM 
has been limited (B. B. L. P. de Vries & Groenwold, 2017; Granger, Sergeant, & 
Lunt, 2019; Hill, 2004; Mitra & Reiter, 2016). Active approaches have been 
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promoted as bias-reducing because all variables and their interrelationships are 
considered in the imputation process, reflecting principles behind a proper and 
congenial imputation approach (Meng, 1994; Rubin, 2004; Rubin & Thomas, 1996; 
Van Buuren, 2018). In contrast, passive approaches have been supported because 
they result in internally consistent imputations (where the PS for subjects will 
perfectly correspond to its estimation as a function of their underlying 
confounders). Regarding the integration of PS, one can apply PSM within each 
imputed dataset and then arrive at an overall treatment effect estimate by averaging 
the effects obtained across imputed datasets (known as within integration). 
Alternatively, one can average the PSs across the imputed datasets to obtain one PS 
before estimating treatment effect from PSM (known as across integration) (B. B. 
L. P. de Vries & Groenwold, 2017; Granger et al., 2019; Hill, 2004; Leyrat et al., 
2019; Mitra & Reiter, 2016). 

We are not the first to consider MI methods when using PSM for causal 
inference (B. B. L. P. de Vries & Groenwold, 2017; Granger et al., 2019; Hill, 2004; 
Mitra & Reiter, 2016). However, significant gaps in methods remain, as work to 
date has been limited and has consisted of only one form of passive imputation 
(where confounders are first imputed without consideration of the PS, which is 
subsequently estimated) along with within and across integration strategies (B. B. 
L. P. de Vries & Groenwold, 2017; Granger et al., 2019; Hill, 2004; Mitra & Reiter, 
2016). We build upon this excellent body of literature by evaluating active 
imputations and variations of passive imputations that allow the consideration of 
auxiliary terms in the imputation model. Further, there is no consensus on how to 
best estimate the uncertainty of the treatment effect within this framework. This 
paper presents a novel simulation study to comprehensively evaluate MI imputation 
and integration approaches in the context of PSM for the purpose of causal 
inference. We detail gaps in the current literature that examined MI for PSM, 
describe our methods for conducting a simulation study, present our findings, and 
discuss interpretation of our findings that inform best statistical practice in the final 
section.  

Background 

MI is a simulation-based statistical tool to handle missing data, which involves 
three main steps. In Step 1, multiple sets of plausible values of the missing variables 
are generated based on the posterior predictive distribution of observed variables to 
reflect the uncertainties of the imputation process. In Step 2, analyses are performed 
within each imputed dataset, before their results are combined with the application 
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of Rubin’s Rules in Step 3 (Carpenter & Kenward, 2012). It has been well 
established in the MI literature that the outcome should always be included in the 
imputation process when regression parameters are of interest (B. B. L. de Vries & 
Groenwold, 2016; Little & Rubin, 2014; Moons, Donders, Stijnen, & Harrell Jr, 
2006; Sterne et al., 2009; Van Buuren, 2018). In the context of PSM, the various 
strategies we consider involve Steps 1 and 3, are described below and summarized 
in the Glossary.  

With respect to Step 1, there are two broad categories of MI strategies that 
have been introduced in the literature for derived variables or variables that are 
functions of other variables: active (MI-active) and passive (MI-passive) (Figure 
1a). Such derived variables include interaction terms, higher order terms, ratios of 
two variables (e.g. body mass index), and rates of change (Desai et al., 2016; Mitani 
et al., 2015; S. R. Seaman et al., 2012; Von Hippel, 2009; White et al., 2011). In 
MI-active, the derived variable is imputed as if it were any other variable (Von 
Hippel, 2009). The simplest, regular form of MI-active, MI-regActive, involves 
calculating the derived variable in complete cases and imputing it together with all 
other missing variables in the imputation process, with no consideration of its 
known relationship to the variables involved in its derivation. MI-regActive is a 
proper imputation method, as all the relationships specified in the scientific model 
are included in the imputation models, i.e. the imputation model is congenial with 
the scientific model (Meng, 1994; Rubin, 2004; Rubin & Thomas, 1996; Van 
Buuren, 2018). Although MI-active is advantageous given its consideration of the 
entire covariance structure, some argue that it undermines the imputation process 
by creating internally inconsistent values. This motivated a re-derived version of 
MI-active where the derived variable is recalculated post-imputation (MI-

redActive) (Von Hippel, 2009). 
In contrast to MI-active approaches, MI-passive approaches maintain the 

internal consistency between variables used in the derivation and the derived 
variable itself (Van Buuren, 2018). In this case, the derived term is not to be 
imputed but derived after imputing the variables involved in the term’s 
construction. The simplest form of MI-passive is MI-derPassive, where all 
variables involved in the derivation are imputed prior to deriving the term from the 
imputed data (Von Hippel, 2009). However, because the derived variable is not 
included in the imputation process, MI-derPassive may introduce bias. Another 
form of MI-passive, MI-regPassive, was developed to partially address this issue 
by including the derived variable in the imputation process of those variables that 
are not involved in its derivation (Royston, 2009). The latter includes auxiliary 
variables, which can enhance the imputation process but do not provide any useful 
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information for the scientific model (Collins et al., 2001). Examples include 
variables associated with the pattern of missingness or the missing variable itself 
(Collins et al., 2001). Previous work in MI for PSM has been limited to MI-

derPassive. Neither MI-regPassive, which involves an auxiliary variable, fully or 
partially observed, nor any active approaches (MI-regActive and MI-redActive) 
have been considered previously for handling missingness in PSM.  

PS estimates need to be integrated in the analysis to estimate the treatment 
effect. There has been considerable work in examining integration methods for MI-

derPassive. Specifically, the PS can be estimated and incorporated within each 
imputed dataset (INT-within) prior to obtaining the treatment effect through 
summarization in Step 3, or the PS can be averaged across the imputed datasets 
after completing Step 1 and applied to the original dataset to obtain the treatment 
effect (INT-across) (B. B. L. P. de Vries & Groenwold, 2017; Granger et al., 2019; 
Hill, 2004; Mitra & Reiter, 2016). An additional variation on the latter has been 
previously applied in the context of IPTW (INT-across2) and involves averaging 
both the estimated regression coefficients corresponding to the covariates used to 
estimate the PS model and the covariates values themselves to arrive at one PS that 
can be applied to obtain the treatment effect (Leyrat et al., 2019). The rationale is 
that the PS coefficients are more suitable for combination using Rubin’s Rules 
given their distributional properties than the PSs themselves, which are confined to 
be between 0 and 1 (Figure 1b). We will comprehensively evaluate the different 
combinations of MI imputation and integration strategies described. 

How to best estimate the variance of the treatment effect in the context of 
PSM when applying MI is an open research topic (B. B. L. P. de Vries & 
Groenwold, 2017; Hill, 2004; Mitra & Reiter, 2016). In addition to the 
complications in variance estimation in PSM mentioned above in the absence of 
missing data, the uncertainty introduced by the MI process needs to be considered. 
The application of Rubin’s Rules in INT-within accomplishes this goal, but it is 
unclear how to capture this uncertainty when applying INT-across and INT-across2 
(B. B. L. P. de Vries & Groenwold, 2017; Hill, 2004; Mitra & Reiter, 2016). 
Bootstrap methods have been proposed in the context of MI (Brand, van Buuren, 
le Cessie, & van den Hout, 2019; Schomaker & Heumann, 2018) and specifically 
with respect to PS-based methods (B. B. L. P. de Vries & Groenwold, 2017; Qu & 
Lipkovich, 2009). For example, Austin & Small evaluated two potential estimators 
for PSM in the absence of missing data, where the variance was obtained by either 
resampling matched pairs or the original observations (Austin & Small, 2014).  
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Figure 1a 

 

 
 

Figure 1b 
 
 
Figure 1. Figure 1a: Illustration of three imputation strategies demonstrated with one 
imputed dataset; Figure 1b: Illustration of three strategies to integrate the propensity 
score for estimation of the treatment effect. 
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Although the former performed well relative to the empirical variance, the latter 
was comparable and enabled extension to the MI context. Schomaker & Heumann 
evaluated four bootstrapped-based approaches in the context of MI when PSM was 
not considered (Schomaker & Heumann, 2018). One of these approaches, Boot MI, 
is applicable to the PSM context and overlaps with the ideas described by Austin 
& Small. We therefore compare two competing variance estimators in this study to 
better inform those applying MI in the PSM setting: a bootstrapped-based variance 
estimator and a robust cluster variance estimator (with Rubin’s Rules when 
applying INT-within) to account for various sources of variation when MI is applied 
in the context of PSM.  

Simulation Study Design 

We conducted an extensive simulation study to assess the performance of various 
MI-based strategies and commonly applied missing data methods when estimating 
ATT using PSM. In all scenarios, we included two binary confounders (X1 and X2) 
of the relationship between treatment and outcome, a binary variable representing 
the treatment or exposure of interest (T), and a continuous outcome (Y). Two 
auxiliary variables (Z2 and Zps) were generated to aid the imputation process. 
Missing values were present in X2 whereas X1, T and Y were always fully observed. 
For each scenario, 1,000 simulated datasets were generated, each consisting of 
n = 2000 subjects. All data analyses were conducted in R version 3.5.1 (R Core 
Team, 2018). MI and PSM were implemented using the mice and Matching 
packages respectively (Sekhon, 2008; Van Buuren & Groothuis-Oudshoorn, 2010). 
The R code to replicate this study is publicly available in a Github repository at 
https://github.com/yling2019/psm_mi. Below we provide details on the data 
generation, missing data mechanisms, missing data methods considered, and 
metrics for performance evaluation. 

Data generation  
To motivate our simulation study, we want to see if treatment variable T, an 
electronic text message intervention, has any effect on the outcome, treatment 
adherence, where variables X1 and X2 are confounders such as sex and race. More 
details of the simulated variables can be found in the rest of the section, whereas 
more details of the motivating study can be found in a later section, Case Study. 
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Confounders. Two binary variables X = (X1, X2) that confound the relationship 
between treatment and outcome were generated, by first creating two variables 
from a bivariate normal distribution (correlation of 0.5) each with mean 0 and 
variance 1, which were then dichotomized at the mean. The resulting distributions 
of X1, X2 are binomial distributions (p ≈ 0.5) with correlation around 0.33. 
 
Treatment indicator. A binary treatment variable T was generated from a binomial 
distribution such that:   
 

logit (p (T = 1 | X1, X2)) = α0 + α1X1 + α2X2 
 
where α1 = α2 = 2 so both covariates contributed equally to the treatment 
assignment. The intercept of the treatment α0 was selected such that roughly 30% 
of subjects were treated, to reflect real-world datasets where there are often many 
more control subjects than treated.  
 
Outcome. A continuous outcome variable Y was generated as a linear function of 
the treatment and both covariates.  
 

Y = β0 + β1X1 + β2X2 + βtT + ε 
 

where β1 = β2 = 2 so both covariates were equally and positively associated with 
outcome and ε ~ N(0,102). The intercept β0 was set to zero and the true treatment 
effect βt was set to 2.  
 
Auxiliary variables. Auxiliary variables Z2 and Zps were generated to be highly 
correlated with X2 and the estimated PS score respectively (based on full observed 
data without missing data, with correlation of 0.98). More specifically, setting 
ẟ02 = 1, ẟ0ps = 0,  ẟ12 = ẟ1ps = 10, the auxiliary variables were generated as: 
 

Z2 = ẟ02 + ẟ12X2  + ε2;  Zps  = ẟ0ps + ẟ1pPŜ  + εps 
 
where ε2 ~ N(0,12) and εps ~ N(0,12) denote errors generated from standard normal 
distributions independent from all other variables in the data generating models. 
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Missing data mechanisms (MDMs) 
Missingness was always induced in X2, whereas X1 was fully observed. Missingness 
occurred under five different mechanisms: MCAR, MAR1, MAR2A, missing not 
at random, and an MAR2B scenario. Whereas MAR1 represented a simple MAR 
scenario, MAR2A and MAR2B were more sinister scenarios that captured the 
complexity of MDM in real-world datasets. In MAR1, MAR2A, and MNAR, 
missingness was related to treatment and outcome. In MAR2A, missingness was 
also related to Z2, the auxiliary variable associated with X2. In MNAR, missingness 
was also related to X2. Let R2 be an indicator variable denoting whether X2 is 
missing (R2 = 1) or not (R2 = 0). We set Yb and Z2b to be dichotomizations at the 
median of the outcome variable Y and auxiliary variable Z2 respectively. Under 
each MDM, the intercept γ0 was selected such that 50% of the observations were 
missing. Let γ11 = 5, and γ00 = 1, and I be an indicator variable. Missingness in X2 
was induced as follows: 
 

MAR1: logit(R2 = 1 | complete data)  = γ0 + γ11I(t = 1,yb = 1) + γ00I(t = 0,yb = 0) 
 
MAR2A: logit(R2 = 1 | complete data) = γ0 + γ11I(t = 1,yb = 1,Z2b = 1)  
 + γ00I(t = 0,yb = 0,Z2b = 0) 
 
  MNAR: logit(R2 = 1 | complete data) =  γ0 + γ11(t = 1,yb = 1,X2 = 1)  
 + γ00(t = 0,yb = 0, X2 = 0) 

 
To study the impact of having a partially observed auxiliary variable, we also 
induced missingness in X2 according to a second MAR2 missing mechanism, 
MAR2B, based on treatment, outcome, and PS. Letting Zpsb be the dichotomizations 
of Zps, missingness in X2 was induced as follow: 
 
           MAR2B: logit(R2 = 1 | complete data) = γ0 + γ11I(t = 1,yb = 1,Zpsb = 1)  
 + γ00I(t = 0,yb = 0,Zpsb = 0) 
 
Additionally, we induced missingness in the auxiliary variable, Zps, under three 
scenarios that assumed MAR2B for X2: aux_MCAR, aux_MAR1, and aux_MAR2. 
In both aux_MAR1 and aux_MAR2, missingness was related to T and PSb, where 
PSb is the dichotomization at the median of the PS estimated using full data prior 
to inducing missingness. Let Rz be an indicator variable denoting whether Zps is 
missing (Rz = 1) or not (Rz = 0). The intercept term ε0 was selected to ensure 20% 
missingness in Zps and missingness can be expressed as: 
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        logit(Rz = 1 | complete data) = ε0 + ε11I(t = 1,PSb = 1) + ε10I(t = 1,PSb = 0) 
 + ε01I(t = 0,PSb = 1) + ε00I(t = 0,PSb = 0)  
 
where  
 

ε11 = 5, ε10 = 0, ε01 = 0, ε00 = 5 in aux_MAR1 
 
and  
 

ε11 = 0, ε10 = 5, ε01 = 5, ε00 = 0 in aux_MAR2. 

