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Bootstrapping Confidence Intervals For Robust Measures Of Association 
 

Jason E. King 
Baylor College of Medicine 

 
 
A Monte Carlo simulation study compared four bootstrapping procedures in generating confidence 
intervals for the robust Winsorized and percentage bend correlations. Results revealed the superior 
resiliency of the robust correlations over r, with neither outperforming the other. Unexpectedly, the 
bootstrapping procedures achieved roughly equivalent outcomes for each correlation. 
 
Key words: Robust methods, bootstrapping, percentage bend correlation, Winsorized correlation 
 
 

Introduction 
 
A number of “robust” (Box, 1953) analogs to 
traditional estimators, population parameters, 
and hypothesis-testing methods have seen 
development during the past 40 years. Robust 
procedures typically retain the statistical 
interpretations associated with classical 
procedures, but are more resistant to 
distributional non-normalities and outliers. The 
Pearson product-moment correlation is without 
question the most commonly used measure of 
linear association, yet is not robust to departures 
from normality, especially when the bivariate 
surface is non-normal and dependence exists 
(King, 2003). 

Two new robust alternatives to r appear 
promising. The Winsorized correlation (Devlin, 
Gnanadesikan, & Kettenring, 1975; 
Gnanadesikan & Kettenring, 1972; Wilcox, 
1993) and the percentage bend correlation 
(Wilcox, 1994, 1997) yield interpretations 
analogous to r and asymptotically equal zero 
under bivariate independence, yet possess 
properties that curb the influence of 
distributional non-normalities. 
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The Winsorized correlation (rw) is computed in 
an identical fashion to r except that a specified 
proportion of extreme scores in each tail are first 
Winsorized, that is, deleted and set equal to the 
most extreme score remaining in the tail of the 
distribution. The percentage bend correlation 
(rpb) is based on the percentage bend measures 
of location and midvariance and is less intuitive. 
See Wilcox (1994, 1997) for the relevant 
equations. 

Yet few researchers have explored these 
newer correlations, notably with respect to 
estimating confidence intervals and defining 
their sampling distributions. For statistics with 
no known sampling distribution, Efron’s (1979, 
1982) bootstrap has proven to be effective in a 
variety of contexts. The conjecture is that the 
sampling distribution of a statistic can be 
approximated by the distribution of a large 
number of resampled estimates of the statistic 
obtained from a single sample of observations. 

The distribution of resampled estimates 
forms an empirically-derived sampling 
distribution from which confidence intervals or 
other indices may be estimated, either for 
inferential or descriptive purposes (Thompson, 
1993). The usefulness of bootstrapping is 
evident because an increasing number of 
disciplines are now encouraging or requiring the 
reporting of confidence intervals (Thompson, 
2002; Vacha-Haase, Nilsson, Reetz, Lance, & 
Thompson, 2000; Wilkinson & APA Task Force 
on Statistical Inference, 1999). 

An “almost bewildering array” (Hall, 
1988, p. 927) of bootstrapping procedures is 
now available. These vary in the accuracy with 
which the bootstrap-generated interval spans the 
true interval. Accuracy is also contingent on the 
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type of statistic under examination. At the 
current level of knowledge, it is unknown which 
bootstrapping procedure produces the most 
accurate confidence intervals for rpb and rw. 
Although Wilcox (1993, 1994, 1997) compared 
Type I error rates for these robust correlations, 
only two studies (Wilcox, 1997; Wilcox & 
Muska, 2001) have examined the accuracy of 
bootstrapped confidence intervals for rpb, and 
none for rw. Clearly, more research is needed. 

