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In this article, we have studied the behavior of estimators of parameter of a new lifetime 

model, suggested by Maurya et al. (2016), obtained by using methods of moments, 

maximum likelihood, maximum product spacing, least squares, weighted least squares, 

percentile, Cramer-von-Mises, Anderson-Darling and Right-tailed Anderson-Darling. 

Comparison of the estimators has been done on the basis of their mean square errors, biases, 

absolute and maximum absolute differences between empirical and estimated distribution 

function and a newly proposed criterion. We have also obtained the asymptomatic 

confidence interval and associated coverage probability for the parameter. 

 

Keywords: Estimation of the parameter, estimator performance criterion, Monte Carlo 

simulations 

 

Introduction 

To explain the real-life scenario, a number of lifetime models are available in the 

statistical literature for various situations. Among these, the exponential 

distribution is an oldest and most popular lifetime model. The reason for its 

popularity lies in mathematical ease in its implementation and possession of some 

awesome properties. But its use is restricted to those situations only where we can 

assume that the associated hazard rate is approximately constant. Therefore, 

researchers attempted to develop generalized new models having more flexibility 

in hazard rate and fitting. Some of the models are developed by Barlow and 

Proschan (1975), Kumaraswamy (1980), Mudholkar et al. (1993), Gupta and 

Kundu (1999), Gupta and Kundu (2001a), Gupta and Kundu (2001b), Gupta and 

Kundu (2007), Kumar et al. (2015), Maurya et al. (2017), etc. But the noticeable 
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point at this stage is that nearly all of the generalizations add an extra parameter(s). 

No doubt, due to additional parameters model flexibility increases, but it creates 

difficulty in further inferences. Therefore, keeping the point of parsimony of 

parameter and accommodation of various hazard rates Maurya et al. (2016) 

proposed a new transformation method for developing new lifetime models. 

Needless to mention that the proposed transformation method produces a more 

flexible model and also preserves the baseline model properties. They considered 

exponential distribution as the baseline model and the new lifetime model, thus 

obtained, is named as Logarithmic Transformed exponential (LTE) distribution. 

They studied various statistical properties of the model and observed that LTE fits 

better than exponential, Lindley, Weibull, gamma and exponentiated exponential 

models for a number of data. The cumulative distribution function (cdf) and 

probability density function (pdf) of LTE distribution for random variable X are 

given as: 
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respectively. The shape of pdf of LTE distribution is more or less similar to 

exponential distribution for various value of the parameter. The reliability function 

and hazard function of LTE for specified time t are given as: 
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respectively. The mean of the LTE distribution is 
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Maurya et al. (2016) have also shown mathematically that LTE distribution has 

increasing hazard rate and verified this result graphically. 

The median of the distribution can be obtained by putting the value p = 1/2 in 

the pth quantile function F(Q(p)) = p. The pth quantile function for the distribution 

is 

 

 ( )
1log 2 1

Q

p

p


− − − = .  

 

Hence, the median of the distribution is 
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It may be noted here that 
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is a negative quantity because the quantity within bracket is always positive. 

So that, mode of the distribution is at the left extreme of its support i.e. at zero. 

Hence, we can conclude that the LTE is positively skewed distribution similar to 

the exponential distribution. 

In the field of point estimation, various methods for estimation of the 

parameter are available in statistical literature, each having their own merits and 

demerits. To study the performance of an estimator a number of criterions have 

been proposed. However, researchers usually consider a method of estimation for 

developing the estimator of the parameter and its performance is studied on the 

basis of a selected criterion. It may happen that the estimator may perform better 

under a specific criterion but not on other criterion. Similarly, the relative 

performance of various estimators may differ from criterion to criterion. Therefore, 

in this paper, we propose to consider different estimation methods for developing 

the estimator for the unknown parameter and shall attempt to rank them on the basis 

of the study of their performances to know that which method can be said to provide 

better estimator overall for a small as well as large sample. 

In this article, we are considering nine different estimation procedures to 

obtain the estimates of the parameter of LTE, which include some traditional and 
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some new estimation methods. The estimation methods considered by us are 

method of moments (MME), maximum likelihood estimation (MLE) method, 

maximum product spacing (MPS) method, method of least squares (MLS), method 

of weighted least squares (WLS), method of percentiles (MOP), method of Cramer-

von-Mises (MCVM), method of Anderson-Darling (ADE) and right-tail Anderson-

Darling (ADRT) method. 

For the study of the performances of the estimator, obtained by above 

methods, we have considered four traditional criterions namely bias, mean square 

error (MSE), absolute difference (Dabs) between estimated and true distribution 

function, maximum absolute difference (Dmax). In addition to these, we propose 

to use a new criterion for checking the performance of estimators which is based 

on the concept of difference between the estimated and true Shannon entropies. It 

is further proposed to estimate the asymptotic confidence interval, coverage 

probability, average length of confidence intervals and average estimates of the 

parameter of LTE. 

The main objective of the present article is to investigate which method of 

estimation suits most for the point estimation of the parameter of the considered 

distribution. It further aims to check whether the performance of the estimators 

remains unaltered or not for the newly proposed criterion based on entropy. It has 

been observed that the estimators of the parameter cannot be expressed in closed 

form. Therefore, we have used non-linear maximization method to compute them 

using R software (R Core Team, 2018). The rest of the paper is organized as 

follows: the different methods of estimation of the parameter are described; the 

criteria for the performance of the estimators are provided; Monte Carlo simulation 

studies for the estimators are studied; asymptotic confidence interval and average 

estimate of parameter with coverage probability are analyzed; conclusions of the 

present article are given. 