Missing data methods   
Common missing data methods. We applied various missing data methods that are 
widely used in the medical research literature including CC, CVA, mean 
imputation, and the use of missing data indicators. 
   
Multiple imputation strategies. Figure 1 displays the MI strategies considered for 
PS estimation and integration. MI-derPassive, MI-regActive, and MI-redActive 
were applied under MCAR, MAR1, MAR2A, and MNAR conditions with or 
without auxiliary variable Z2 in the imputation model, where Z2 had no missing 
values (Appendix Table A1). Note that since missingness in MAR2A is associated 
with an auxiliary variable, when the auxiliary variable was not included in the 
imputation, the MI imputation model is misspecified and the MDM becomes an 
MNAR scenario. Under the MAR2B MDM, we included an additional partially 
observed auxiliary variable Zps in the imputation model when MI-regPassive and 
MI-derPassive were applied. Under this scenario we also examined performance 
by order of inclusion of the variables in the imputation model (i.e., whether X2 was 
imputed before Zps or not). Integration approaches considered were INT-within, 
INT-across, and INT-across2. Note that INT-across2 cannot be combined with MI-

regActive, as the PS is directly imputed. In MICE, 50 multiply imputed datasets 
(m = 50) (White et al., 2011), five iterations (maxit = 5) and default settings for the 
imputation method (predictive mean matching, or PMM, for continuous variable 
and logistic regression for binary) were used. The treatment and outcome were 
included in all imputation models (Van Buuren, 2018). 
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PSM and treatment effect estimation 
We estimated coefficients α1 and α2 using a correctly specified logistic regression 
model, logit(p(T = 1 | X)) = α0 + α1X1 + α2X2. PS scores were estimated as the fitted 
values of the regression model on the response scale. One-to-one nearest neighbor 
matching without replacement was applied. Subjects were matched by PS scores 
with calipers of width that is 0.2 of the standard deviation of the logit of PS (Austin, 
2011b; Rosenbaum & Rubin, 1985a). After matching subjects, the treatment effect 
or ATT was estimated using standard linear regression methods (Abadie & Spiess, 
2016), by regressing Y on T and confounders X1 and X2 to obtain the estimate for 
the beta coefficient representing T. Adjustment not done in INT-across strategies 
because of the presence of multiple sets of X1 and X2.  

Variance estimation 
In the absence of missing data, we used two approaches to estimate the uncertainty 
of the treatment effect: (1) a robust cluster variance estimate (McCullagh, 2018) 
that accounts for the matched design and (2) a bootstrapped variance calculated as 
the standard deviation of treatment effects in 1,000 bootstrapped samples to account 
for both PS estimation and the matching process. For the latter, the detailed 
procedure is described as follows: 
 

1. Sample with replacement n = 2000 rows from the observed dataset 
D = (X,T,Y,Z,R) to obtain a bootstrapped dataset Dboot which contains 
missing values; 

2. Impute m datasets for Dboot using the imputation strategy (MI-

derPassive, MI-regPassive, MI-regActive, or MI-redActive), for 
k = 1, 2, ..., m, denoted as Dboot(k); 

3. Apply the integration approach (INT-within, INT-across or INT-

across2) to obtain a single effect estimate for Dboot; 

4. Repeat steps 1-3 B times to obtain B bootstrap replicates from which 
treatment effect βtboot can be estimated for a given bootstrap sample 
Dboot; 

5. Calculate bootstrapped standard error as the standard deviation of B 
treatment effects estimated from each bootstrap sample: 
SEbootstrap = sd(βtboot) for b = 1, 2, ..., B 
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When commonly applied missing data methods were considered, the robust 
cluster variance estimator was used. When MI was applied in the context of PSM, 
we compared 1) the robust cluster variance estimator and 2) a bootstrapped 
variance. For the former, when the integration strategy was INT-within, a robust 
cluster variance was estimated within each of the m imputed datasets, before 
application of Rubin’s Rules to yield one final variance. For both INT-across and 
INT-across2, Rubin’s Rules do not apply; instead we obtain only one robust cluster 
variance.  

Sensitivity simulation study 
To test the robustness of our main simulation study, we conducted a second 
simulation study by reducing coefficients in the treatment and outcome generating 
models while keeping all other aspects of the simulations the same. To be specific, 
we set α1 = α2 = log(2) and β1 = β2 = 1 to mimic more realistic data examples 
encountered by applied researchers when data is missing MCAR, MAR1, MAR2A, 
and MNAR. All statistical analyses were performed in the exact same way as the 
main simulation study as described above. In order to test the sensitivity of the 
optimal MI strategy found in the main simulation study, a third set of simulations 
was conducted by varying the study population size (n = 1000, 500, 250), missing 
rate (25%, 10%), or the number of multiply imputed datasets (m = 10). 

Performance metrics 
After PSM, we examined the percentage of treated subjects matched and the 
standardized differences of covariates. For mean imputation, standardized 
differences were calculated in the original full data and the imputed data. For 
missing indicator variables, standardized differences were calculated in the full data 
without missingness, as well as its observed and missing part. For INT-within, 
standardized differences were calculated in 1) each of the imputed datasets, and 2) 
the full dataset, before averaging over all multiply imputed datasets. For INT-across 
and INT-across2, standardized differences were calculated in 1) the average of m 
imputed dataset and its observed and imputed parts respectively 2) the full dataset 
(Leyrat et al., 2019; Moons et al., 2006). For each missing data method, we report 
on bias, variance, mean squared error (MSE), relative MSE (relative to PSM in the 
full dataset), and coverage probability summarized over 1,000 simulations per 
scenario for estimating treatment effect βt. The robust cluster variance and 
bootstrapped variance were compared to their corresponding empirical variance for 
each MI strategy. Coverage was estimated as the proportion of 1,000 simulations 
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such that the interval [β̂t − 1.96 × SE, β̂t + 1.96 × SE] contained the true treatment 
effect of βt = 2 (SE: robust cluster standard error or bootstrapped standard error). 
We used the normal theory estimator because the percentile based method did not 
perform well in simulations by Austin & Small (Austin & Small, 2014), and 
calculating accelerated and bias-corrected confidence intervals (BCa) (Efron & 
Tibshirani, 1994) proved too computationally intensive. Monte Carlo standard 
errors were calculated for bias, empirical standard error, MSE, and coverage 
(Morris, White, & Crowther, 2019). Reference metrics for missing data methods 
were based on applying PSM to the full data (PSM_full).  

Results 

We first quantified the confounding effects introduced by our data generation by 
regressing outcome on treatment only in the full data set without missingness (data 
not shown in tables). A large bias was present (12.23), indicating a strong 
confounding effect. Next. we compared the resulting bias and standard error from 
two methods that adjusted for confounding: (1) fitting the true data generating 
model or regression adjustment, where both confounders were included as 
covariates in the regression model and (2) applying PSM to the full data 
(PSM_full). Both methods yielded unbiased treatment effect estimates 
(bias = −0.006 in both cases). PSM yielded a higher standard error as expected due 
to discarding unmatched samples (0.313 using regression in the full dataset and 
0.380 using PSM_full). Coverage reached the nominal level of 95% using both 
methods. These results matched well with their corresponding empirical standard 
error (0.306 and 0.376 respectively). In PSM, the robust cluster standard error and 
bootstrapped estimators were comparable (0.380 in both cases) and close to the 
empirical (0.376). MSE in PSM_full was 0.141, which was used as the denominator 
for calculating all rMSEs later.  

Commonly applied missing data methods 
Of the commonly applied approaches, CC had the most favorable MSE relative to 
that the of PSM_full (rMSE ranged 1.857 to 48.658 in various MDMs, Appendix 
Table A2). CC produced biased treatment estimates (bias = −2.489, −0.815, and 
−1.084 in MAR1, MAR2A, and MNAR respectively) and less efficient estimates 
relative to PSM_full (robust standard error = 0.537, 0.838, 0.682, 0.682 in MCAR, 
MAR1, MAR2A and MNAR respectively vs 0.380 in PSM_full). CVA, mean 
imputation, and the use of missing indicators yielded greater bias relative to CC 
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(5.058 to 5.059 for CVA; 2.985 to 5.759 for mean imputation; and 2.973 to 5.534 
for missing indicator), although their robust cluster variances were smaller than that 
of CC. Comparisons of statistical properties obtained when not adjusting for X1 and 
X2 were similar. 

Variance estimation in MI-based strategies 
While the robust cluster variance estimator and the bootstrapped-based variance 
estimator were comparable in the absence of missing data, differences were 
observed in the presence of missingness and when MI was applied. Specifically, 
the robust cluster variance estimator consistently underestimated the empirical 
variance in INT-across integration strategy. Among the INT-across approaches, the 
variance ratios (robust/empirical) were much smaller than 1 and only exceeded 0.8 
when an auxiliary variable was included (Figure 2). The worst performance for the 
robust estimator was observed in MI-regActive INT-across approaches, where the 
variance ratios can be lower than 0.1. In contrast, the variance was consistently 
overestimated in INT-within approaches, where the variance ratio surpassed 5 under 
MI-regActive and MI-redActive approaches, especially when an auxiliary term was 
used. The ratio of the robust estimator for the variance relative to the empirical 
under INT-across2 was close to 1 across all MI methods and MDMs. On the other 
hand, the bootstrapped-based variance was more comparable to the empirical 
variance across all MI integration strategies; the ratio of bootstrapped variance to 
the empirical ranged from 0.675 to 1.875, with mean 1.01. We did not observe any 
trend specific to imputation methods, integration methods, or the inclusion of 
auxiliary variable in the imputation model.  All subsequent results were therefore 
calculated using the bootstrapped-based variance estimator.  

Comparing various MI strategies  
For simplicity, performance of MI strategies under MAR1 is highlighted here 
(when auxiliary variable was not included in the imputation model). For the 
majority of the MI strategies, balance was achieved such that the absolute 
standardized difference in X1 and X2 between treated and controls based on the 
imputed dataset was below 0.1 with the exception of MI-regActive (Appendix Table 
A3). When considering both bias and efficiency, MI-derPassive approaches 
achieved the lowest rMSE, followed by MI-redActive and MI-regActive (Table 1 
and Figure 3). Among the three integration strategies under MI-derPassive 
approaches, INT-within, INT-across, INT-across2 were ranked from the lowest to 
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Figure 2. Distribution (mean, 2.5th and 97.5th quantile across 1,000 simulations) of the 
ratio of robust cluster and bootstrap variances with respect to empirical variance by 
multiple imputation estimation and integration strategies for propensity score matching. 
Confidence intervals are trimmed at the value of 5. 
 
the highest with respect to rMSE, which was largely driven by the bias (Table 1). 
Similar trend in MI integration strategies was observed for MI-regActive, where 
INT-within also outperformed INT-across. In contrast, the performance of various 
integration strategies varied under MI-redActive, where MI-redActive INT-within 
was the worst performer (rMSE = 60.454, bias = 2.557) and MI-redActive INT-

across was the best performer (rMSE = 8.784, bias = 0.465) (Table 1).  

The impact of auxiliary terms  
Under MAR1, when a fully observed auxiliary term, Z2, was included in the 
imputation model, the statistical properties of most MI strategies were comparable 
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Table 1. Main simulation results: bias, standard error, mean squared error (MSE), 
relative mean squared error (rMSE)*, and coverage results of various multiple imputation 
strategies under MAR1 (Monte Carlo standard errors in parentheses). 
 

MI Strategy  Standard Error    

Imputation Integration Bias Empirical Bootstrap MSE rMSE* Coverage          
Auxiliary variable not included in imputation model 

MI-derPassive 

INT-within 0.038 (0.014) 0.454 (0.01) 0.446 (0.001) 0.207 (0.011) 1.466 1 (0) 

INT-across −0.176 (0.016) 0.497 (0.011) 0.472 (0.002) 0.278 (0.012) 1.969 1 (0) 

INT-across2 −2.859 (0.024) 0.770 (0.017) 0.757 (0.003) 8.764 (0.14) 62.083 0 (0)          

MI-regActive 
INT-within 2.471 (0.043) 1.345 (0.03) 1.463 (0.007) 7.913 (0.174) 56.055 0.823 (0.012) 

INT-across 5.275 (0.173) 5.473 (0.122) 4.719 (0.033) 57.746 (2.605) 409.068 0.915 (0.009)          

MI-redActive 

INT-within 2.557 (0.045) 1.414 (0.032) 1.405 (0.006) 8.534 (0.183) 60.454 0.719 (0.014) 

INT-across 0.465 (0.032) 1.013 (0.023) 0.926 (0.005) 1.240 (0.076) 8.784 1 (0) 

INT-across2 −2.633 (0.025) 0.792 (0.018) 0.772 (0.003) 7.558 (0.132) 53.54 0 (0)          
Auxiliary variable included in imputation model 

MI-derPassive 

INT-within 0.319 (0.012) 0.395 (0.009) 0.376 (0.001) 0.258 (0.01) 1.828 1 (0) 

INT-across 0.067 (0.013) 0.398 (0.009) 0.385 (0.001) 0.163 (0.008) 1.155 1 (0) 

INT-across2 −2.904 (0.024) 0.771 (0.017) 0.744 (0.003) 9.028 (0.141) 63.954 0 (0) 
         

MI-regActive 
INT-within 0.502 (0.014) 0.449 (0.01) 0.465 (0.001) 0.453 (0.022) 3.209 1 (0) 

INT-across 4.096 (0.176) 5.572 (0.125) 4.702 (0.040) 47.793 (2.478) 338.561 0.948 (0.007) 
         

MI-redActive 

INT-within 0.461 (0.013) 0.409 (0.009) 0.421 (0.001) 0.380 (0.016) 2.692 1 (0) 

INT-across 0.059 (0.013) 0.418 (0.009) 0.406 (0.001) 0.178 (0.008) 1.261 1 (0) 

INT-across2 −2.860 (0.024) 0.770 (0.017) 0.768 (0.003) 8.773 (0.14) 62.147 0 (0) 
 

* rMSE: the ratio of MSE calculated from each missing data method over MSE obtained from propensity score 
matched results in the absence of missing data. 
 
 
to those when auxiliary variable was not in the imputation model (Table 1 and 
Figure 3). Large improvement in performance was observed for MI-regActive INT-

within, MI-redActive INT-within, and MI-redActive INT-across (Table 1). Under 
MAR2A, we observed an improvement of performance across a wider range of MI-
strategies: MI-derPassive/MI-redActive INT-within/INT-across and MI-regActive 
INT-within (Appendix Table A4 and Figure 3). For example, the rMSE for MI-

derPassive INT-within in the absence and presence of auxiliary variable is 17.341 
and 1.672 respectively (Appendix Table A4). The auxiliary term improved 
efficiency for most MI strategies except for MI-regActive INT-across. The auxiliary 
term improved the absolute bias for most MI strategies except for MI-derPassive 
INT-across2 and MI-redActive INT-across2. MNAR results were similar to 
MAR2A, and inclusion of the auxiliary variable was required to obtain nominal 
level of coverage probability in both MAR2A and MNAR (Appendix Table A4 and 
Appendix Figure A3). 
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Figure 3. Average bootstrap variance vs. average bias computed over 1,000 simulated 
datasets, by multiple imputation estimation and integration strategies for propensity score 
matching where X2 was missing under MCAR, MAR1, MAR2A, and MNAR. MCAR, 
missing completely at random; MAR, missing at random; MNAR, missing not at random; 
MAR1, simple MAR; MAR2A, complex MAR. 
 