The goal of this simulation study was to 
compare various means of bootstrapping 
confidence intervals for rw and rpb across a 
variety of conditions. The study compared four 
bootstrapping procedures, each of which has 
proven useful in some contexts: the ordinary 
percentile bootstrap (Efron, 1979), an adjusted 
bootstrap (Strube, 1988), the bias-corrected 
bootstrap (BC; Efron, 1981, 1982, 1985), and 
the bias-corrected and accelerated bootstrap 
(BCa; Efron, 1987). The Pearson r and Fisher’s 
inverse hyperbolic tangent transformation of r, 
rz, were included for comparative purposes, 
although the latter frequently fails to produce 
even asymptotically correct results (Duncan & 
Layard, 1973). 
 

Methodology 
 
The simulation procedure began by randomly 
generating 1,000,000 observations from a 
population with known characteristics, serving 
as a derived population. This step was necessary 
because the Winsorized and percentage bend 
correlation parameters (ρw and ρpb) will not 
necessarily exactly equal ρ under dependence 
conditions. The second step involved drawing m 
= 100 samples, each of size n, from the derived 
population and calculating sample estimates for 
each of the four correlational measures. Lastly, 
B = 500 bootstrap samples were drawn by 
sampling with replacement from each of the m 
samples and 95% confidence intervals calculated 
via each of the four bootstrapping procedures. 
Gamma (γ) and beta (β) are two constants that 
must be fixed in computing the Winsorized and 
percentage bend correlations, respectively. 
These were each set to .2 for all simulations. 

Real data often demonstrate excessive 
distributional non-normality (Bradley, 1977, 
1978; Micceri, 1989; Rasmussen, 1986; Stigler, 
1973; Wilcox, 1990) and such can moderate the 

accuracy of a bootstrapping procedure for a 
given statistic (Hall, 1988; Wilcox, 1997). Thus, 
the present study compared bootstrapped 
correlations across a wide range of conditions 
including nine distributional shape variations, 
one contaminated distribution, six mixed 
distributions, three independence and 
dependence conditions (i.e., population 
correlations of .0, .4, .8), and four sample sizes 
(i.e., ns of 20, 50, 100, 250). 

Four indices served as points of 
comparison for the bootstrapped correlations: 
Type I error rate, bias, efficiency, and interval 
width. The latter was constructed by modifying a 
ratio proposed by Efron (1988) such that the 
width of each bootstrap-estimated interval was 
divided by the width of a “true” (i.e., Monte 
Carlo-estimated) confidence interval. This 
required drawing an additional 10,000 samples, 
each of size n, from each simulated population 
to create the “true” sampling distributions. 

Simulation studies typically compare 
Type I error rates and other indices in an 
informal manner; however, a more formal 
analysis is useful for processing the large 
number of indices obtained in the present study. 
Analysis of Variance (ANOVA) is well suited 
for quantifying sources of variation. This 
procedure allowed for partitioning the 
systematic variance components affecting the 
indices (viz., correlational measure, 
bootstrapping procedure, distributional shape 
and type, sample size, and strength of bivariate 
relationship). 
 

Results 
 
Tables 1-5 and Figures 1-2 display 
representative results averaged across 
distributional shape. Disaggregated data and 
fuller explanations are available in King (2000). 
Efficiency varied little across the correlational 
measures and is not presented. 
 
Comparisons Among Bootstrapping Procedures 
 As regards Type I error rate (see Tables 
1, 2, and Figure 1) and bias (see Tables 3, 4, and 
Figure 2), no bootstrapping procedure emerged 
as unmistakably superior across a majority of 
conditions for either robust correlation (e.g., a  
Bootstrap by Correlation effect is absent in 
Tables 2 and 4).
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Table 1. Type I Error Rates Averaged Across All Distributional Conditions 

 
  n = 20  n = 50  n = 100  n = 250 
  r rz rw rpb  r rz rw rpb r rz rw rpb  r rz rw rpb 