Estimation of the Parameter 

Let us consider that we have a random sample, say x1, x2,…, xn, of size n from LTE 

model and wish to estimate the unknown parameter of the distribution. Here, we 

have considered nine methods of estimation which are described below one by one. 

Method of Moments Estimation (MME) 

This is one of the oldest methods of estimation of the unknown parameter (see 

Quandt & Ramsey, 1978). The estimate of the parameter through this method can 
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be obtained by equating the theoretical moments of the proposed distribution with 

the sample moments. Since LTE is one parameter distribution, so that the estimate 

can be obtained by using first moment i.e., mean of the distribution only. If m is the 

sample mean, it is to be equated to theoretical mean given in equation (5), hence 

the estimator of the parameter θ, say ̂ , through MME can be obtained as 
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Needless to mention that it is consistent estimator and asymptotically normally 

distributed (for details of the moment estimators, see Casella & Berger, 2002). 

Maximum Likelihood Estimation (MLE) 

This is most widely used method for estimating the unknown value of the parameter. 

MLE is a popular method due to its properties because if it exists, it will be most 

efficient estimator. Invariance property is an awesome property of MLE. In this 

method, we find the value of the parameter for which the likelihood function is 

maximum (see Casella & Berger, 2002). The logarithm of the likelihood function 

of θ for the observed samples is given as 
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The MLE of the parameter is obtained by differentiating equation (9) w.r.t. to θ and 

equating it to zero to get the likelihood equation as 
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This likelihood equation of θ is an implicit function, so it cannot be solved 

analytically; however, iterative procedure can be used to get the solution. Here, we 

suggest the use of Newton-Raphson method. MLE, thus, obtained would be 

consistent estimator and it is also asymptotically normally distributed. 



MAURYA ET AL 

7 

Method of Product Spacing (MPS) 

Cheng and Amin (1983) proposed a method of estimation as an alternative method 

to MLE which is increasingly becoming popular nowadays. Ranneby (1984) 

proposed independently the same as an approximation to the Kullback-Leibler 

information measure. The method is briefly described as follows: 

If x(1) < x(2) <…< x(n) is the ordered sample of size n and F(x(i)) − F(x(i−1)) for 

i = 1, 2,…, n + 1 with initial conditions F(x(0)) = 0 and F(x(n+1)) = 1 are called 

spacing. 

Then, we are sampling from LTE, thus, from equation (1), the spacings are 

obtained as follows: 
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and the general term for ith spacings can be given by 
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for i = 2,…, n. Note that ΣiDi = 1. The MPS estimator is that value of the parameter 

which maximizes the geometric mean of the spacings, i.e. 
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Taking logarithm of G, we get 
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Substituting the value of Di from (11), (12), and (13) in the above equation, we have 
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Differentiating Sθ with respect to parameter θ, we get 
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where 

 

 ( )

( )( )
( )

log 1

log 2

ix

i

e
W





−
+

=   

 

and its derivative with respect to parameter θ is 
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It may be noted here that by equating the derivative given in (17) to zero, the 

equation, thus obtained, cannot be solved analytically. Therefore, we suggest to use 

numerical techniques to obtain the solution. It is worthwhile to mention here that 

Coolen and Newby (1990) and U. Singh et al. (2014a) among many others have 

mentioned that MPS has many properties similar to MLE, like consistency, 

efficiency. Further, MPS possesses invariance property. In addition to these, it is 

also suggested that product spacing can be used in Bayesian analysis in place of 

usual likelihood function. Recently, U. Singh et al. (2014b), R. K. Singh, Yadav et 
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al. (2016) carried out a comparative study of reliability and hazard estimates 

obtained by using MPS and MLE for exponential and Marshall-Olkin extended 

exponential distributions and found that for small sample sizes MPS provided more 

efficient estimator than the MLE, although, for large samples, both methods 

perform approximately similar. See also Basu et al. (2018) in Bayesian context. 

Method of Least Squares (MLS) 

This is another old and popular method of estimation (see Swain et al., 1988). We 

know that, if there are n ordered random observations from a distribution having 

cdf F(x), then 
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Thus, the least squares estimator is obtained by minimizing 
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Putting the cdf of LTE in equation (19), we get 
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To minimize MLS, we differentiate it with respect to θ, and equate it to zero which 

gives the following equation: 

 

 ( ) ( )
1

1
1 0

1

n

i i

i

W W
n

 
=

 
 − − = + 

 .  (21) 

 

Again, this equation cannot be solved analytically; therefore, we use numerical 

techniques to obtain the solution. Gupta and Kundu (2001b) used this method of 

estimation for estimating the parameters of generalized exponential distribution. 
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Method of Weighted Least Squares (MLS) 

The estimation procedure for obtaining the estimate of the parameter through WLS 

is similar to the procedure of MLS with a slight change that it minimizes the 

weighted sum of squared deviation between true and expected cdf at observed 

ordered sample points, where weights are inversely proportional to the var[F(x(i))]. 

Thus, the weighted least square estimator is obtained by minimizing the following: 
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Putting the cdf of LTE in equation (22), we get 
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To minimize equation (23), we differentiate WL with respect to θ and equate it to 

zero, which results to following equation: 
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Equation (24) is not analytically solvable; therefore, we use numerical technique to 

obtain the solution. R. K. Singh, Yadav et al. (2016) have remarked that WLS 

performs better than MLS for Marshall-Olkin extended exponential distribution 

and a similar remark can be seen in Gupta and Kundu (2001b) in context of 

estimation of parameter of generalized exponential distribution in term of mean 

squared errors. 