 

The performance of MI strategies is shown in Appendix Table A5 and 
Appendix Figure A1 under a modified MAR2 scenario (MAR2B) where 
missingness was a function of a different auxiliary variable, Zps (dichotomized), 
treatment, and outcome. For reference, performance of passive approaches when 
Zps was fully observed was first evaluated. MI-derPassive INT-within achieved the 
lowest rMSE and bias (rMSE = 1.032, bias = −0.019), followed by INT-across 
(rMSE = 1.394, bias = −0.205), and INT-across2 (rMSE = 10.319, bias = −1.016). 
The bootstrapped standard error was the largest in INT-across2 (0.682) and 
comparable for INT-within (0.378) and INT-across (0.381). When Zps was partially 
observed, MI-derPassive and MI-regPassive were largely comparable. Although 
INT-across methods yielded the smallest bootstrap standard error, INT-within 
methods resulted in smaller bias and MSE. While imputing X2 before or after Zps 
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affected the resulting bias, bootstrap standard error and MSE, the order did not 
change our conclusions on the best performing imputation and integration MI 
strategies as mentioned above. 

Comparison across MDMs 
Summarizing results across all MDMs, MI-derPassive outperformed MI-redActive, 
followed by MI-regActive in terms of rMSE, bias, and efficiency (Table 1, 
Appendix Table A4, Figure 3, and Appendix Figure A3). MI-derPassive INT-
within demonstrated strong performance regardless of the presence of an auxiliary 
term. Even though MI-derPassive INT-across achieved the smallest rMSE in 
MAR2A and MNAR when auxiliary variable was included, MI-derPassive INT-

within had comparable rMSE. Inclusion of an auxiliary variable did not greatly 
improve properties of the top performers under MCAR and MAR1. In contrast, the 
performance of MI-strategies was much improved under MAR2A and MNAR, 
where missingness was related to the auxiliary variable.  

Sensitivity simulation results 
The results from the second set of simulations, where there was a reduced 
confounding effect — shown in Appendix Tables A8-A10 — are largely consistent 
with the main simulation results in sections above. Next, applying the optimal MI 
strategy from the main simulation study, MI-derPassive INT-within, we found that 
both bias and efficiency suffered with higher missing rate and inadequately 
specified number of multiply imputed datasets, m (Appendix Table A11). When the 
missing rate decreased from 50% in the main simulation study to 25% and 10% 
under MAR1, the bias and bootstrap standard error also decreased (bias = 0.038, 
0.021, and 0.005, bootstrap standard error = 0.446, 0.389, and 0.365 respectively). 
When only 10 multiply imputed datasets were used at 50% missingness, both bias 
(0.096) and bootstrap standard error (0.454) increased compared to when m = 50 
(bias = 0.038, bootstrap standard error = 0.446 under MAR1) (Appendix Table 
A11). In the absence of missingness, when the study sample size was 1000, 500, 
and 250, the bias (−0.186, 0.300, -0.315) and robust standard error (0.524, 0.715, 
1.073) increased compared to when the sample size was 2,000 in the main 
simulation study (bias = −0.006, standard error = 0.380) (data not shown in tables). 
Nevertheless, MI-derPassive INT-within performed reasonably well in terms of 
both bias and efficiency. For example, under MAR1, the biases were 0.11, 0.22, 
0.374 and bootstrap standard errors were 0.63, 0.878, 1.138 with sample sizes 1000, 
500, and 250 respectively (Appendix Table A11).  
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Case Study 

The various MI strategies discussed in our simulation study were illustrated in a 
real-world example. The goal of the exemplified study was to assess whether an 
electronic text message (e-message) intervention had an impact on treatment 
adherence, measured by proportion of class attendance, in the Diet Intervention 
Examining The Factors Interacting with Treatment Success (DIETFITS) trial 
(Oppezzo et al., 2019). DIETFITS investigated the effects of a healthy low-fat diet 
vs a healthy low-carbohydrate diet on weight change at 12 months in 609 
overweight adults (Gardner et al., 2018). Throughout the study period, participants 
in both diet groups were given education classes designed to enhance participant 
adherence. The investigators found a decline in the education class attendance in 
the first four study cohorts after 6 months (Oppezzo et al., 2019). Thus, an e-
message intervention was deployed to both arms of the fifth cohort with the goal of 
increasing adherence to their diet plan (Oppezzo et al., 2019). In the original study, 
PSM was performed to match the patients in Cohort 5 who received e-message 
intervention to historical controls in Cohort 1-4 and the effect was measured 
through a two-sampled t-test (Oppezzo et al., 2019).  

Instead of replicating the original study, the statistical analysis was modified 
to better match our simulation design. A PS model was estimated in all 609 
participants, among whom 97 received e-messages, and 512 did not (31 from 
Cohort 5 declined and 481 from Cohorts 1-4 did not have the chance to receive this 
e-messaging intervention). PS was estimated in the same way as the original study 
-- using logistic regression with confounding variables age, sex, race, weight 
change at 6 months, and proportion of attendance at 6 months (Oppezzo et al., 
2019). 1:1 nearest neighbor matching was used without replacement with caliper 
0.2 to match each participant who received e-messages to a control. The effect of 
e-messages on outcome variable, proportion of class attendance between the 6- and 
12-month study endpoints, was estimated in a linear regression model adjusting for 
all confounding variables. To handle missing data, commonly used methods (CC, 
CVA, mean imputation, and missing indicator) were applied as well as MI 
strategies. A robust cluster variance was used for non-MI missing data methods and 
bootstrap variance was used for all MI-strategies. 

Trial participants’ characteristics are shown in Appendix Table A6. There 
were three PS variables with missing data: age (5.15% and 24.80% in exposure and 
control groups respectively), race (1.03% and 0.98% in exposure and control 
groups respectively) and weight change at 6 months (8.25% and 26.37% in 
exposure  and  control  groups  respectively). Overall,  20%  patient-level data was 
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Figure 4. Application of the various missing data methods to a real-world example to 
assess the impact of an electronic text message (e-message) intervention on treatment 
adherence in the Diet Intervention Examining The Factors Interacting with Treatment 
Success (DIETFITS) trial, showing effect sizes of e-message with 95% confidence 
interval estimated using propensity score matching. 
 
 
missing and m = 20 was used in MI algorithms. Additionally, the following 
auxiliary variables: baseline weight, weight at 6 months, weight at 12 months, and 
weight change after 6 months, were included into our imputation model, as they 
were associated with PS variables but not of interest in our scientific model. As 
observed in our simulation study, MI-derPassive and MI-redActive coupled with 
INT-within balanced more covariates among all missing data methods (Appendix 
Table A7). Figure 4 shows the estimated effects of e-message and their 95% 
confidence intervals. The effect size of e-message intervention varied greatly from 
one missing data method to another, as observed in our simulations. Informed by 
the simulation study, findings based on MI-derPassive INT-within (both with and 
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without auxiliary variable), indicated that e-messaging had a significant impact on 
adherence. 

Discussion 

We investigated several pragmatic research questions concerning how to optimally 
apply MI when utilizing PSM in the presence of a partially observed confounder. 
We compared the performance of non-MI missing data methods that are commonly 
applied along with various MI-based strategies that vary both in how the PS is 
estimated or imputed and in how the PS is integrated into the analysis. In addition, 
we evaluated the impact of inclusion of an auxiliary term in the imputation model 
on the ranked performance of the MI strategies as well as the impact of the order of 
inclusion when there is more than one variable with missing data. Among the 
commonly applied missing data methods, CVA and single imputation methods 
(mean imputation and missing indicator) led to large bias in our simulation study. 
In contrast, CC was not as biased due to the use of a caliper that ensured only those 
subjects with closely matched PSs were included. CC did, however, suffer from 
loss of efficiency. There was large heterogeneity among the MI strategies 
considered. Based on our results, we caution applied researchers against adopting 
the aforementioned commonly applied missing data methods and recommend: 1) 
adopt MI-derPassive approaches; and 2) consider INT-within 3) use of the bootstrap 
to estimate variance; and 4) inclusion of key auxiliary variables in the imputation 
model. 

Our study is important in identifying the limitations of commonly applied 
methods. Considerable bias and inefficiency were observed among all commonly 
applied methods relative to that yielded by applying PSM to the dataset without 
missingness. At least one of the MI-based strategies always outperformed the 
commonly applied methods. It is well established that balancing diagnostics are 
useful for PSM, but this proves difficult with commonly applied methods. For 
example, while CC can be applied using those matched pairs where balance is 
achieved, bias may still occur because of the observations not included due to 
missingness. For missing indicators, we were unable to achieve balance in the 
variable with missing data, as revealed in our simulations when we parsed the data 
by observed and missing data to evaluate balance in these respective parts. Thus, in 
practice, one may have a false sense of the balance as the user is only privy to 
assessing the balance in the observed data. Similarly, application of mean 
imputation distorts the distributional properties of the variable with missing data, 
potentially yielding a distorted view of balance when the imputed values are 



LING ET AL. 

25 
 

utilized in calculating the standardized differences (Appendix Table A2). Finally, 
for CVA, a false sense of security may be given when evaluating balance in only 
one variable, when exclusion of the other variable could lead to bias.  

We have primarily examined the differences between passive and active MI 
methods when PS, a derived variable, was considered in the analysis and only 
partially observed. MI-derPassive methods surpassed MI-redActive approaches in 
almost all performance metrics across all MDMs, and MI-regActive had the worst 
statistical properties. Since MI-redActive can be thought of as a hybrid between MI-

derPassive and MI-regActive and partly mitigated the issues of MI-regActive by re-
deriving PS post-imputation, we hereby mainly discuss the rationale behind the 
poor performance of MI-regActive. To start with, MI-regActive was proposed so 
the entire covariance structure of all variables in the analysis, including the PS 
itself, could be retained. However, the covariance structure between PS and the PS 
variables is complex and difficult to learn using complete cases only. Unlike usual 
derived measures (e.g. interactions and higher order terms) that are derived as a 
deterministic function of other variables, PS requires estimation and its exact 
function will vary depending on the data considered. Thus, imputing PS together 
with missing covariates introduced bias into the imputation procedure and 
consequently the estimated treatment effect. Such bias was also reflected in the 
difficulty to achieve balance both in the imputed and fully observed data under MI-

regActive (Appendix Table A3). Further, the poor estimation of the treatment effect 
had implications for estimates of uncertainty. The bias introduced in the estimation 
of the treatment effect highly varied across the bootstrap samples, leading to an 
increased estimate of the variation (Appendix Figure A2). Although adding an 
auxiliary variable reduced bias in most of the bootstrap samples, it did not help 
reduce bias for the extreme cases where the bias without auxiliary variable was 
unexpectedly high. Second, PSM is a two-stage analysis, in which after matching, 
PS itself is not directly used in estimating the treatment effect. In contrast, other 
derived variables (e.g. interactions) are usually directly involved in the regression 
model for treatment effect estimation. As a result, capturing the covariance 
structure between PS and other variables in the imputation process did not yield the 
same benefits as seen in the derived variables that were studied before. Third, 
although we only simulated two PS variables, researchers are likely to include a 
larger number of PS covariates with complex missing pattern. This will lead to a 
high overall level of missingness for PS estimation in the first step of MI-regActive, 
which increases the difficulty of the subsequent imputation step. Fourth, unless we 
specify the true relationship between PS and PS variables using an inverse logistic 
function (PMM was used in our simulations), which is cumbersome to implement 
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in reality, the imputation model is technically misspecified, potentially leading to 
bias as well.  

We recommend INT-within as the optimal MI integration strategy to combine 
with imputation strategy MI-derPassive, for its superior performance in all 
evaluating metrics as well as its ability to balance covariates post-matching. While 
Mitra & Reiter recommended INT-across, de Vries & Groenwold argued that such 
findings were due to a combination of omitting outcome in the imputation model 
and a violation of positivity assumption in the PSM process (B. B. L. de Vries & 
Groenwold, 2016; Mitra & Reiter, 2016). Further, they found INT-within to yield 
estimators with better statistical properties (B. B. L. P. de Vries & Groenwold, 
2017). In a different setting (IPTW instead of PSM), Leyrat et. al. also demonstrated 
superior properties of INT-within methods over INT-across and INT-across2 
(Leyrat et al., 2019). Our results were consistent with de Vries & Groenwold (B. 
B. L. P. de Vries & Groenwold, 2017) and Leyrat and others (Leyrat et al., 2019). 
We also share the perspective of Leyrat and others (Leyrat et al., 2019) that it was 
more straightforward to assess balance in INT-within strategies and observed that 
the covariates were mostly balanced in both the imputed and full datasets 
(Appendix Table A3). Further, Leyrat and others pointed out that the INT-across 
and INT-across2 produced consistent estimators only when both the observed and 
imputed data were balanced (Leyrat et al., 2019). We therefore paid close attention 
to balance diagnostics for INT-across and INT-across2 methods but did not observe 
balance in both parts of the data (observed and missing) under all MDMs other than 
under MCAR.  