ρ = 0  
   Percentile .06 .06 .03 .04  .07 .07 .06 .07 .05 .05 .05 .05  .07 .07 .04 .04 
   Adjusted .06 .06 .03 .04  .07 .07 .06 .07 .05 .05 .05 .05  .07 .07 .04 .04 
   BC .05 .05 .03 .05  .07 .07 .06 .06 .05 .05 .06 .05  .06 .06 .03 .04 
   BCa .05 .04 .03 .05  .07 .07 .05 .06 .06 .06 .06 .05  .07 .07 .04 .04 
ρ = .4  
   Percentile .11 .11 .03 .07  .08 .08 .04 .06 .07 .07 .04 .04  .08 .08 .05 .05 
   Adjusted .11 .11 .04 .08  .08 .08 .04 .06 .08 .08 .04 .04  .08 .08 .05 .05 
   BC .08 .08 .03 .06  .08 .08 .03 .06 .08 .08 .04 .04  .09 .09 .05 .05 
   BCa .09 .08 .04 .07  .09 .09 .04 .06 .10 .10 .04 .03  .11 .11 .04 .05 
ρ = .8  
   Percentile .09 .09 .06 .07  .06 .06 .06 .06 .06 .06 .06 .04  .07 .07 .05 .05 
   Adjusted .15 .15 .09 .12  .06 .06 .06 .06 .08 .08 .07 .07  .08 .08 .04 .05 
   BC .10 .10 .05 .05  .06 .06 .06 .07 .07 .07 .06 .04  .08 .08 .06 .05 
   BCa .12 .12 .06 .07   .07 .07 .05 .06  .10 .10 .06 .04   .09 .09 .06 .06 
Note. Italicized values are greater than two standard errors beyond the nominal .05 level. 
 

Table 2. Analysis of Variance for Type I Error Rate by Correlation and Bootstrapping Procedure 
 

Source df F p η2 

Model 15 11.028 <.001 .088 
CORR 3 50.511 <.001 .081 
BOOT 3 2.735 .042 .004 
CORR * BOOT 9 .631 .772 .003 
Error 1712 (.002)   
Total 1727    

Note. Mean square error enclosed in parentheses. 
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Figure 1. Mean Type I error rate by correlation and bootstrapping procedure. Reference line indicates the 
nominal alpha rate of .05. 
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Table 3. Interval Bias Averaged Across All Distributional Conditions 
 

 n = 20  n = 50 n = 100  n = 250 
         r rz rw rpb  r rz rw rpb  r rz rw rpb   r rz rw rpb 

ρ = 0                   
          Percentile .33 .33 .30 .31  .24 .24 .22 .22 .17 .17 .16 .16  .11 .11 .10 .10 
          Adjusted .36 .36 .35 .34  .24 .24 .23 .23 .17 .17 .16 .16  .11 .11 .10 .10 
          BC .32 .32 .31 .31  .23 .23 .22 .22 .16 .16 .16 .16  .11 .11 .10 .10 
          BCa .34 .33 .31 .31  .24 .24 .22 .22 .17 .17 .16 .16  .11 .11 .10 .10 
ρ = .4                   
          Percentile .36 .36 .33 .33  .24 .24 .20 .20 .21 .21 .15 .15  .15 .15 .10 .09 
          Adjusted .38 .38 .37 .37  .24 .24 .21 .21 .21 .21 .15 .15  .15 .15 .10 .09 
          BC .36 .36 .33 .32  .24 .24 .21 .20 .21 .21 .15 .14  .16 .16 .10 .10 
          BCa .38 .37 .33 .33  .26 .25 .21 .20 .23 .23 .15 .15  .17 .17 .10 .10 
ρ = .8                   
          Percentile .26 .26 .25 .23  .17 .17 .14 .13 .13 .13 .09 .08  .10 .10 .06 .05 
          Adjusted .31 .31 .31 .30  .17 .17 .15 .15 .13 .13 .09 .09  .10 .10 .06 .06 
          BC .26 .26 .28 .24  .17 .17 .14 .14 .14 .14 .09 .09  .11 .11 .06 .06 
          BCa .28 .28 .28 .25  .18 .18 .15 .15  .15 .15 .09 .09   .12 .12 .06 .06 