Method of Percentile (MOP) 

This method of estimation was used for the first time for the estimation of the 

parameter of Weibull distribution by Kao (1958) (see also Kao, 1959; Balakrishnan, 

2014; Gupta & Kundu, 2001b; for more details about this method). It is easy to 

verify from equation (1) that x = − 1 / θ log[21 − F(x) − 1]. Thus, if pi are the 
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estimates of F(x(i)), the method of percentile (MOP) considers a value of the 

parameter as its estimator which minimizes 
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Here, we have considered   because it is an unbiased estimator of F(x(i)) (for details 

about the choice of pi, see Mann et al., 1974; Gupta & Kundu, 2001b). Now, 

differentiating (25) w.r.t. the parameter θ and equating it to zero, we get the 

estimator ̂  as 
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For the generalized exponential distribution, Gupta and Kundu (2007) 

recommended it for small sample size on the basis of MSE and bias criterion. 

Method of Cramer-von-Mises (MCVM) 

This method is a minimum distance method based on the difference between 

empirical and cumulative distribution functions. MacDonald (1971) proposed this 

method of estimation (see Choi & Bulgren, 1968; Boos, 1981; for more details). 

The method of MCVM estimator of the parameter is obtained by minimizing the 

following function: 
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Hence, from equations (1) and (27), we get 

 

 ( )
( )

( )( )
2

1

log 12 11
M

12 2 log 2

ix
n

i

en i

n n





−

=

 +− + = + −
 
  

 .  (28) 

 



COMPARATIVE STUDY OF NEW AND TRADITIONAL ESTIMATORS 

12 

Now, differentiating equation (28) with respect to the parameter θ and equating to 

zero we get 
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Again, this equation cannot be solved analytically, and we propose the numerical 

technique. 

Anderson-Darling Method of Estimation (ADE) 

This method is also used minimization criteria based on Anderson-Darling statistics 

(Anderson, 1962). The ADE method considers the value of the parameter as its 

estimate which minimizes the following equation: 
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where F̅(x) = 1 – F(x) is the survival function. For LTE distribution, ADE estimator 

of θ can be obtained by using equation (1) in (30) and equating the derivative of it 

to zero. Keeping the complexities of analytical solution of this equation in mind, 

we propose the use of numerical approximation techniques. It may be noted here 

that ADE method gives more weight to tail of the distribution than the central part 

of the distribution. For other details and properties of ADE method, refer to Boos 

(1982), Louzada et al. (2016), Laio (2004), etc. 

Anderson-Darling Right Tail Method of Estimation (ADRT) 

This method is a variant form of ADE method which gives more weight to right tail 

of the distribution than other parts of it. In ADRT method for estimation, we 

minimize the following equation: 
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The estimator of the parameter through ADRT method is obtaining by using the 

equation (1) in (31) and minimizing with respect to the parameter θ. Luceno (2006) 
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used this method of estimation in comparison to MCVM and ADT. Mazucheli et 

al. (2017) used this method of estimation for Marshall-Olkin extended exponential 

distribution. Bakouch et al. (2017) used this method for the estimation of the 

parameters of Binomial-exponential 2 distribution. 

Criteria of Performance of Estimators 

In the present section, we will discuss the criteria taken for the study of 

performances of the estimators. Since an estimator may perform better than other 

for one criterion but may perform worse for another criterion. Therefore, we have 

considered five criteria out of which four are traditional criterion and the fifth one 

is a newly proposed criterion for studying the performances of the estimators. The 

considered criterions are discussed below one by one. An estimator is said to be 

good, if in repeated samples, most of the times, the estimates are close to the true 

value of parameter. 

Bias 

The bias criterion is based on the concept of error in estimating the true value of 

parameter. An error is defined as the difference between the estimate and the true 

value. That’s why one may desire that the method of estimation should be such that 

average error is least i.e., zero. In other words, the expected value of the estimator 

should be equal to the true value. If T is an estimator of θ then the bias is defined 

as 

 

 ( )EB T = − ,  

 

where Eθ stands for expectation over the sample space. Many authors including 

Mazucheli et al. (2017) and Tang (2014) have used this criterion. 

Mean Square Error 

The measure problem with bias criterion is that while calculating the average error 

the opposite sign error cancels each other whereas it should be added up. This led 

to the concept of minimization of expected square of the error called mean square 

error (MSE) and is defined as 

 

 ( )
2

EMSE T = − ,  (32) 
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which is the sum of square of the bias and the variance of estimator. MSE can also 

be justified under decision-theoretic approach on the ground of the quadratic loss 

function and is a well-established ground to check the performance of estimators in 

classical as well in Bayesian scenario see, Kaushik et al. (2017), R. K. Singh, Singh, 

and Singh (2016), and Sharma et al. (2017). 

Absolute Difference 

Another way of comparison can be made on the basis of differences between the 

cdf specified by the estimate of the parameter ̂  and cdf of distribution specified 

by the true parameter θ. Since the difference may take positive as well as negative 

value, thus, expected value of sum (taken over sample values) of the absolute 

differences forms the basis for compression and the estimator providing the least 

value of sum of absolute value of the differences will be the best. 

Absolute Maximum Difference 

This criterion is also based on the absolute difference. In this criterion, instead of 

considering the sum of the differences, we consider the maximum absolute 

difference between the value of the cdf specified by the estimate of the parameter 

̂  and cdf of distribution specified by the true parameter θ, for the given set of data. 

The expectation of maximum absolute difference is called as absolute maximum 

difference (Dmax) and an estimation method is called to be the best for which 

Dmax is minimum. Rahman and Pearson (2001) mention that the Dabs and Dmax 

criterion are useful in case of vector-valued parameters. 