An important contribution of our paper is resolution of how to estimate the 
variance when doing PSM and applying MI. There has been extensive but 
conflicting research on this topic in the context of MI and IPTW where Rubin’s 
Rules have been recommended for INT-within by some authors (Leyrat et al., 2019; 
S. Seaman & White, 2014) and a bootstrapped-based estimator was recommended 
by others (Qu & Lipkovich, 2009). Relative to IPTW, however, we are faced with 
the additional issue of capturing the uncertainty of matching in PSM. Prior studies 
of MI applications in the context of PSM acknowledged this issue (Hill, 2004; Mitra 
& Reiter, 2016), but only one study has explicitly stated their recommendation of a 
bootstrapped-based variance (B. B. L. P. de Vries & Groenwold, 2017), although 
the choice was not studied comparatively or discussed fully. In our study, we found 
that application of Rubin’s Rules when the robust cluster estimator was used for 
each imputed dataset overestimated the variance under INT-within approaches and 
underestimated it under INT-across approaches. We therefore agree with de Vries 
& Groenwold (B. B. L. P. de Vries & Groenwold, 2017) in recommending the 
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bootstrapped variance, as it captures the uncertainty of PS estimation, matching 
procedure, and imputation process. Further, it demonstrated good performance with 
respect to the empirical variance. We acknowledge the lack of theoretical support 
for this choice, which comes with challenges, as the estimator for the treatment 
effect based on PSM and MI is not a smooth function. Although Abadie & Imbens 
(Abadie & Imbens, 2008) proved that the bootstrap variance is not valid in 
matching with replacement, their results may not be applicable in our study when 
matching was done without replacement, where one control unit can only be used 
for matching at most once (Austin & Small, 2014). Other alternative non-
parametric solutions with stronger theoretical justification, such as subsampling, 
has their own limitations (e.g. the need for a sufficiently large sample size and a 
burden on the user to appropriately select a sub-sample and replication size) (Politis 
& Romano, 1994). 

Auxiliary variables are often useful for adhering to a MAR MDM, but not 
always possible in the context of PSM. As shown in our simulation study, when 
missingness is related to an auxiliary variable in MAR2A, inclusion of the auxiliary 
variable ensured a truly MAR scenario, which would be an MNAR scenario 
otherwise, making it difficult to obtain statistically valid results using MI. Having 
the auxiliary variable in the imputation model indeed improved all statistical 
properties of our recommended optimal MI strategy, MI-derPassive INT-within. In 
reality, however, variables related to partially observed confounders may be 
considered confounders themselves and thus, may not exist outside of estimation 
of the PS. Our team has worked on studies, however, where auxiliary terms may be 
available. For example, in a comparative effectiveness study of anticoagulants 
among kidney transplant patients, a PS that balances patient characteristics may 
include body mass index (BMI) at treatment initiation but not BMI at transplant 
listing. The latter is an excellent candidate for an auxiliary variable that can aid in 
imputing BMI at treatment initiation as well as other PS covariates. By including a 
strong auxiliary variable in the imputation process, we showcased the maximal 
performance improvement given any auxiliary variable. In practice, the strength of 
auxiliary variable varies and consequently the improvement in performance may 
be moderate. 

There are several limitations to our study. As with any simulation study, we 
recognize that the limited scope of our simulations may compromise 
generalizability. Specifically, only two binary confounders were generated, which 
might not reflect a real-world scenario. We adopted a simple design, following the 
lead of others studying similar topics, so that we could hone in on the properties of 
the various MI methods without extra layers of complexities (Choi et al., 2019; B. 



MULTIPLE IMPUTATION IN PROPENSITY SCORE MATCHING 

28 

B. L. P. de Vries & Groenwold, 2017; Hill, 2004; Mitra & Reiter, 2016; S. Seaman 
& White, 2014). Even though we only included a continuous outcome in our 
simulation, we believe our findings on the MI imputation and integration strategies 
are not specific to the type of outcome. In fact, we found consistencies between our 
findings and those from simulation studies with binary outcomes studying a similar 
topic, IPTW (Leyrat et al., 2019; S. Seaman & White, 2014). Regardless, future 
studies using time-to-event outcomes are important, especially given the added 
complexity of applying MI with right-censored outcomes (Barzi & Woodward, 
2004; Desai et al., 2019; Van Buuren, Boshuizen, & Knook, 1999; White & 
Royston, 2009). We also only considered the scenario when one confounder was 
partially observed, whereas missingness of covariates that are not confounders, 
treatment or outcome was not considered. However, we recommend the same MI 
strategy in cases of any missingness in potential confounders (covariates that are 
associated with the outcome but not exposure), as potential confounders should also 
be included in the PS model (Austin, Grootendorst, Normand, & Anderson, 2007; 
Brookhart et al., 2006). One specific caveat in our comparison among different MI 
integration strategies is that the two confounders were not included in the regression 
models in the post-matching outcome analysis for INT-across. This was infeasible 
under this strategy since we had multiple sets of confounders but only one set of 
PS. Nonetheless, the lack of inclusion likely led to some of the observed bias in the 
comparative performance of our MI methods. Finally, there were only main effects 
in the data generating mechanism and we did not explore the impact of mis-
specifying the correct PS models.  

Overall, we have addressed an important topic – how to apply MI strategies 
in the presence of missing values in confounders in the context of PSM. Our work 
will facilitate future applied researchers’ choice of optimal missing data methods 
in all kinds of statistical analyses that involve PSM. In addition to classical causal 
inference settings, our results are applicable to other types of studies that utilize PS, 
including those that generalize randomized clinical trial findings to real-world 
target populations captured in observational databases (Cole & Stuart, 2010; Stuart, 
Cole, Bradshaw, & Leaf, 2011). 

Glossary 

Various multiple imputation (MI) strategies for the propensity score matching 
(PSM) context. PS, propensity score; MICE, multivariate imputation by chained 
equations in R. The recommended approach is marked by *. 
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Step 1.  Choosing an imputation strategy (how to obtain PS through 
imputation) 

1. MI-passive (PS is derived after missing PS model variables are 
imputed) 

a. * MI-derPassive (PS is derived after completion of 
MICE algorithm, within which missing PS model 
variables are imputed) 

b. MI-regPassive (PS is derived within MICE algorithm 
following the step where missing PS model variables 
are imputed) 

2. MI-active (PS is imputed together with other missing PS 
model variables) 

a. MI-regActive (PS is imputed together with other 
missing PS model variables) 

b. MI-redActive (PS is imputed together with other 
missing PS model variables and redrived post 
imputation) 

Step 2.  Choosing an integration strategy (how to integrate PS in PSM) 

1. * INT-within (PSM is conducted m times within each multiply 
imputed dataset and results are summarized using Rubin’s 
Rules) 

2. INT-across (PSM is conducted after averaging PS across the 
PSs obtained from the m imputed datasets) 

3. INT-across2 (PSM is conducted after calculating the PS from 
a model where coefficients for the PS model are averaged 
across the m imputed datasets)  

Step 3.  Choosing a variance estimator 

1. Robust cluster variance estimator 

2. * Bootstrap-based variance estimator 
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Appendix A 

 

 
 
 
Figure A1. Average bootstrap variance vs. average bias computed over 1,000 simulated 
datasets, by passive multiple imputation estimation and integration strategies for 
propensity score matching where #$ was missing under a complex MAR (MAR2B) 
involving auxiliary variable %&' which was missing under simple MCAR (aux_MCAR), 
simple MAR (aux_MAR1), or complex MAR (aux_MAR2). A. Default imputation: #$ 
imputed before imputation of %&'; B. Reverse imputation: %&' imputed before imputation 
of #$. MCAR, missing completely at random; MAR, missing at random. 
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Figure A2. Illustration of bias in estimated treatment effects in 1,000 simulations MI-
regActive when X2 was missing under MNAR. The bias from each simulation when 
auxiliary variable was not included (black dots) was ranked from the lowest (left) to the 
highest (right). The red dots indicate the bias from the same simulation but when the 
auxiliary variable was included. We can see that, including an auxiliary variable reduces 
bias in most cases, except in the simulations with extremely high bias (right hand side of 
the plot). This explains why including an auxiliary variable increased the bootstrap 
variance as seen Appendix Table A4. 
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Figure A3. Coverage of various missing data methods by missing data mechanisms. 
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Table A1. Comparison of the different predictors included in the imputation model for the multiple imputation approaches included. 
 

Scientific model: !	~	$	 +	&' +	&( 

Missing 
Variable 

Predictors in imputation model 
MI-regActive MI-redActive* MI-derPassive*** MI-regPassive*** 

)* )+, -, ., /0	(2*	) )+, -, ., /0	(2*) )+, -, ., (2*	34	256) )+, -, ., 256 
/0 )+, )*, -, .	(2*) )+, )*, -, .(2*) - - 
2** - - )+, )*, -, . )+, )*, -, ., /0 

 
*/0 is re-derived from )+ and )* after MI procedure  
** 2* was used in MI-derPassive, MI-regActive, and MI-redActive when it was fully observed. 256 was used in MI-derPassive and MI-regPassive 
when 20% of values were missing. Under MAR2B, the order of imputation (whether 256 was imputed before or after )*) was also evaluated.  

*** We compare and contrast MI-derPassive and MI-regPassive when	)* and 256 are both missing below (the case where )* is imputed before 
256): 
In MI-derPassive: 

1) Within Multivariate Imputation via Chained Equations (MICE) algorithm:  
a. Impute )*  using )+, -, ., and 256 
b. Impute 256 using )+, )* , -, and . 

c. Repeat until algorithm converges 
2) Estimate /0 using )+ and )*   

In MI-regPassive: 

1) Within MICE algorithm 
a. Impute )*  using )+, -, ., and 256 
b. Estimate /0 from )+ and )*   
c. Impute 256 using )+, )*, -, ., and /0 

d. Repeat until algorithm converges 
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Table A2. Main simulation results: balance diagnosis and treatment effect estimation results using commonly applied missing data 
method before propensity score matching (PSM), in reference to applying PSM to full data without missingness (Monte Carlo 
standard errors in parentheses). MDM= missing data mechanism, CC = complete-case analysis, CVA = complete-variable 
analysis.  
 

   Standard Error     
Post-Matching Standardized 

Difference 

MDM Method Bias Empirical Robust MSE rMSE Coverage 
Percentage 

Matched 
Underlying 
data X1 X2 

Full 
Data NA 

-0.006 
(0.012) 

0.376 
(0.008) 

0.380 
(0.001) 

0.141 
(0.006) 1.000 

0.950 
(0.006) 0.653 - 0.000 0.000 

MCAR CC 
0.002 

(0.011) 
0.513 

(0.011) 
0.537 

(0.001) 
0.262 

(0.007) 1.857 
0.957 

(0.006) 0.653* - -0.001 -0.004 

 CVA 
5.058 

(0.013) 
0.436 
(0.01) 

0.442 
(0) 

25.772 
(0.132) 182.565 0 (0) 0.960 - 0 0.947 

 

Mean 
Imputation 

2.985 
(0.014) 

0.461 
(0.01) 

0.447 
(0.001) 

9.122 
(0.084) 64.617 0 (0) 0.803 original data 0 0.546 

         imputed data 0 0 

 

Missing 
Indicator 

2.973 
(0.016) 

0.440 
(0.01) 

0.446 
(0.001) 

9.032 
(0.098) 63.981 0 (0) 0.535 full data 0 0.546 

         observed part 0 0 

         missing part 0 0.946 

MAR1 CC 
-2.489 

(0.017) 
0.821 

(0.018) 
0.838 

(0.002) 
6.869 

(0.088) 48.658 
0.157 

(0.012) 1.000* - 0.002 -0.001 

 CVA 
5.059 

(0.013) 
0.434 
(0.01) 

0.443 
(0) 

25.782 
(0.131) 182.634 0 (0) 0.960 - 0 0.948 

 

Mean 
Imputation 

5.759 
(0.017) 

0.573 
(0.013) 

0.497 
(0.004) 

33.498 
(0.195) 237.298 0 (0) 0.735 original data 0 1.206 

         imputed data 0 0.095 

 

Missing 
Indicator 

5.201 
(0.025) 

0.686 
(0.015) 

0.674 
(0.001) 

27.517 
(0.267) 194.929 0 (0) 0.271 full data 0 0.936 

         observed part 0 0.034 

         missing part 0 1.517 
MAR2

A CC 
-0.815 

(0.015) 
0.726 

(0.016) 
0.682 

(0.002) 
1.191 
(0.03) 8.435 

0.764 
(0.013) 1* - -0.001 0.001 

 CVA 
5.059 

(0.013) 
0.443 
(0.01) 

0.442 
(0) 

25.788 
(0.134) 182.680 0 (0) 0.960 - 0 0.947 

 

Mean 
Imputation 

5.706 
(0.017) 

0.574 
(0.013) 

0.535 
(0.002) 

32.886 
(0.196) 232.962 0 (0) 0.602 original data 0 1.080 

         imputed data 0 0.044 

 

Missing 
Indicator 

5.528 
(0.021) 

0.578 
(0.013) 

0.568 
(0.001) 

30.890 
(0.237) 218.819 0 (0) 0.352 full data -0.001 0.954 

          observed part -0.001 0 
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         missing part -0.001 1.704 

MNAR CC 
-1.084 

(0.014) 
0.675 

(0.015) 
0.682 

(0.002) 
1.629  

(0.033) 11.538 
0.631 

(0.015) 1* - -0.005 -0.004 

 CVA 
5.059 

(0.013) 
0.435 
(0.01) 

0.443 
(0) 

25.783 
(0.132) 182.646 0 (0) 0.960 - 0 0.947 

 

Mean 
Imputation 

5.689 
(0.018) 

0.592 
(0.013) 

0.559 
(0.001) 

32.711 
(0.202) 231.723 0 (0) 0.557 original data 0 1.078 

         imputed data 0 0.045 

 

Missing 
Indicator 

5.534 
(0.021) 

0.582 
(0.013) 

0.577 
(0.001) 

30.958 
(0.239) 219.305 0 (0) 0.345 full data 0 0.962 

         observed part 0 0 

         missing part 0 1.725 
 

*The percentage of treated patients being matched using CC is calculated from complete cases. 
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Table A3. Main simulation results: percentage of treated subjects matched and standardized difference of covariates after 
matching in various multiple imputation (MI) strategies. For INT-across and INT-across2, standardized differences were also 
calculated on the observed and missing part of the imputed data separately. MDM=missing data mechanism. 
 