 
Table 4. Analysis of Variance for Bias by Correlation and Bootstrapping Procedure 

 
  Source df F p η2 

Model   15  3.497 <.001 .030 
CORR    3 15.558 <.001 .026 
BOOT    3  1.551  .199 .003 
CORR * BOOT    9   .125  .999 .001 
Error 1712   (.010)   
Total 1727    
Note. Mean square error enclosed in parentheses. 
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Figure 2. Mean bias by correlation and bootstrapping procedure. 
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Table 5. Confidence Interval Ratios Averaged Across All Distributional Conditions 
 
  n = 20  n = 50  n = 100  n = 250 
  r rz rw rpb  r rz rw rpb r rz rw rpb  r rz rw rpb 

ρ = 0  
   Percentile .91 .91 1.11 1.02  .91 .91 1.04 1.00 .92 .92 1.03 1.00  .93 .93 1.01 .99 
   Adjusted .98 .98 1.20 1.10  .94 .94 1.07 1.03 .94 .94 1.04 1.02  .94 .94 1.01 1.00 
   BC .92 .92 1.11 1.02  .91 .91 1.04 1.00 .92 .92 1.03 1.00  .93 .93 1.01 .99 
   BCa .92 .92 1.11 1.02  .92 .92 1.04 1.00 .93 .93 1.02 1.00  .94 .94 1.01 .99 
ρ = .4  
   Percentile .84 .84 1.09 1.00  .84 .84 1.04 .99 .92 .92 1.03 1.00  .86 .86 1.01 1.00 
   Adjusted .91 .91 1.17 1.08  .86 .86 1.07 1.02 .93 .93 1.04 1.02  .87 .87 1.02 1.00 
   BC .86 .86 1.11 1.02  .84 .84 1.05 1.00 .91 .91 1.02 1.00  .86 .86 1.01 1.00 
   BCa .85 .86 1.11 1.02  .84 .84 1.05 1.01 .92 .92 1.03 1.00  .86 .86 1.01 1.00 
ρ = .8  
   Percentile .81 .81 1.08 .98  .85 .85 1.05 1.02 .81 .81 1.00 .98  .84 .84 1.01 1.00 
   Adjusted .87 .87 1.16 1.06  .88 .88 1.08 1.05 .83 .83 1.01 .99  .84 .84 1.01 1.00 
   BC .85 .85 1.17 1.04  .87 .87 1.08 1.04 .82 .82 1.01 .99  .84 .84 1.01 1.00 
   BCa .83 .86 1.16 1.05   .85 .87 1.10 1.06  .81 .82 1.02 1.01   .84 .85 1.01 1.01 
Note: Ratios greater than 1.0 indicate a bootstrap-estimated interval wider than the “true” interval, and 
conversely. 
 

Under a few conditions, the BC and 
ordinary percentile procedures procured slightly 
more accurate intervals than did the BCa. In 
addition, the adjusted bootstrap intervals were, 
by and large, unacceptable, regardless of the 
robust measure under examination. 

Regarding the width of the estimated 
intervals (see Table 5), no bootstrapping 
procedure clearly bettered the others. For small 
sample size conditions the adjusted bootstrap 
averaged relatively wider intervals. This 
widening effect improved accuracy for the 
narrow r- and rz-generated intervals, but 

penalized rw and rpb. The BCa intervals 
frequently ran short, the BC intervals shorter 
still, and the percentile bootstrap the shortest of 
the four. These trends were slight and not 
unexpected (e.g., it is widely known that the 
percentile bootstrap tends to produce narrow 
intervals). 