New Proposed Criteria 

In the present paper, we are proposing a new criterion which is based on entropy 

concept: 

Entropy is a measure of average amount of information contained in random 

variable (rv) X. If rv X has the pdf f(x), Shannon entropy is defined as (Shannon, 

1951) 

 

 ( ) ( )S E log f x = −   .  (33) 

 

Using equation (2) and equation (33), it is easy to verify that the entropy for the 

considered model is 
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 ( )
2 log 2

S log
12log 2 2 log 2

 


 
= + −  

 
.  (34) 

 

The form of the Shannon entropy is obtained by solving the expression given by 

Maurya et al. (2016). It is a measure of unpredictability of state. Jaynes (1968) gave 

the principle of maximum entropy for estimation of the parameter based on 

maximization of the Shannon entropy. Liu (2007) proposed Kullback Leibler 

divergence (KLD) of survival functions on the entropy. Yari and Tondpour (2017) 

used KLD for estimating the unknown parameter and compared the estimate with 

MLE and estimate obtained through maximum Shannon entropy. For more details 

about method of maximum Shannon entropy see, Levine and Tribus (1979), V. P. 

Singh and Rajagopal (1986). 

Considering the importance of Shannon entropy, we wish to propose a 

criterion based on it. Let if S(θ) be the Shannon entropy for true value of the 

parameter and ( )ˆS   be the estimated Shannon entropy obtained by putting the 

estimate of parameter. Now, the difference between these two may be viewed as 

the error in estimation of the entropy due to the use of the particular method of 

estimation which gives the estimate as ̂ . Hence, one would choose that method of 

estimation for which this difference is minimum. The abovementioned error in 

estimation of the entropy will naturally vary for sample to sample thus to get a 

single value, we can average it over sample space. However, in doing so, negative 

and positive error will cancel each other. Therefore, we propose to consider the 

average of magnitude of the errors which may be called an absolute entropy 

difference (AED). Thus, an estimation method would be best for which the value 

of AED is least among the class of procedures providing estimators under 

consideration. 

Simulation Study 

In the present section, we have discussed the performances of the estimators based 

on the simulation study. For this purpose, we have generated samples of different 

sizes from LTE distribution for different values of the parameter θ. For the 

generation of samples from LTE distribution, we first generated u from uniform 

distribution over (0, 1) and then used the following transformation: 

 

 11
log 2 1ux



− = − −  ,  (35) 
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to get the random sample values from the considered model. It may be mentioned 

here that the exact expression of bias, MSE, and other expressions to be used for 

comparison of the various estimation methods cannot be obtained because most of 

the estimators are not in close form. Hence, simulated values of these shall be used 

for comparison purpose. It may also be noted here that MSE will depend on sample 

size n and the parameter θ. Hence, we have considered n = 5, 15, 30, and 60 because 

these cover the situations of very small (n = 5), small (n = 15), large (n = 30), and 

very large (n = 60) samples. The variation of the parameter θ considered by us is 

0.2, 0.5, 1, and 2. For each value of n and θ, we generated N = 100,000 random 

samples from LTE distribution using the equation (35). For each sample, we 

computed all the nine estimators, namely, MME, MLE, MPS, MLS, WLS, MOP, 

MCVM, ADT, and ADRT and calculated bias, MSE, Dabs, Dmax, and AED as 

follows: 

 

 ( )
1

1 N

i

i

B
N

 
=

= − ,  (36) 

 

 ( )
2

1

1 N

i

i

MSE
N

 
=

= − ,  (37) 

 

 ( ) ( )
1 1

1
F , F , ˆ

N n

ij ij

i j

Dabs x x
N

 
= =

= − ,  (38) 

 

 ( ) ( )
1

1
max F , F , ,ˆ 1,2, ,

N

j ij ij

i

Dmax x x j n
N

 
=

= − =  ,  (39) 

 

and 

 

 ( ) ( )
1

1
Ŝ S

N

i

i

AED X X
N =

= − .  (40) 

 

The simulation results are presented in Tables 1, 2, 3, and 4. Then, the 

procedures of the estimation for a fixed parameter value and sample size are ranked 

giving rank 1 to the best one and rank 9 (as there are 9 estimation procedures under 

comparison) to the worst for each criterion of comparison and are shown as the 

superscript of the values in these tables. The sum (taken over the criterion of 

comparison) of the ranks for each sample size is provided in the last row titled as S 
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Rank (Sum of rank). The estimation procedures are re-ranked on the basis of the S 

Ranks and these ranks are summarized in Table 5, which shows the performance 

rank of all the estimation procedures for variation of n and θ. It would be interesting 

at this stage to think of ranking the performance of the estimator according to 

sample size. For this purpose, we summed the ranked for a procedure for all the 

considered value of θ, although such a totaling to develop a combined index for the 

performance of the estimator can easily criticized but keeping in mind little 

variation in the ranks due to the variation in θ, we propose it and the results thus 

obtained is given in Table 6. Similarly, we can sum the ranks for the variation in 

sample size also to get a single value for each procedure of estimation which is 

provided in the last row of Table 6 and thus the final rank of each procedure can be 

obtained which is shown as superscript in the last row entries of Table 6. 

 

• Tables 1, 2, 3, and 4 show values under various criteria for different 

methods of estimations in the variation for sample size n and the 

parameter θ taken as 0.2, 0.5, 1, and 2 respectively. 

• From these tables, we note that MSE is least for MPS for all the 

considered values of parameters and sample sizes but under the criterion 

AED, Dabs, and Dmax the values are least for MLE. 