     Post-matching standardized difference 

 MI Strategy   Full Data  Imputed Data  Observed Part  Missing Part 

MDM Imputation Integration Percentage 
Matched 

 X1 X2  X1 X2  X1 X2  X1 X2 

MCAR           

   Auxiliary variable not included in imputation model           
 

MI-derPassive INT-within 0.652  0 0.126  0 0  - -  - - 
  

INT-across 0.633  -0.002 0.008  -0.002 0.006  0.036 -0.114  -0.046 0.125 
  

INT-across2 0.636  -0.002 0.012  -0.002 0.010  0.039 -0.108  -0.048 0.127 
 

MI-regActive INT-within 0.791  0.128 0.600  0.128 -0.127  - -  - - 
  

INT-across 0.722  -0.004 0.345  -0.004 0.010  0.010 0.003  -0.019 0.022 
 

MI-redActive INT-within 0.792  0 0.656  0 0  - -  - - 
  

INT-across 0.738  0 0.345  0 0.009  0.004 -0.002  -0.004 0.021 
  

INT-across2 0.782  0 0.430  0 0.045  0.001 0.001  -0.002 0.079 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.655  0 0.024  0 0  - -  - - 
  

INT-across 0.652  0.006 -0.008  0.006 -0.001  -0.115 -0.088  0.098 0.066 
  

INT-across2 0.653  0.010 -0.011  0.010 -0.003  -0.123 -0.087  0.110 0.062 
 

MI-regActive INT-within 0.659  0.006 0.040  0.006 -0.011  - -  - - 
  

INT-across 0.653  -0.028 0.025  -0.028 0.010  -0.122 0.053  0.049 -0.039 
 

MI-redActive INT-within 0.659  0 0.051  0 0  - -  - - 
  

INT-across 0.653  -0.031 0.029  -0.031 0.014  -0.203 0.086  0.110 -0.059 
  

INT-across2 0.652  -0.043 0.040  -0.043 0.026  -0.214 0.112  0.100 -0.061 

MAR1          

   Auxiliary variable not included in imputation model          
 

MI-derPassive INT-within 0.656  0 0.114  0 0  - -  - - 
  

INT-across 0.617  0.002 -0.028  0.002 -0.015  -0.748 -1.105  0.205 0.647 
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INT-across2 0.621  0.008 -0.034  0.008 -0.021  -0.746 -1.109  0.201 0.645 

 
MI-regActive INT-within 0.877  0.368 0.752  0.368 0.322  - -  - - 

  
INT-across 0.666  0.562 0.531  0.562 0.344  -0.160 -0.397  0.714 0.708 

 
MI-redActive INT-within 0.772  0 0.483  0 -0.006  - -  - - 

  
INT-across 0.628  0.002 0.031  0.002 -0.178  -0.746 -1.013  0.241 0.466 

  
INT-across2 0.670  0.003 0.219  0.003 -0.029  -0.780 -0.84  0.260 0.517 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.666  0 0.065  0 -0.001  - -  - - 
  

INT-across 0.647  0.026 -0.031  0.026 -0.069  -0.895 -1.010  0.467 0.404 
  

INT-across2 0.652  0.022 -0.027  0.022 -0.060  -0.953 -0.974  0.519 0.375 
 

MI-regActive INT-within 0.785  0.351 0.420  0.351 0.338  - -  - - 
  

INT-across 0.745  0.386 0.382  0.386 0.321  -0.672 -0.663  0.856 0.741 
 

MI-redActive INT-within 0.669  0 0.085  0 -0.001  - -  - - 
  

INT-across 0.643  0.012 -0.015  0.012 -0.069  -0.921 -1.008  0.460 0.405 
  

INT-across2 0.651  0.013 -0.016  0.013 -0.061  -0.972 -0.982  0.506 0.384 

MAR2A           

   Auxiliary variable not included in imputation model           
 

MI-derPassive INT-within 0.754  0 0.379  0 0  - -  - - 
  

INT-across 0.686  0 0.146  0 -0.017  -0.390 -1.182  0.226 0.558 
  

INT-across2 0.695  0 0.171  0 -0.016  -0.392 -1.185  0.212 0.563 
 

MI-regActive INT-within 0.881  0.076 0.698  0.076 0.078  - -  - - 
  

INT-across 0.571  0.026 0.428  0.026 0.021  -0.038 -0.472  0.020 0.204 
 

MI-redActive INT-within 0.863  0 0.656  0 0  - -  - - 
  

INT-across 0.734  0 0.348  0 -0.095  -0.331 -0.990  0.107 0.221 
  

INT-across2 0.780  0 0.396  0 -0.090  -0.403 -1.061  0.140 0.245 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.669  0 0.071  0 -0.001  - -  - - 
  

INT-across 0.652  -0.014 0.013  -0.014 -0.030  -0.441 -1.283  0.294 0.546 
  

INT-across2 0.653  -0.025 0.023  -0.025 -0.019  -0.473 -1.257  0.308 0.541 
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MI-regActive INT-within 0.729  0.122 0.248  0.122 0.166  - -  - - 

  
INT-across 0.701  0.131 0.177  0.131 0.126  -0.374 -1.061  0.510 0.614 

 
MI-redActive INT-within 0.672  0 0.084  0 -0.001  - -  - - 

  
INT-across 0.652  -0.018 0.017  -0.018 -0.032  -0.476 -1.230  0.341 0.480 

  
INT-across2 0.652  -0.026 0.024  -0.026 -0.023  -0.506 -1.203  0.361 0.465 

MNAR           

   Auxiliary variable not included in imputation model           
 

MI-derPassive INT-within 0.754  0 0.377  0 0  - -  - - 
  

INT-across 0.686  0 0.143  0 -0.017  -0.413 -1.245  0.233 0.571 
  

INT-across2 0.694  0 0.168  0 -0.017  -0.416 -1.247  0.219 0.576 
 

MI-regActive INT-within 0.888  0.117 0.733  0.117 0.107  - -  - - 
  

INT-across 0.524  0.041 0.437  0.041 0.032  0.066 -0.410  -0.045 0.179 
 

MI-redActive INT-within 0.863  0 0.652  0 0  - -  - - 
  

INT-across 0.729  0 0.329  0 -0.107  -0.346 -1.080  0.093 0.229 
  

INT-across2 0.776  0 0.381  0 -0.099  -0.418 -1.142  0.132 0.256 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.671  0 0.079  0 -0.001  - -  - - 
  

INT-across 0.652  -0.012 0.011  -0.012 -0.039  -0.457 -1.339  0.301 0.542 
  

INT-across2 0.652  -0.022 0.021  -0.022 -0.029  -0.488 -1.310  0.317 0.531 
 

MI-regActive INT-within 0.747  0.204 0.300  0.204 0.208  - -  - - 
  

INT-across 0.709  0.240 0.246  0.240 0.184  -0.294 -1.027  0.623 0.636 
 

MI-redActive INT-within 0.675  0 0.096  0 -0.001  - -  - - 
  

INT-across 0.652  -0.012 0.011  -0.012 -0.047  -0.494 -1.281  0.364 0.455 
  

INT-across2 0.652  -0.020 0.019  -0.020 -0.037  -0.528 -1.251  0.387 0.441 
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Table A4. Main simulation results: bias, standard error mean squared error (MSE), relative mean squared error (rMSE), and 
coverage (calculated using bootstrap standard error) results using various multiple imputation (MI) strategies in MCAR, MAR1, 
and MNAR. (Monte Carlo standard errors in parentheses). 
 

MI Strategy  Standard Error    

Imputation Integration Bias Empirical Bootstrap MSE rMSE Coverage 

MCAR 

Auxiliary variable not included in imputation model 

  MI-derPassive INT-within -0.024 (0.012) 0.381 (0.009) 0.395 (0.001) 0.146 (0.006) 1.034 1 (0) 

 INT-across -0.796 (0.013) 0.424 (0.009) 0.418 (0.001) 0.814 (0.022) 5.766 0.569 (0.016) 

 INT-across2 0.008 (0.017) 0.534 (0.012) 0.539 (0.002) 0.285 (0.013) 2.019 1 (0) 

MI-regActive INT-within 3.224 (0.015) 0.489 (0.011) 0.508 (0.002) 10.636 (0.103) 75.345 0 (0) 

 INT-across 0.870 (0.028) 0.882 (0.020) 0.813 (0.004) 1.534 (0.055) 10.867 1 (0) 

MI-redActive INT-within 3.309 (0.013) 0.405 (0.009) 0.438 (0.001) 11.113 (0.087) 78.724 0 (0) 

 INT-across 0.851 (0.029) 0.926 (0.021) 0.807 (0.004) 1.580 (0.057) 11.193 1 (0) 

 INT-across2 0.012 (0.017) 0.541 (0.012) 0.536 (0.001) 0.293 (0.013) 2.076 1 (0) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.095 (0.011) 0.359 (0.008) 0.359 (0.001) 0.138 (0.006) 0.978 1 (0)  

 INT-across 0.046 (0.012) 0.388 (0.009) 0.390 (0.001) 0.152 (0.007) 1.077 1 (0) 

 INT-across2 -0.005 (0.017) 0.55 (0.012) 0.547 (0.001) 0.303 (0.013) 2.146 1 (0) 

MI-regActive INT-within 0.241 (0.011) 0.358 (0.008) 0.363 (0.001) 0.186 (0.008) 1.318 1 (0) 

 INT-across 0.231 (0.012) 0.384 (0.009) 0.405 (0.001) 0.200 (0.009) 1.417 1 (0) 

MI-redActive INT-within 0.247 (0.011) 0.356 (0.008) 0.361 (0.001) 0.188 (0.008) 1.332 1 (0) 

 INT-across 0.221 (0.012) 0.387 (0.009) 0.398 (0.001) 0.198 (0.008) 1.403 1 (0) 

 INT-across2 0.003 (0.017) 0.534 (0.012) 0.551 (0.001) 0.285 (0.013) 2.019 1 (0) 

MAR2A 

*Auxiliary variable not included in imputation model 

  MI-derPassive INT-within 1.479 (0.016) 0.511 (0.011) 0.470 (0.002) 2.448 (0.051) 17.341 0.001 (0.001) 

 INT-across 1.094 (0.015) 0.476 (0.011) 0.473 (0.002) 1.422 (0.036) 10.073 0.107 (0.010) 

 INT-across2 -1.037 (0.024) 0.761 (0.017) 0.671 (0.003) 1.654 (0.053) 11.717 0.957 (0.006) 
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MI-regActive INT-within 3.258 (0.022) 0.684 (0.015) 0.582 (0.007) 11.081 (0.128) 78.497 0 (0) 

 INT-across 2.252 (0.050) 1.587 (0.036) 1.769 (0.048) 7.587 (0.663) 53.746 0.539 (0.016) 

MI-redActive INT-within 3.433 (0.025) 0.781 (0.017) 0.605 (0.008) 12.397 (0.181) 87.819 0 (0) 

 INT-across 2.001 (0.026) 0.818 (0.018) 0.805 (0.009) 4.674 (0.146) 33.110 0.198 (0.013) 

 INT-across2 -0.950 (0.024) 0.756 (0.017) 0.654 (0.002) 1.473 (0.049) 10.435 1 (0) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.319 (0.012) 0.366 (0.008) 0.378 (0.001) 0.236 (0.009) 1.672 1 (0) 

 INT-across 0.039 (0.012) 0.379 (0.008) 0.380 (0.001) 0.145 (0.006) 1.027 1 (0) 

 INT-across2 -1.104 (0.024) 0.756 (0.017) 0.677 (0.003) 1.789 (0.057) 12.673 0.954 (0.007) 

MI-regActive INT-within 0.419 (0.012) 0.394 (0.009) 0.406 (0.001) 0.331 (0.012) 2.345 1 (0) 

 INT-across 1.642 (0.120) 3.807 (0.085) 3.516 (0.057) 17.172 (1.684) 121.645 0.991 (0.003) 

MI-redActive INT-within 0.418 (0.012) 0.381 (0.009) 0.389 (0.001) 0.320 (0.011) 2.267 1 (0) 

 INT-across 0.045 (0.012) 0.383 (0.009) 0.388 (0.001) 0.149 (0.007) 1.056 1 (0) 

 INT-across2 -1.073 (0.023) 0.741 (0.017) 0.682 (0.002) 1.700 (0.056) 12.043 0.995 (0.002) 

MNAR 

Auxiliary variable not included in imputation model 

  MI-derPassive INT-within 1.487 (0.016) 0.515 (0.012) 0.470 (0.002) 2.476 (0.052) 17.540 0.001 (0.001) 

 INT-across 1.096 (0.015) 0.485 (0.011) 0.473 (0.002) 1.437 (0.037) 10.180 0.103 (0.01) 

 INT-across2 -1.345 (0.021) 0.675 (0.015) 0.658 (0.003) 2.264 (0.06) 16.038 0.332 (0.015) 

MI-regActive INT-within 3.384 (0.016) 0.498 (0.011) 0.541 (0.004) 11.701 (0.111) 82.889 0 (0) 

 INT-across 2.371 (0.062) 1.953 (0.044) 2.255 (0.050) 9.430 (0.793) 66.801 0.666 (0.015) 

MI-redActive INT-within 3.404 (0.016) 0.519 (0.012) 0.539 (0.007) 11.860 (0.119) 84.015 0 (0) 

 INT-across 1.878 (0.021) 0.661 (0.015) 0.719 (0.007) 3.963 (0.092) 28.074 0.1 (0.009) 

 INT-across2 -1.261 (0.02) 0.637 (0.014) 0.646 (0.002)  1.996 (0.054) 14.139 0.483 (0.016) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.408 (0.012) 0.377 (0.008) 0.380 (0.001) 0.309 (0.011) 2.189 1 (0) 

 INT-across 0.042 (0.012) 0.382 (0.009) 0.378 (0.001) 0.148 (0.007) 1.048 1 (0) 

 INT-across2 -1.367 (0.021) 0.679 (0.015) 0.667 (0.003) 2.33 (0.062) 16.506 0.323 (0.015) 

MI-regActive INT-within 0.490 (0.013) 0.398 (0.009) 0.406 (0.001) 0.398 (0.015) 2.819 1 (0) 
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 INT-across 2.505 (0.159) 5.024 (0.112) 4.295 (0.054) 31.492 (2.419) 223.087 0.957 (0.006) 

MI-redActive INT-within 0.480 (0.012) 0.387 (0.009) 0.392 (0.001) 0.380 (0.014) 2.692 1 (0) 

 INT-across 0.045 (0.013) 0.396 (0.009) 0.389 (0.001) 0.159 (0.007) 1.126 1 (0) 

 INT-across2 -1.325 (0.021) 0.661 (0.015) 0.673 (0.002) 2.191 (0.058) 15.521 0.455 (0.016) 
 

*Note that since missingness in MAR2A is associated with an auxiliary variable, when the auxiliary variable was not included in the imputation, the imputation 
model is misspecified and the missing data mechanism becomes an MNAR scenario. 