 
Comparisons Among Correlations 

Confidence intervals formed for rw and 
rpb generally outperformed those for r and rz for 
both Type I error rate and bias. Although the 
present paper does not depict the data 
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disaggregated by distributional shape, 
predictable results surfaced. Under normality all 
four correlations produced similar Type I error 
rates, although the Pearson r and its transform 
saw slightly lower levels of bias, at least under 
small sample conditions. However, as 
distributional shape diverged from normality or 
included contaminated or mixed distributions, 
the robust correlations surpassed r. As an aside, 
the bias index generally produced neater, more 
theoretically consistent results than did Type I 
error rate. This is probably due to the 
dichotomous nature of the latter, that is, a given 
interval either does or does not enclose the 
parameter of interest and cause a Type I error, 
whereas bias is measured on the more sensitive 
ratio scale of measurement. 

Regarding interval width, r and its 
transform consistently underestimated the “true” 
endpoints, more so under non-normal 
conditions. At times, such intervals were little 
more than half the “true” width. Bootstrapped 
confidence intervals for the percentage bend 
correlation closely mimicked the “true” intervals 
in almost every instance, and intervals for the 
Winsorized correlation tended to run slightly 
wide. 
 

Conclusion 
 
This study confirmed that the Winsorized and 
percentage bend correlations are useful 
alternatives to the Pearson correlation and are 
preferred when resilience to distributional non-
normality is needed. Results for three of the four 
comparative indices (efficiency was virtually a 
constant) confirmed the robustness of the two 
robust measures under non-normal, mixed, and 
contaminated distributional conditions, with 
neither outperforming the other. The percentage 
bend and Winsorized correlations reduced bias, 
more accurately reflected theoretical Type I 
error probabilities, and more faithfully 
reproduced the width of true (Monte Carlo 
simulated) intervals. The robust measures 
compared favorably to r even under the bivariate 
normal conditions.  
 Interestingly, across a wide range of 
simulation conditions the four bootstrapping 
procedures achieved roughly equivalent 
outcomes as applied to either robust correlation. 
The complex BC and BCa procedures failed to 
offer sizeable improvements in interval accuracy 

over the percentile bootstrap, and the “adjusted” 
bootstrap may have even inflated bias and Type 
I error rate. While this finding may be 
interpreted as disappointing because the more 
elaborate procedures did not offer increased 
accuracy, researchers can be more confident that 
the ordinary percentile bootstrap is capable of 
delivering relatively precise confidence intervals 
for these robust measures. 

It may be that the more complicated 
procedures did not surpass the percentile 
bootstrap due to the technical specifications of 
the simulation. The original study design 
entailed drawing 1,000 samples for each 
condition, but this number was reduced to 100 
given excessive computational demands. Even 
though the goal in this component of the 
simulation procedure is not to fully reproduce a 
sampling distribution, more samples may be 
necessary to achieve stable asymptotic 
dynamics. Similarly, the number of bootstrap 
samples had to be reduced considerably (e.g., 
setting B to 3,000 produced only 25 samples in 
eight hours due to the large number of simulated 
conditions and the involved calculations for rpb). 
However, for this simulation component, the 
objective is indeed to model a theoretical 
sampling distribution, ( )θF , via a bootstrapped 
sampling distribution, ( )*ˆˆ θF . Five hundred 
bootstrap samples may be sufficient for 
estimating standard errors (Efron, 1987; Efron & 
Tibshirani, 1993; but cf. Booth & Sarkar, 1998), 
but not for forming tight confidence bands 
(Lunneborg, 2000). Follow-up studies should 
increase these quantities if possible. 

The study also revealed that Fisher’s 
transformation of r did not appreciably improve 
either Type I error rate or bias. When 
bootstrapping the Pearson correlation, it seems 
that the r-to-z transformation merely increases 
computational time without concomitantly 
affecting accuracy, as supported by Seivers 
(1996) in his conclusions about rz. 

In sum, the robust measures may be 
recommended for general use when it is desired 
to quantify the linear association underlying the 
majority of the sample observations, while 
excluding outliers. Each of the bootstrapping 
procedures reviewed maintained similar levels 
of accuracy and may be applied in estimating 
confidence intervals for the robust correlations, 
excepting the adjusted bootstrap. 
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