• We can also observe from these tables that as the sample size increase 

MSE decrease rapidly, indicating that all the considered methods are 

consistent (see Larson, 1974). 

• It may further be seen that for increase in the sample size bias decreases 

for all the considered estimation methods i.e., all the considered 

estimation methods provide asymptotically unbiased estimates. 

• Tables 1-4 show that among all the considered estimation methods only 

MPS and MOP have negative bias. 

• From the tables we may note that for fixed sample size n an increase in 

the value of parameter θ, results increase in the values of MSE and bias 

both. 

• It is interesting to note from Tables 1-4 that each method of estimation 

has same ranking under the criterion AED, Dabs, and Dmax. 

• In addition to the above remark, we may further note from the comparison 

of the Tables 1-4 that as sample size or the value of the parameter 

increases the rank of AED, Dabs, and Dmax either decrease or remain the 

same. 

• On the basis of the sum of the rankings, it is observed that for small sample 

size (n = 5), MPS perform best among all the considered estimators (see 
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Table 5). However, as sample size increases, the MPS estimator could not 

retain its superiority over other estimators. But ADRT has sum of the 

ranks equal to or neat to that of MPS for n = 5 and for n = 15, it becomes 

the best. For n = 30 or more MLE is ranked the best. 

• It is interesting to note that MME is always ranked below MLE but it is 

always next to MLE. 

• It may also be noted from Table 5, that MLS occupies the bottommost 

position. 

• On the basis of the sum of the ranks, it may be inferred that WLS always 

performs better than MLS. A similar result has been stated by Gupta and 

Kundu (2001b) on the basis of the MSE criterion. 

• Among the nine estimators considered here except four estimators, 

namely MLE, MPS, MME, and ADRT rest five are always ranked below 

these having ranks between 5-9. 

• From Table 6, we may note that for small sample size MPS and ADRT 

performs better than others. However, for increase in the sample size the 

overall ranking changes. The ranking of MLE improves and reverse is the 

trend for MPS and ARDT although the deterioration in the ranking is slow 

for ARDT as Compared to MPS. 
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Table 1. Simulation results for the variation of sample size n and θ = 0.2 
 

n Qtl MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 MSE 0.007695 0.0078716 0.005361 0.0090128 0.0082337 0.0054482 0.0095899 0.0068564 0.0059273 
 BIAS 0.0280558 0.0300739 -0.0059571 0.0156326 0.0122664 -0.0072243 0.0224437 0.0123545 0.0062732 
 AED 0.3192912 0.319241 0.3324994 0.3659369 0.3579157 0.338086 0.3619768 0.3336515 0.3233 
 Dabs 0.1212932 0.121241 0.1261844 0.1392859 0.1364737 0.1281676 0.1375848 0.1270675 0.1226923 
 Dmax 0.0881112 0.0880571 0.0914364 0.1007169 0.098817 0.0925276 0.0993278 0.0921565 0.0891743 

  S Rank 194 183 141 419 327 235 408 246 141 
           

15 MSE 0.001974 0.0019745 0.0017821 0.0024678 0.002287 0.0018932 0.0025199 0.0021346 0.0019093 
 BIAS 0.0086387 0.0091848 -0.0081286 0.0042324 0.0035962 -0.0103739 0.0066485 0.0039593 0.0019411 
 AED 0.1814452 0.1810131 0.1894464 0.2089969 0.2016897 0.1972316 0.2079228 0.1948085 0.1861073 
 Dabs 0.0720882 0.0719181 0.0752554 0.082969 0.0800877 0.0783076 0.082538 0.0773675 0.0739433 
 Dmax 0.0491462 0.0490161 0.0512364 0.0567079 0.0547247 0.0530876 0.0563748 0.0528655 0.0504973 

  S Rank 173 162 194 399 307 296 388 245 131 
           

30 MSE 0.000943 0.0009382 0.0009071 0.00128 0.0010987 0.0009995 0.0012119 0.0010586 0.0009544 
 BIAS 0.0043446 0.0045967 -0.0059768 0.0021524 0.0019682 -0.0083069 0.0033915 0.0020843 0.0010491 
 AED 0.1275482 0.1272191 0.1320144 0.1462839 0.1398816 0.140037 0.1459448 0.1372275 0.1308573 
 Dabs 0.0510362 0.0509051 0.0528174 0.0584989 0.055956 0.0560077 0.0583628 0.0548935 0.0523563 
 Dmax 0.0344252 0.0343311 0.0356024 0.0395179 0.0377797 0.0376436 0.039418 0.0370755 0.0353493 

  S Rank 153 121 214 399 286 347 388 245 142 
           

60 MSE 0.0004563 0.0004552 0.0004521 0.000598 0.0005347 0.0005125 0.0005939 0.0005236 0.0004744 
 BIAS 0.002176 0.0022997 -0.0039748 0.0010344 0.0010323 -0.0060379 0.0016595 0.0010142 0.0005171 
 AED 0.0896082 0.0894081 0.0919463 0.102649 0.0975966 0.0987727 0.1025058 0.0966565 0.0922434 
 Dabs 0.0359442 0.0358641 0.0368813 0.0411599 0.0391416 0.0396127 0.0411058 0.0387655 0.0369994 
 Dmax 0.0241472 0.0240911 0.0247713 0.0276829 0.0263166 0.0265517 0.027648 0.0260665 0.0248694 