  



MULTIPLE IMPUTATION IN PROPENSITY SCORE MATCHING 

50 

Table A5. Main simulation results: bias, standard error mean squared error (MSE), relative mean squared error (rMSE), and 
coverage calculated using MI-regPassive and MI-derPassive when )* was missing MAR2B and 256 was missing under various 
missing data mechanisms (aux_MCAR, aux_MAR1, and aux_MAR2). Monte Carlo standard errors are in parentheses. 
 

MI Strategy  Standard Error    

Imputation Integration Bias Empirical Bootstrap MSE rMSE Coverage 

Fully observed aux      

   MI-derPassive INT-within -0.019 (0.012) 0.381 (0.009) 0.378 (0.001) 0.146 (0.006) 1.032 1 (0) 

 INT-across -0.205 (0.012) 0.394 (0.009) 0.381 (0.001) 0.197 (0.008) 1.394 1 (0) 

 INT-across2 -1.016 (0.021) 0.652 (0.015) 0.682 (0.003) 1.457 (0.048) 10.319 0.993 (0.003) 

aux_MCAR 

Default imputation order 

  MI-derPassive INT-within 0.085 (0.012) 0.381 (0.009) 0.550 (0.006) 0.152 (0.007) 1.079 1 (0) 

 INT-across -0.152 (0.013) 0.402 (0.009) 0.499 (0.004) 0.184 (0.008) 1.304 1 (0) 

 INT-across2 -0.982 (0.021) 0.671 (0.015) 0.683 (0.002) 1.415 (0.048) 10.024 1 (0) 

MI-regPassive INT-within 0.087 (0.012) 0.378 (0.008) 0.533 (0.006) 0.150 (0.007) 1.065 1 (0) 

 INT-across -0.143 (0.013) 0.413 (0.009) 0.489 (0.003) 0.191 (0.008) 1.352 1 (0) 

 INT-across2 -0.996 (0.021) 0.666 (0.015) 0.685 (0.002) 1.436 (0.046) 10.173 1 (0) 

Reverse imputation order 

   MI-derPassive INT-within 0.028 (0.012) 0.382 (0.009) 0.550 (0.006) 0.147 (0.006) 1.040 1 (0)  

 INT-across -0.191 (0.012) 0.391 (0.009) 0.500 (0.004) 0.189 (0.008) 1.340 1 (0) 

 INT-across2 -1.01 (0.021) 0.671 (0.015) 0.682 (0.002) 1.471 (0.047) 10.418 0.999 (0.001) 

   MI-regPassive INT-within -0.196 (0.012) 0.372 (0.008) 0.532 (0.006) 0.177 (0.008) 1.251 1 (0) 

 INT-across -0.232 (0.013) 0.405 (0.009) 0.489 (0.003) 0.218 (0.009) 1.543 1 (0) 

 INT-across2 -1.002 (0.021) 0.668 (0.015) 0.684 (0.002) 1.450 (0.045) 10.273 1 (0) 

aux_MAR1 

Default imputation order 

  MI-derPassive INT-within 0.185 (0.012) 0.393 (0.009) 0.550 (0.006) 0.189 (0.008) 1.337 1 (0)  

 INT-across 0.011 (0.013) 0.414 (0.009) 0.499 (0.004) 0.171 (0.008) 1.211 1 (0) 

 INT-across2 -1.017 (0.021) 0.651 (0.015) 0.684 (0.002) 1.458 (0.045) 10.329 1 (0) 
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MI-regPassive INT-within 0.205 (0.013) 0.396 (0.009) 0.533 (0.006) 0.199 (0.008) 1.410 1 (0) 

 INT-across 0.014 (0.013) 0.414 (0.009) 0.488 (0.003) 0.171 (0.008) 1.213 1 (0) 

 INT-across2 -1.007 (0.021) 0.656 (0.015) 0.685 (0.002) 1.444 (0.045) 10.231 1 (0) 

Reverse imputation order 

   MI-derPassive INT-within 0.091 (0.012) 0.391 (0.009) 0.550 (0.006) 0.161 (0.007) 1.140 1 (0)  

 INT-across -0.069 (0.013) 0.408 (0.009) 0.500 (0.004) 0.171 (0.007) 1.213 1 (0) 

 INT-across2 -0.993 (0.021) 0.661 (0.015) 0.684 (0.002) 1.422 (0.045) 10.071 1 (0) 

   MI-regPassive INT-within -0.129 (0.012) 0.379 (0.008) 0.534 (0.006) 0.160 (0.007) 1.135 1 (0) 

 INT-across -0.087 (0.013) 0.403 (0.009) 0.489 (0.003) 0.170 (0.008) 1.201 1 (0) 

 INT-across2 -0.982 (0.021) 0.650 (0.015) 0.685 (0.002) 1.385 (0.043) 9.813 1 (0) 

aux_MAR2 

Default imputation order 

  MI-derPassive INT-within -0.060 (0.012) 0.390 (0.009) 0.550 (0.006) 0.155 (0.006) 1.100 1 (0)  

 INT-across -0.374 (0.013) 0.412 (0.009) 0.500 (0.004) 0.310 (0.012) 2.194 1 (0) 

 INT-across2 -0.994 (0.021) 0.660 (0.015) 0.683 (0.002) 1.422 (0.044) 10.076 1 (0) 

MI-regPassive INT-within -0.049 (0.013) 0.396 (0.009) 0.533 (0.006) 0.159 (0.006) 1.128 1 (0) 

 INT-across -0.369 (0.013) 0.408 (0.009) 0.489 (0.003) 0.302 (0.012) 2.141 1 (0) 

 INT-across2 -1.001 (0.021) 0.656 (0.015) 0.685 (0.002) 1.431 (0.043) 10.137 0.999 (0.001) 

Reverse imputation order 

   MI-derPassive INT-within -0.068 (0.012) 0.390 (0.009) 0.549 (0.006) 0.157 (0.006) 1.111 1 (0)  

 INT-across -0.369 (0.013) 0.412 (0.009) 0.500 (0.004) 0.305 (0.012) 2.163 1 (0) 

 INT-across2 -0.996 (0.021) 0.652 (0.015) 0.683 (0.002) 1.416 (0.043) 10.032 0.999 (0.001) 

   MI-regPassive INT-within -0.308 (0.012) 0.391 (0.009) 0.533 (0.006) 0.248 (0.010) 1.754 1 (0) 

 INT-across -0.414 (0.013) 0.411 (0.009) 0.489 (0.003) 0.340 (0.013) 2.410 1 (0) 

 INT-across2 -0.987 (0.021) 0.665 (0.015) 0.685 (0.002) 1.417 (0.043) 10.039 1 (0) 
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Table A6. Summary statistics, missing values, and standardized differences (pre-matching and post-matching in commonly 
applied methods) in DIETFITS trial participants (N=609). 
 

 

*post-matching standardized differences were measured both in the original dataset with missingness and the analytical datasets (e.g. complete cases for 
complete cases analysis and imputed dataset for mean imputation) 

  

Variable Summary Statistics Standardized Difference 

Intervention (N=97) Control (N=512) Pre-
matching 

Complete Case Analysis Mean 
Imputation 

Mean Imputation Missing 
Indicator 

Summary Missing Summary Missing  original complete cases original original imputed original 

Age (years) 39.38±6.06 5 
(5.15%) 

41.23±6.78 127 
(24.80%) 

-0.29 -0.4 0.08 - 0.04 0.01 0.11 

Sex (female) 62 (63.92%) 0 284 (55.47%) 0 0.17 -0.21 0.02 0 0.11 0.11 -0.11 

Race 
 

1 
(1.03%) 

 
5 (0.98%) -       

Caucasian 52 (53.61%) - 302 (58.98%) - -0.11 -0.23 0.07 - -0.23 0.21 -0.25 

Hispanic 27 (27.84%) - 103 (20.12%) - 0.18 0.16 0 - 0.22 -0.02 0.19 

Black 3 (3.09%) - 20 (3.91%) - -0.04 0.22 0.09 - -0.06 -0.15 -0.1 

Asian/Pacific 
Islander 

7 (7.22%) - 57 (11.13%) - -0.14 -0.11 -0.15 - -0.07 -0.21 0.03 

Other 7 (7.22%) - 25 (4.88%) - 0.1 0.14 0 - 0 0 0 

Weight (kg) 
change 6 
months 

-6.19±5.19 8 
(8.25%) 

-7.45±6.11 135 
(26.37%) 

0.22 0.38 -0.02 - -0.02 0 -0.11 

Class 
attendance 6 
months (%) 

76.86±17.01 0 72.88±22.47 0 0.2 -0.17 -0.06 0 -0.19 -0.19 -0.06 



LING ET AL. 

53 
 

Table A7. Post-matching standardized differences for all multiple imputation (MI) methods in DIETFITS trial participants (N=609). 
Note that those whose absolute values are above 0.1 are bolded. 
 

MI Method Dataset 
Age 

(years) 
Sex 

(female) 

Race 
Weight (kg) 

change 6 
months 

Class 
attendance 
6 months 

(%) 
   

Caucasian    Hispanic    Black 

   
Asian/Pacific 

Islander 
   

Other 

   Auxiliary variable not included in imputation model    

derPassive-within original -0.02 0.03 -0.31 0.21 0.04 0.02 0.02 0.11 0 

  imputed 0.02 0.03 0.04 -0.01 -0.01 -0.01 0 0.01 0 

derPassive-across original 0.19 -0.16 -0.23 0.12 0 0.07 -0.04 0.07 0.13 

 imputed 0.17 -0.16 -0.06 0.02 -0.06 0 0.13 -0.05 0.13 

derPassive-across2 original 0.09 -0.09 -0.38 0.3 0.07 -0.07 0.1 0.13 0.09 

 imputed 0.07 -0.09 -0.08 -0.05 0.07 0.09 0.13 0.04 0.09 

regActive-within original -0.02 0.12 -0.31 0.31 -0.02 0.03 -0.09 0.04 0.37 

 imputed -0.04 0.12 0.05 -0.01 0.04 -0.13 0.05 -0.03 0.37 

regActive-across original 0.07 0.02 -0.17 0.24 -0.06 0 -0.19 0.3 0.28 

 imputed 0.07 0.02 0.23 -0.05 -0.1 -0.29 0.09 0.08 0.28 

regActive-across2 original 0.03 0.06 -0.32 0.22 0.26 0 -0.09 0.03 0.02 

 imputed 0.03 0.06 0.06 -0.05 0.15 -0.08 -0.04 0.03 0.02 

redActive-within original -0.08 0.03 -0.31 0.24 -0.03 0.06 -0.04 0.09 -0.02 

  imputed 0 0.03 0.02 -0.03 -0.01 -0.01 0.05 0 -0.02 

redActive-across original 0.08 0.19 -0.28 0.33 0 0 -0.2 0.2 -0.09 

 imputed 0.06 0.19 0 -0.05 0 0.15 0 0.19 -0.09 

redActive-across2 original 0.03 0.06 -0.32 0.22 0.26 0 -0.09 0.03 0.02 

 imputed 0.03 0.06 0.06 -0.05 0.15 -0.08 -0.04 0.03 0.02 

   Auxiliary variable included in imputation model 

derPassive-within original -0.1 -0.01 -0.29 0.2 -0.02 0.04 0.02 -0.11 -0.02 

  imputed -0.07 -0.01 -0.07 0.08 0 -0.01 0.03 -0.06 -0.02 

derPassive-across original -0.14 0.02 -0.29 0.27 -0.1 -0.03 0.05 -0.06 -0.11 

 imputed -0.12 0.02 -0.02 0.09 0 0.09 -0.17 -0.01 -0.11 
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derPassive-across2 original -0.23 -0.02 -0.27 0.24 -0.15 -0.03 0.1 -0.18 -0.06 

 imputed -0.2 -0.02 0.02 0.05 -0.1 0.09 -0.11 -0.05 -0.06 

regActive-within original -0.17 -0.01 -0.33 0.23 -0.04 0.05 0.05 -0.04 0.34 

 imputed -0.11 -0.01 0.01 -0.13 0.07 0.15 0.03 0.37 0.34 

regActive-across original -0.11 -0.07 -0.25 0.05 -0.06 0.15 0.1 0.02 0.32 

 imputed -0.13 -0.07 -0.02 -0.16 0.07 0.17 0.13 0.33 0.32 

regActive-across2 original -0.12 -0.11 -0.4 0.21 0.15 0.11 0 -0.01 -0.06 

 imputed -0.09 -0.11 -0.19 0.14 0.15 0 0.04 -0.06 -0.06 

redActive-within original -0.07 -0.01 -0.29 0.19 0.01 0.03 -0.01 -0.08 -0.07 

  imputed -0.04 -0.01 -0.07 0.09 0.02 0 0 -0.04 -0.07 

redActive-across original -0.08 -0.13 -0.36 0.12 0.15 0.19 0 -0.06 -0.06 

 imputed -0.08 -0.13 -0.15 0.14 0.07 -0.04 0.04 -0.07 -0.06 

redActive-across2 original -0.12 -0.11 -0.4 0.21 0.15 0.11 0 -0.01 -0.06 

 imputed -0.09 -0.11 -0.19 0.14 0.15 0 0.04 -0.06 -0.06 
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Table A8. Sensitivity simulation results (with reduced confounding effects): balance diagnosis and treatment effect estimation 
results using commonly applied missing data method before propensity score matching (PSM), in reference to applying PSM to 
full data without missingness (Monte Carlo standard errors in parentheses). MDM=missing data mechanism, CC = complete-case 
analysis, CVA = complete-variable analysis.  
 