  S Rank 152 121 184 399 286 357 388 235 173 
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Table 2. Simulation results for the variation of sample size n and θ = 0.5 
 

n Qtl MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 MSE 0.0483325 0.0494626 0.0336631 0.0561158 0.0521347 0.0341522 0.0605979 0.0431254 0.037323 
 BIAS 0.0701278 0.0751349 -0.0149111 0.0384156 0.0309275 -0.0181213 0.056377 0.0309164 0.0155442 
 AED 0.3191112 0.3189581 0.3330374 0.3669999 0.3601127 0.3384896 0.3638328 0.3347315 0.3235023 
 Dabs 0.1212212 0.1211191 0.1263794 0.1396989 0.1372667 0.1282966 0.138258 0.1274635 0.1228563 
 Dmax 0.0880462 0.0879591 0.0915694 0.1009529 0.0993767 0.0925956 0.0997668 0.0924525 0.0893193 

  S Rank 194 183 141 419 337 235 408 235 141 
           

15 MSE 0.0122474 0.0122855 0.0111241 0.0151678 0.0140737 0.0118593 0.0154829 0.0131916 0.0118392 
 BIAS 0.0213317 0.0227218 -0.0204826 0.0097844 0.0082572 −0.0259239 0.0158395 0.0093693 0.0043921 
 AED 0.1812192 0.180811 0.1892524 0.2078749 0.2006097 0.1973136 0.2068148 0.1941345 0.1856133 
 Dabs 0.0722 0.0718391 0.0751714 0.082529 0.079667 0.0783296 0.0820988 0.0771035 0.0737463 
 Dmax 0.04912 0.0489691 0.0511974 0.0564139 0.0544337 0.0531246 0.0560848 0.0526745 0.0503663 

  S Rank 173 162 194 399 306 306 388 245 121 
           

30 MSE 0.0058373 0.0058212 0.0056471 0.0075078 0.0068487 0.0062075 0.0075749 0.0066056 0.0059584 
 BIAS 0.0103136 0.0109417 -0.0154538 0.0047214 0.0042262 -0.0212029 0.0078165 0.0045763 0.0020141 
 AED 0.1274062 0.1270321 0.1321444 0.1467299 0.140087 0.1398116 0.1463388 0.1374955 0.1312223 
 Dabs 0.050982 0.0508311 0.0528714 0.0586789 0.0560317 0.0559216 0.0585228 0.0550025 0.0525043 
 Dmax 0.0343852 0.0342781 0.0356424 0.039659 0.0378417 0.0375796 0.039538 0.0371585 0.0354533 

  S Rank 153 121 214 399 306 327 388 245 142 
           

60 MSE 0.0028623 0.0028492 0.0028331 0.0037398 0.003377 0.0031925 0.0037559 0.0033086 0.0029864 
 BIAS 0.0052426 0.005557 -0.0101298 0.0025064 0.0024883 -0.0153349 0.004075 0.0024722 0.0011781 
 AED 0.089692 0.0894291 0.0920183 0.1033689 0.098036 0.0986927 0.1032438 0.0971325 0.0924724 
 Dabs 0.0359772 0.0358721 0.0369093 0.041459 0.0393146 0.039587 0.04148 0.0389555 0.037094 
 Dmax 0.0241762 0.0241011 0.0247943 0.0278759 0.0264326 0.0265327 0.0278368 0.0261965 0.0249414 

  S Rank 152 121 184 399 286 357 388 235 173 
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Table 3. Simulation results for the variation of sample size n and θ = 1 
 

n Qtl MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 MSE 0.1970175 0.201376 0.1359091 0.2305428 0.2115197 0.1377822 0.2498699 0.1766214 0.1512133 
 BIAS 0.1447558 0.1545599 -0.0263931 0.082996 0.0660194 -0.033062 0.1194787 0.0671775 0.0348143 
 AED 0.3207372 0.3205381 0.3333974 0.3683859 0.3601067 0.3386936 0.3656938 0.336145 0.324513 
 Dabs 0.1217162 0.1216031 0.1264314 0.1402029 0.1372797 0.1282976 0.1388968 0.1279025 0.1231623 
 Dmax 0.0883432 0.0882431 0.0915464 0.1012479 0.0993527 0.092545 0.100168 0.0926976 0.0894683 

  S Rank 194 183 141 419 327 215 408 256 152 
           

15 MSE 0.0491964 0.0493335 0.0445411 0.0612158 0.0567397 0.0474662 0.062539 0.0530286 0.0474873 
 BIAS 0.0435997 0.0462358 -0.0403586 0.0217014 0.0182832 −0.0516589 0.0338155 0.0203043 0.0098721 
 AED 0.1812222 0.180891 0.1892964 0.2081799 0.2009947 0.1975196 0.2071378 0.1941545 0.1857833 
 Dabs 0.0719982 0.0718681 0.0751894 0.0826359 0.0798087 0.0784096 0.0822198 0.0771065 0.0738113 
 Dmax 0.0490422 0.0489361 0.0511314 0.0564379 0.0544747 0.0530956 0.0561138 0.0526375 0.0503513 

  S Rank 173 162 194 399 307 296 388 245 131 
           

30 MSE 0.0234423 0.0234062 0.0225991 0.0298648 0.0273467 0.0248655 0.0301479 0.0263646 0.023814 
 BIAS 0.021776 0.0230967 -0.0297768 0.0104814 0.0096772 -0.0413539 0.0166775 0.010263 0.005291 
 AED 0.1276452 0.1273111 0.1319574 0.1462529 0.1398926 0.1399877 0.1459118 0.1373585 0.1311023 
 Dabs 0.0510752 0.0509421 0.0527954 0.0584899 0.0559576 0.0559917 0.0583528 0.0549485 0.0524553 
 Dmax 0.0344592 0.0343631 0.0356074 0.039529 0.0377947 0.0376346 0.0394138 0.0371165 0.0354273 

  S Rank 153 121 214 399 286 347 388 245 142 
           

60 MSE 0.0115413 0.01152 0.0114341 0.0148878 0.0134857 0.012965 0.0149479 0.0132246 0.0119744 
 BIAS 0.0103746 0.0110077 −0.0203348 0.0045722 0.0046744 −0.0305739 0.0077035 0.0046253 0.0020951 
 AED 0.0901912 0.0899841 0.092543 0.1032469 0.0981826 0.099447 0.1031098 0.0972355 0.0927024 
 Dabs 0.0361782 0.0360951 0.0371183 0.0414029 0.0393766 0.0398797 0.0413468 0.0389975 0.0371834 
 Dmax 0.0243092 0.0242531 0.0249353 0.0278429 0.026476 0.026747 0.0278018 0.0262215 0.0250014 

  S Rank 152 121 184 378 296 357 389 245 173 

 
 
 



COMPARATIVE STUDY OF NEW AND TRADITIONAL ESTIMATORS 

22 

Table 4. Simulation results for the variation of sample size n and θ = 2 
 

n Qtl MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 MSE 0.7766895 0.7944696 0.5387661 0.9088578 0.8191237 0.5465932 0.9804799 0.6960554 0.5989223 
 BIAS 0.2833378 0.3034419 −0.0572581 0.1576616 0.1206114 −0.0698353 0.2291097 0.1272885 0.0646920 
 AED 0.3190882 0.3188111 0.3323034 0.3667829 0.3574067 0.3376186 0.3637648 0.3350325 0.3232243 
 Dabs 0.1212172 0.1210761 0.1261254 0.1396679 0.1364297 0.1279866 0.1382668 0.1275875 0.1227783 
 Dmax 0.0880092 0.0878981 0.0913914 0.1009239 0.0987447 0.0923875 0.0997528 0.0924836 0.0892543 

  S Rank 194 183 141 419 327 225 408 256 141 
           

15 MSE 0.1969064 0.1974775 0.1779871 0.2450478 0.2269947 0.1894692 0.2502939 0.2120956 0.1903013 
 BIAS 0.0880927 0.0934698 −0.0797036 0.0437914 0.0372842 −0.1021789 0.0680025 0.0410343 0.0206111 
 AED 0.1813572 0.1809491 0.1891634 0.2080879 0.2008657 0.1972056 0.2070538 0.1940165 0.1857873 
 Dabs 0.0720542 0.0718911 0.0751440 0.0825989 0.0797597 0.0782916 0.0821858 0.0770535 0.0738123 
 Dmax 0.0491082 0.0489741 0.0511444 0.0564249 0.0544587 0.0530516 0.0561058 0.0526235 0.0503813 

  S Rank 173 162 194 399 307 296 388 245 131 
           

30 MSE 0.0933233 0.0930852 0.0900831 0.1190868 0.1089617 0.0991815 0.1202049 0.1051286 0.0947434 
 BIAS 0.0426646 0.0452657 −0.0603998 0.0205534 0.0186892 −0.0836169 0.0329250 0.0198293 0.0097681 
 AED 0.1273682 0.1270321 0.1318264 0.1459729 0.1395826 0.1397767 0.1456348 0.1370250 0.1306243 
 Dabs 0.0509652 0.0508311 0.0527434 0.0583749 0.0558316 0.0559077 0.0582398 0.0548115 0.0522643 
 Dmax 0.0343822 0.0342851 0.0355740 0.0394439 0.0377127 0.0375826 0.0393388 0.0370275 0.0353043 

  S Rank 153 121 214 399 286 347 388 245 142 
           

60 MSE 0.0459023 0.0456992 0.0454751 0.0595428 0.0538677 0.0513425 0.0597890 0.0528576 0.0478144 
 BIAS 0.0204566 0.0217670 −0.0409378 0.0089752 0.0090574 −0.0615739 0.0152350 0.0090193 0.0040761 
 AED 0.0898432 0.0895861 0.0923233 0.1031890 0.0980926 0.0989287 0.1030448 0.0971435 0.0925340 
 Dabs 0.0360382 0.0359351 0.0370323 0.0413759 0.0393460 0.0396747 0.0413280 0.0389650 0.0371144 
 Dmax 0.0242182 0.0241471 0.0248830 0.0278319 0.0264536 0.0266700 0.0277898 0.0262025 0.0249564 

  S Rank 152 121 184 378 296 357 389 245 173 
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Table 5. Performance rank for the estimation procedures 
 

n θ MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 0.2 4 3 1 9 7 5 8 6 1 
 0.5 4 3 1 9 7 5 8 5 1 
 1.0 4 3 1 9 7 4 8 6 2 
 2.0 4 3 1 9 7 5 8 6 1 

  Rank 164 123 41 369 287 195 328 236 52 
           

15 0.2 3 2 4 9 7 6 8 5 1 
 0.5 3 2 4 9 6 6 8 5 1 
 1.0 3 2 4 9 7 6 8 5 1 
 2.0 3 2 4 9 7 6 8 5 1 

  Rank 123 82 164 369 277 246 328 205 41 
           

30 0.2 3 1 4 9 6 7 8 5 2 
 0.5 3 1 4 9 6 7 8 5 2 
 1.0 3 1 4 9 6 7 8 5 2 
 2.0 3 1 4 9 6 7 8 5 2 

  Rank 123 41 164 369 246 287 328 205 82 
           

60 0.2 2 1 4 9 6 7 8 5 3 
 0.5 2 1 4 9 6 7 8 5 3 
 1.0 2 1 4 8 6 7 9 5 3 
 2.0 2 1 4 8 6 7 9 5 3 

  Rank 82 41 164 348 246 287 348 205 123 

 
 
Table 6. Overall performance of estimators 
 

n MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 4 3 1 9 7 5 8 6 2 

15 3 2 4 9 7 6 8 5 1 

30 3 1 4 9 6 7 8 5 2 

60 2 1 4 8 6 7 8 5 3 

Asymptotic Confidence Interval and Estimate of the 
Parameter 

In this section, we will discuss on asymptotic confidence interval, coverage 

probability, and average length of parameter and average estimate of the parameter. 