   Standard Error     
Post-Matching Standardized 

Difference 

MDM Method Bias Empirical Robust MSE rMSE Coverage 
Percentage 

Matched 
Underlying 
data X1 X2 

Full 
Data NA 0.001 0.298 0.310 0.089 1.000 0.960 1.000 - 0 0 

MCAR CC 
-0.009 

(0.014) 
0.429 
(0.01) 

0.439 
(0.001) 

0.184 
(0.008) 2.076 

0.955 
(0.007) 0.999 - 0 0 

 CVA 
1.732 

(0.014) 
0.44 

(0.01) 
0.435 

(0.001) 
3.194 

(0.048) 35.975 
0.028 

(0.005) 1 - 0 0.313 

 

Mean 
Imputation 

0.855 
(0.012) 

0.377 
(0.008) 

0.378 
(0) 

0.873 
(0.021) 9.838 

0.387 
(0.015) 1 original data 0 0.156 

         imputed data 0 0 

 

Missing 
Indicator 

0.858 
(0.012) 

0.373 
(0.008) 

0.379 
(0) 

0.876 
(0.021) 9.867 

0.383 
(0.015) 1 full data 0 0.157 

         observed part 0 0.14 

         missing part NA 0.138 

MAR1 CC 
-1.69 

(0.02) 
0.632 

(0.014) 
0.649 

(0.002) 
3.256 
(0.07) 36.672 

0.269 
(0.014) 1 - 0 0 

 CVA 
1.729 

(0.014) 
0.439 
(0.01) 

0.434 
(0.001) 

3.181 
(0.048) 35.831 

0.023 
(0.005) 1 - 0 0.314 

 

Mean 
Imputation 

2.763 
(0.015) 

0.477 
(0.011) 

0.484 
(0.001) 

7.863 
(0.084) 88.566 0 (0) 0.722 original data -0.003 0.483 

         imputed data -0.003 -0.003 

 

Missing 
Indicator 

2.75 
(0.015) 

0.477 
(0.011) 

0.484 
(0.001) 

7.792 
(0.084) 87.769 0 (0) 0.722 full data -0.001 0.485 

         observed part -0.002 0.26 

         missing part NA 0.26 

MAR2A CC 
-0.679 

(0.017) 
0.529 

(0.012) 
0.531 

(0.001) 
0.741 

(0.027) 8.349 
0.751 

(0.014) 1 - 0.001 0 

 CVA 
1.74 

(0.014) 
0.431 
(0.01) 

0.434 
(0.001) 

3.213 
(0.047) 36.187 

0.029 
(0.005) 1 - 0 0.314 

 

Mean 
Imputation 

3.203 
(0.014) 

0.446 
(0.01) 

0.443 
(0.001) 

10.457 
(0.092) 117.786 0 (0) 0.803 original data -0.001 0.57 

         imputed data -0.001 -0.001 

 

Missing 
Indicator 

3.208 
(0.014) 

0.437 
(0.01) 

0.444 
(0.001) 

10.484 
(0.089) 118.086 0 (0) 0.803 full data 0 0.571 

          observed part 0 0.312 
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         missing part NA 0.312 

MNAR CC 
-0.778 

(0.017) 
0.527 

(0.012) 
0.531 

(0.001) 
0.882 

(0.028) 9.94 
0.663 

(0.015) 1 - 0 0 

 CVA 
1.739 

(0.014) 
0.43 

(0.01) 
0.434 

(0.001) 
3.209 

(0.047) 36.143 
0.023 

(0.005) 1 - 0 0.314 

 

Mean 
Imputation 

3.213 
(0.014) 

0.453 
(0.01) 

0.446 
(0.001) 

10.528 
(0.092) 118.59 0 (0)  original data 0 0.573 

        0.797 imputed data 0 0 

 

Missing 
Indicator 

3.214 
(0.014) 

0.445 
(0.01) 

0.446 
(0.001) 

10.526 
(0.091) 118.57 0 (0) 0.797 full data 0 0.573 

         observed part 0 0.312 

         missing part NA 0.31 
 

*The percentage of treated patients being matched using CC is calculated from complete cases. 
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Table A9. Sensitivity simulation results (with reduced confounding effects): percentage of treated subjects matched and 
standardized difference of covariates after matching in various multiple imputation (MI) strategies. For INT-across and INT-
across2, standardized differences were also calculated on the observed and missing part of the imputed data separately. 
MDM=missing data mechanism. 
 

     Post-matching standardized difference 

 MI Strategy   Full Data  Imputed Data  Observed Part  Missing Part 

MDM Imputation Integration Percentage 
Matched 

 X1 X2  X1 X2  X1 X2  X1 X2 

MCAR           

   Auxiliary variable not included in imputation model           
 

MI-derPassive INT-within 0.652  0 0.126  0 0  - -  - - 
  

INT-across 0.633  -0.002 0.008  -0.002 0.006  0.036 -0.114  -0.046 0.125 
  

INT-across2 0.636  -0.002 0.012  -0.002 0.01  0.039 -0.108  -0.048 0.127 
 

MI-regActive INT-within 0.791  0.128 0.6  0.128 -0.127  - -  - - 
  

INT-across 0.722  -0.004 0.345  -0.004 0.01  0.01 0.003  -0.019 0.022 
 

MI-redActive INT-within 0.792  0 0.656  0 0  - -  - - 
  

INT-across 0.738  0 0.345  0 0.009  0.004 -0.002  -0.004 0.021 
  

INT-across2 0.782  0 0.43  0 0.045  0.001 0.001  -0.002 0.079 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.655  0 0.024  0 0  - -  - - 
  

INT-across 0.652  0.006 -0.008  0.006 -0.001  -0.115 -0.088  0.098 0.066 
  

INT-across2 0.653  0.01 -0.011  0.01 -0.003  -0.123 -0.087  0.11 0.062 
 

MI-regActive INT-within 0.659  0.006 0.04  0.006 -0.011  - -  - - 
  

INT-across 0.653  -0.028 0.025  -0.028 0.01  -0.122 0.053  0.049 -0.039 
 

MI-redActive INT-within 0.659  0 0.051  0 0  - -  - - 
  

INT-across 0.653  -0.031 0.029  -0.031 0.014  -0.203 0.086  0.11 -0.059 
  

INT-across2 0.652  -0.043 0.04  -0.043 0.026  -0.214 0.112  0.1 -0.061 

MAR1          

   Auxiliary variable not included in imputation model          
 

MI-derPassive INT-within 0.656  0 0.114  0 0  - -  - - 
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INT-across 0.617  0.002 -0.028  0.002 -0.015  -0.748 -1.105  0.205 0.647 

  
INT-across2 0.621  0.008 -0.034  0.008 -0.021  -0.746 -1.109  0.201 0.645 

 
MI-regActive INT-within 0.877  0.368 0.752  0.368 0.322  - -  - - 

  
INT-across 0.666  0.562 0.531  0.562 0.344  -0.16 -0.397  0.714 0.708 

 
MI-redActive INT-within 0.772  0 0.483  0 -0.006  - -  - - 

  
INT-across 0.628  0.002 0.031  0.002 -0.178  -0.746 -1.013  0.241 0.466 

  
INT-across2 0.67  0.003 0.219  0.003 -0.029  -0.78 -0.84  0.26 0.517 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.666  0 0.065  0 -0.001  - -  - - 
  

INT-across 0.647  0.026 -0.031  0.026 -0.069  -0.895 -1.01  0.467 0.404 
  

INT-across2 0.652  0.022 -0.027  0.022 -0.06  -0.953 -0.974  0.519 0.375 
 

MI-regActive INT-within 0.785  0.351 0.42  0.351 0.338  - -  - - 
  

INT-across 0.745  0.386 0.382  0.386 0.321  -0.672 -0.663  0.856 0.741 
 

MI-redActive INT-within 0.669  0 0.085  0 -0.001  - -  - - 
  

INT-across 0.643  0.012 -0.015  0.012 -0.069  -0.921 -1.008  0.46 0.405 
  

INT-across2 0.651  0.013 -0.016  0.013 -0.061  -0.972 -0.982  0.506 0.384 

MAR2A           

   Auxiliary variable not included in imputation model           
 

MI-derPassive INT-within 0.754  0 0.379  0 0  - -  - - 
  

INT-across 0.686  0 0.146  0 -0.017  -0.39 -1.182  0.226 0.558 
  

INT-across2 0.695  0 0.171  0 -0.016  -0.392 -1.185  0.212 0.563 
 

MI-regActive INT-within 0.881  0.076 0.698  0.076 0.078  - -  - - 
  

INT-across 0.571  0.026 0.428  0.026 0.021  -0.038 -0.472  0.02 0.204 
 

MI-redActive INT-within 0.863  0 0.656  0 0  - -  - - 
  

INT-across 0.734  0 0.348  0 -0.095  -0.331 -0.99  0.107 0.221 
  

INT-across2 0.78  0 0.396  0 -0.09  -0.403 -1.061  0.14 0.245 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.669  0 0.071  0 -0.001  - -  - - 
  

INT-across 0.652  -0.014 0.013  -0.014 -0.03  -0.441 -1.283  0.294 0.546 
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INT-across2 0.653  -0.025 0.023  -0.025 -0.019  -0.473 -1.257  0.308 0.541 

 
MI-regActive INT-within 0.729  0.122 0.248  0.122 0.166  - -  - - 

  
INT-across 0.701  0.131 0.177  0.131 0.126  -0.374 -1.061  0.51 0.614 

 
MI-redActive INT-within 0.672  0 0.084  0 -0.001  - -  - - 

  
INT-across 0.652  -0.018 0.017  -0.018 -0.032  -0.476 -1.23  0.341 0.48 

  
INT-across2 0.652  -0.026 0.024  -0.026 -0.023  -0.506 -1.203  0.361 0.465 

MNAR           

   Auxiliary variable not included in imputation model           
 

MI-derPassive INT-within 0.754  0 0.377  0 0  - -  - - 
  

INT-across 0.686  0 0.143  0 -0.017  -0.413 -1.245  0.233 0.571 
  

INT-across2 0.694  0 0.168  0 -0.017  -0.416 -1.247  0.219 0.576 
 

MI-regActive INT-within 0.888  0.117 0.733  0.117 0.107  - -  - - 
  

INT-across 0.524  0.041 0.437  0.041 0.032  0.066 -0.41  -0.045 0.179 
 

MI-redActive INT-within 0.863  0 0.652  0 0  - -  - - 
  

INT-across 0.729  0 0.329  0 -0.107  -0.346 -1.08  0.093 0.229 
  

INT-across2 0.776  0 0.381  0 -0.099  -0.418 -1.142  0.132 0.256 

   Auxiliary variable included in imputation model           
 

MI-derPassive INT-within 0.671  0 0.079  0 -0.001  - -  - - 
  

INT-across 0.652  -0.012 0.011  -0.012 -0.039  -0.457 -1.339  0.301 0.542 
  

INT-across2 0.652  -0.022 0.021  -0.022 -0.029  -0.488 -1.31  0.317 0.531 
 

MI-regActive INT-within 0.747  0.204 0.3  0.204 0.208  - -  - - 
  

INT-across 0.709  0.24 0.246  0.24 0.184  -0.294 -1.027  0.623 0.636 
 

MI-redActive INT-within 0.675  0 0.096  0 -0.001  - -  - - 
  

INT-across 0.652  -0.012 0.011  -0.012 -0.047  -0.494 -1.281  0.364 0.455 
  

INT-across2 0.652  -0.02 0.019  -0.02 -0.037  -0.528 -1.251  0.387 0.441 
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Table A10. Sensitivity simulation results (with reduced confounding effects): bias, standard error, mean squared error (MSE), 
relative mean squared error (rMSE), and coverage (calculated using bootstrap standard error) results using various multiple 
imputation (MI) strategies in MCAR, MAR1, MAR2A, and MNAR. (Monte Carlo standard errors in parentheses). 
 

MI Strategy  Standard Error    

Imputation Integration Bias Empirical Bootstrap MSE rMSE Coverage 

MCAR 

Auxiliary variable not included in imputation model 

  MI-derPassive INT-within -0.001 (0.01) 0.316 (0.007) 0.315 (0) 0.099 (0.004) 1.115 1 (0) 
 

INT-across -0.355 (0.011) 0.348 (0.008) 0.348 (0.001) 0.247 (0.009) 2.782 1 (0) 
 

INT-across2 0.013 (0.013) 0.424 (0.009) 0.433 (0.001) 0.18 (0.008) 2.028 1 (0) 

MI-regActive INT-within 0.973 (0.011) 0.344 (0.008) 0.36 (0.003) 1.064 (0.024) 11.985 0.042 (0.006) 
 

INT-across -0.423 (0.014) 0.45 (0.01) 0.548 (0.002) 0.381 (0.014) 4.292 1 (0) 

MI-redActive INT-within 0.967 (0.011) 0.343 (0.008) 0.343 (0.001) 1.052 (0.024) 11.85 0.01 (0.003) 
 

INT-across -1.386 (0.018) 0.584 (0.013) 0.525 (0.002) 2.261 (0.055) 25.468 0.004 (0.002) 
 

INT-across2 0.015 (0.014) 0.44 (0.01) 0.436 (0.001) 0.194 (0.009) 2.185 1 (0) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.031 (0.008) 0.266 (0.006) 0.279 (0) 0.072 (0.003) 0.811 1 (0) 
 

INT-across -0.044 (0.01) 0.317 (0.007) 0.356 (0.001) 0.103 (0.005) 1.16 1 (0) 
 

INT-across2 0.004 (0.014) 0.458 (0.01) 0.444 (0.001) 0.209 (0.01) 2.354 1 (0) 

MI-regActive INT-within 0.169 (0.009) 0.27 (0.006) 0.284 (0) 0.101 (0.005) 1.138 1 (0) 
 

INT-across 0.231 (0.01) 0.329 (0.007) 0.355 (0.001) 0.162 (0.007) 1.825 1 (0) 

MI-redActive INT-within 0.17 (0.009) 0.269 (0.006) 0.282 (0) 0.101 (0.005) 1.138 1 (0) 
 

INT-across -0.14 (0.01) 0.325 (0.007) 0.413 (0.001) 0.125 (0.006) 1.408 1 (0) 
 

INT-across2 0.013 (0.014) 0.456 (0.01) 0.448 (0.001) 0.208 (0.01) 2.343 1 (0) 

MAR1 

Auxiliary variable not included in imputation model 

  MI-derPassive INT-within 0.149 (0.012) 0.374 (0.008) 0.372 (0.001) 0.162 (0.007) 1.825 1 (0) 
 

INT-across 0.203 (0.012) 0.385 (0.009) 0.396 (0.002) 0.189 (0.008) 2.129 1 (0) 
 

INT-across2 -2.102 (0.019) 0.609 (0.014) 0.607 (0.002) 4.791 (0.082) 53.966 0 (0) 



LING ET AL. 

61 
 

MI-regActive INT-within 1.495 (0.012) 0.381 (0.009) 0.406 (0.001) 2.381 (0.037) 26.82 0 (0) 
 

INT-across -0.197 (0.033) 1.057 (0.024) 1.114 (0.008) 1.154 (0.054) 12.999 1 (0) 

MI-redActive INT-within 1.496 (0.012) 0.385 (0.009) 0.397 (0.001) 2.386 (0.038) 26.876 0 (0) 
 

INT-across 0.273 (0.077) 2.436 (0.054) 2.089 (0.016) 6.001 (0.232) 67.595 1 (0) 
 

INT-across2 -1.972 (0.019) 0.591 (0.013) 0.608 (0.001) 4.236 (0.075) 47.714 0 (0) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.198 (0.009) 0.283 (0.006) 0.291 (0) 0.119 (0.005) 1.34 1 (0) 
 

INT-across -0.059 (0.012) 0.392 (0.009) 0.339 (0.001) 0.157 (0.008) 1.768 1 (0) 
 

INT-across2 -2.139 (0.02) 0.617 (0.014) 0.609 (0.002) 4.956 (0.085) 55.824 0 (0) 

MI-regActive INT-within 0.241 (0.01) 0.316 (0.007) 0.31 (0.001) 0.158 (0.007) 1.78 1 (0) 
 

INT-across 0.097 (0.013) 0.42 (0.009) 0.579 (0.014) 0.186 (0.015) 2.095 1 (0) 

MI-redActive INT-within 0.251 (0.01) 0.316 (0.007) 0.31 (0) 0.163 (0.007) 1.836 1 (0) 
 

INT-across -0.062 (0.014) 0.433 (0.01) 0.406 (0.003) 0.191 (0.011) 2.151 1 (0) 
 

INT-across2 -2.082 (0.02) 0.617 (0.014) 0.616 (0.002) 4.715 (0.082) 53.11 0 (0) 

MAR2A 

Auxiliary variable not included in imputation model 

  MI-derPassive INT-within 1.356 (0.012) 0.393 (0.009) 0.367 (0.001) 1.994 (0.037) 22.46 0 (0) 
 

INT-across 1.248 (0.018) 0.559 (0.013) 0.567 (0.005) 1.87 (0.058) 21.064 0.352 (0.015) 
 

INT-across2 -0.801 (0.017) 0.526 (0.012) 0.511 (0.001) 0.918 (0.029) 10.34 0.994 (0.002) 

MI-regActive INT-within 2.427 (0.012) 0.366 (0.008) 0.351 (0) 6.025 (0.058) 67.866 0 (0) 
 

INT-across 3.362 (0.049) 1.559 (0.035) 1.408 (0.005) 13.732 (0.358) 154.677 0.035 (0.006) 

MI-redActive INT-within 2.426 (0.012) 0.365 (0.008) 0.351 (0) 6.017 (0.058) 67.775 0 (0) 
 

INT-across 4.829 (0.024) 0.757 (0.017) 0.873 (0.011) 23.891 (0.233) 269.108 0 (0) 
 

INT-across2 -0.705 (0.017) 0.529 (0.012) 0.523 (0.001) 0.776 (0.027) 8.741 1 (0) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.232 (0.009) 0.293 (0.007) 0.289 (0) 0.139 (0.006) 1.566 1 (0) 
 

INT-across -0.018 (0.011) 0.341 (0.008) 0.327 (0.001) 0.116 (0.005) 1.307 1 (0) 
 

INT-across2 -0.886 (0.017) 0.543 (0.012) 0.524 (0.001) 1.08 (0.032) 12.165 0.979 (0.005) 

MI-regActive INT-within 0.525 (0.01)  0.327 (0.007) 0.327 (0) 0.382 (0.014) 4.303 1 (0) 
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INT-across 0.731 (0.052) 1.644 (0.037) 1.322 (0.008) 3.235 (0.154) 36.439 1 (0) 

MI-redActive INT-within 0.524 (0.01) 0.327 (0.007) 0.327 (0) 0.381 (0.014) 4.292 1 (0) 
 

INT-across -0.077 (0.012) 0.385 (0.009) 0.435 (0.005) 0.154 (0.008) 1.735 1 (0) 
 

INT-across2 -0.815 (0.017) 0.526 (0.012) 0.512 (0.001) 0.94 (0.029) 10.588 0.999 (0.001) 

MNAR 

Auxiliary variable not included in imputation model 

  MI-derPassive INT-within 1.369 (0.013) 0.404 (0.009) 0.368 (0.001) 2.038 (0.038) 22.956 0 (0) 
 

INT-across 1.266 (0.019) 0.598 (0.013) 0.571 (0.005) 1.96 (0.067) 22.077 0.344 (0.015) 
 

INT-across2 -0.96 (0.016) 0.498 (0.011) 0.511 (0.001) 1.17 (0.031) 13.179 0.682 (0.015) 

MI-regActive INT-within 2.47 (0.012) 0.365 (0.008) 0.353 (0) 6.236 (0.059) 70.242 0 (0) 
 

INT-across 3.146 (0.047) 1.492 (0.033) 1.408 (0.005) 12.123 (0.321) 136.553 0.119 (0.01) 

MI-redActive INT-within 2.46 (0.012) 0.368 (0.008) 0.353 (0) 6.189 (0.059) 69.713 0 (0) 
 

INT-across 4.852 (0.024) 0.763 (0.017) 0.84 (0.009) 24.124 (0.232) 271.732 0 (0) 
 

INT-across2 -0.801 (0.017) 0.529 (0.012) 0.525 (0.001) 0.922 (0.029) 10.385 1 (0) 

Auxiliary variable included in imputation model 

   MI-derPassive INT-within 0.259 (0.009) 0.282 (0.006) 0.289 (0) 0.147 (0.006) 1.656 1 (0) 
 

INT-across -0.014 (0.011) 0.36 (0.008) 0.328 (0.001) 0.129 (0.007) 1.453 1 (0) 
 

INT-across2 -1.044 (0.016) 0.516 (0.012) 0.522 (0.001) 1.356 (0.036) 15.274 0.367 (0.015) 

MI-regActive INT-within 0.557 (0.01) 0.317 (0.007) 0.329 (0.001) 0.411 (0.013) 4.629 1 (0) 
 

INT-across 0.942 (0.053) 1.68 (0.038) 1.367 (0.008) 3.707 (0.163) 41.756 1 (0) 

MI-redActive INT-within 0.559 (0.01) 0.316 (0.007) 0.328 (0.001) 0.412 (0.013) 4.641 0.999 (0.001) 
 

INT-across -0.103 (0.013 0.416 (0.009) 0.449 (0.005) 0.184 (0.011) 2.073 1 (0) 
 

INT-across2 -0.967 (0.016) 0.5 (0.011) 0.509 (0.001) 1.184 (0.032) 13.337 0.672 (0.015) 
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Table A11. Sensitivity simulation results: bias, standard error, mean squared error (MSE), and coverage (using bootstrap 
standard error) results using MI-derPassive INT-within strategy (auxiliary variable was not included in the imputation model) 
when varying the number of subjects, missing rate, or number of multiply imputed datasets compared to main simulation study 
(Monte Carlo standard errors in parentheses). (MDM = missing data mechanism, 8 indicates the number of multiply imputed 
datasets). The results from the main simulations were highlighted in grey as reference.  

 

MDM m 
Missing 
Rate (%) 

Number 
of 

Subjects Bias 

Standard Error 

MSE Coverage Empirical Bootstrap 

Varying the number of subjects 

MCAR 50 50 2000 -0.001 (0.01) 0.316 (0.007) 0.315 (0) 0.099 (0.004) 1 (0) 

MCAR 50 50 1000 -0.005 (0.122) 0.545 (0.012) 0.557 (0.001) 0.297 (0.095) 1 (0) 

MCAR 50 50 500 -0.005 (0.173) 0.772 (0.017) 0.786 (0.002) 0.596 (0.19) 1 (0) 

MCAR 50 50 250 0.042 (0.253) 1.131 (0.025) 1.087 (0.004) 1.282 (0.417) 1 (0) 

MAR1 50 50 2000 0.038 (0.014) 0.454 (0.01) 0.446 (0.001) 0.207 (0.011) 1 (0) 

MAR1 50 50 1000 0.11 (0.14) 0.626 (0.014) 0.63 (0.002) 0.404 (0.135) 1 (0) 

MAR1 50 50 500 0.22 (0.192) 0.859 (0.019) 0.878 (0.005) 0.786 (0.255) 1 (0) 

MAR1 50 50 250 0.374 (0.289) 1.294 (0.029) 1.138 (0.005) 1.814 (0.653) 1 (0) 

MAR2A 50 50 2000 1.356 (0.012) 0.393 (0.009) 0.367 (0.001) 1.994 (0.037) 0 (0) 

MAR2A 50 50 1000 1.478 (0.148) 0.659 (0.015) 0.676 (0.004) 2.619 (0.469) 1 (0) 

MAR2A 50 50 500 1.516 (0.208) 0.931 (0.021) 0.939 (0.007) 3.165 (0.757) 0 (0) 

MAR2A 50 50 250 1.624 (0.303) 1.353 (0.03) 1.195 (0.007) 4.466 (1.284) 0 (0) 

MNAR 50 50 2000 1.369 (0.013) 0.404 (0.009) 0.368 (0.001) 2.038 (0.038) 0 (0) 

MNAR 50 50 1000 1.471 (0.146) 0.653 (0.015) 0.675 (0.004) 2.591 (0.459) 0 (0) 

MNAR 50 50 500 1.531 (0.209) 0.933 (0.021) 0.947 (0.007) 3.214 (0.784) 0.995 (0.002) 

MNAR 50 50 250 1.651 (0.303) 1.354 (0.03) 1.214 (0.007) 4.56 (1.295) 0 (0) 

Varying missing rate 

MCAR 50 50 2000 -0.001 (0.01) 0.316 (0.007) 0.315 (0) 0.099 (0.004) 1 (0) 

MCAR 25 25 2000 0.006 (0.057) 0.361 (0.008) 0.37 (0.001) 0.13 (0.029) 1 (0) 

MCAR 10 10 2000 0.002 (0.036) 0.361 (0.008) 0.363 (0.001) 0.13 (0.018) 1 (0) 

MAR1 50 50 2000 0.038 (0.014) 0.454 (0.01) 0.446 (0.001) 0.207 (0.011) 1 (0) 
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MAR1 25 25 2000 0.021 (0.062) 0.39 (0.009) 0.389 (0.001) 0.153 (0.035) 1 (0) 

MAR1 10 10 2000 0.005 (0.036) 0.362 (0.008) 0.365 (0.001) 0.131 (0.019) 1 (0) 

MAR2A 50 50 2000 1.356 (0.012) 0.393 (0.009) 0.367 (0.001) 1.994 (0.037) 0 (0) 

MAR2A 25 25 2000 0.779 (0.061) 0.383 (0.009) 0.379 (0.001) 0.753 (0.101) 0.05(0.007) 

MAR2A 10 10 2000 0.202 (0.035) 0.355 (0.008) 0.358 (0.001) 0.167 (0.023) 1 (0) 

MNAR 50 50 2000 1.369 (0.013) 0.404 (0.009) 0.368 (0.001) 2.038 (0.038) 0 (0) 

MNAR 25 25 2000 0.759 (0.06) 0.379 (0.008) 0.378 (0.001) 0.721 (0.097) 0.066 (0.008) 

MNAR 10 10 2000 0.198 (0.035) 0.352 (0.008) 0.358 (0.001) 0.163 (0.023) 1 (0) 

Varying the number of multiply imputed dataset, m 

MCAR 50 50 2000 -0.001 (0.01) 0.316 (0.007) 0.315 (0) 0.099 (0.004) 1 (0) 

MCAR 10 50 2000 0.032 (0.039) 0.391 (0.009) 0.399 (0.001) 0.154 (0.022) 1 (0) 

MAR1 50 50 2000 0.038 (0.014) 0.454 (0.01) 0.446 (0.001) 0.207 (0.011) 1 (0) 

MAR1 10 50 2000 0.094 (0.046) 0.461 (0.01) 0.454 (0.001) 0.221 (0.034) 1 (0) 

MAR2A 50 50 2000 1.356 (0.012) 0.393 (0.009) 0.367 (0.001) 1.994 (0.037) 0 (0) 

MAR2A 10 50 2000 1.495 (0.048) 0.482 (0.011) 0.481 (0.002) 2.467 (0.152) 0 (0) 

MNAR 50 50 2000 1.369 (0.013) 0.404 (0.009) 0.368 (0.001) 2.038 (0.038) 0 (0) 

MNAR 10 50 2000 1.49 (0.048) 0.48 (0.011) 0.481 (0.002) 2.449 (0.151) 0.811 (0.012) 
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