For large sample, estimated asymptotic confidence interval can be defined as 

 

 ( )2
ˆ v ˆarZ  ,  
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where Zη/2 denotes the upper η / 2% point of standard normal distribution. It may 

be interesting to see that if we estimate the var( ) through the simulated data and 

obtain the interval as stated above, whether it meets the desired confidence level. 

For this purpose, we have provided the average estimate of the parameter along 

with average confidence interval, its average length and coverage probability in 

Table 7 and 8 based on the considered nine estimation methods. In these tables, CI 

stands for asymptotic confidence interval, L stands for length of asymptotic 

confidence interval, and CP stands for coverage probability. We have also ranked 

the average length of confidence interval and these are presented in Table 9. 

Similarly, following a similar procedure as adopted in ranking the estimation 

method, the various methods have been ranked on basis of the average length of 

the confidence interval and the results are summarized for varying n and θ in Table 

10. 

 

• Tables 7-8 show that coverage probabilities are close to the prefixed 95% 

confidence level. It may also be noted that average length of confidence 

interval decreases as sample size increases. 

• From Table 9, we observe that, the average length of confidence interval 

based on MOP is least for small sample size (n = 5) and for other sample 

sizes (n = 15, 30, 60) MPS is least, and it is noted to be longest for the 

interval based on MCVM except for n = 5 and θ = 0.2, 0.5, 1. In these 

cases, the interval based on WLS is found to have the longest average 

length of the confidence interval. Also, the decreasing the length of CI 

results in decreases the CP for at least 95% level of confidence. 

• It may also be noted from Table 9, MOP has second shortest length after 

MPS and MLE placed third position in ranking for all θ and n = 15, 30, 

and 60. It is important to mention here that the length of CI of MLE is 

second shortest length after MPS for large sample (n = 60). 

• From Table 10, we see that the intervals based on MPS are found to have 

rank 1 and intervals based on MCVM have rank 9 for all the considered 

sample sizes. MOP has second shortest length of CI in all the considered 

methods. 
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Table 7. Asymptotic confidence interval, coverage probability, length of interval and average estimate of parameter for θ = 0.2 and 
θ = 0.5 
 

n θ=0.2 MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 CI (0.0,0.49284) (0.0,0.4963) (0.0,0.41888) (0.0,0.63644) (0.0,2.12861) (0.0,0.41827) (0.0,0.63579) (0.0,0.47304) (0.0,0.44608) 

 L(CP) 0.49284(0.95829) 0.4963(0.95815) 0.41888(0.95811) 0.63644(0.97149) 2.12861(0.99855) 0.41827(0.95804) 0.63579(0.97044) 0.47304(0.95905) 0.44608(0.95828) 

15 CI (0.10626,0.3177) (0.10686,0.31817) (0.09788,0.29197) (0.08394,0.33424) (0.08781,0.3286) (0.09411,0.29129) (0.08554,0.33744) (0.09602,0.31935) (0.10056,0.31006) 

 L(CP) 0.21143(0.95535) 0.2113(0.95547) 0.19409(0.95499) 0.2503(0.95648) 0.24079(0.95691) 0.19718(0.95503) 0.2519(0.95627) 0.22333(0.95487) 0.2095(0.95509) 

30 CI (0.13549,0.27639) (0.13585,0.27653) (0.12875,0.26231) (0.123,0.28574) (0.1264,0.28165) (0.12454,0.26188) (0.12387,0.28735) (0.12868,0.27911) (0.13151,0.27391) 

 L(CP) 0.1409(0.95412) 0.14068(0.95412) 0.13356(0.95405) 0.16274(0.95504) 0.15525(0.95547) 0.13734(0.95414) 0.16349(0.95493) 0.15044(0.95465) 0.1424(0.95419) 

60 CI (0.15509,0.25075) (0.1553,0.25079) (0.15045,0.24305) (0.147,0.2572) (0.14972,0.2543) (0.14643,0.24297) (0.14749,0.25797) (0.15044,0.25335) (0.15246,0.25018) 

 L(CP) 0.09567(0.95179) 0.09548(0.95179) 0.0926(0.95187) 0.1102(0.95345) 0.10459(0.95284) 0.09654(0.95202) 0.11048(0.95347) 0.10291(0.9527) 0.09772(0.95248) 

           

n θ=0.5 MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 CI (0.0,1.22411) (0.0,1.23321) (0.0,1.04063) (0.0,1.44465) (0.0,2.05718) (0.0,1.0395) (0.0,1.48829) (0.0,1.17287) (0.0,1.10971) 

 L(CP) 1.22411(0.95766) 1.23321(0.9579) 1.04063(0.95746) 1.44465(0.96443) 2.05718(0.98609) 1.0395(0.95747) 1.48829(0.96447) 1.17287(0.95799) 1.10971(0.95788) 

15 CI (0.26578,0.79363) (0.26711,0.79504) (0.24456,0.72981) (0.21207,0.83131) (0.22207,0.81692) (0.23479,0.72884) (0.21611,0.83931) (0.24134,0.79575) (0.2518,0.77372) 

 L(CP) 0.52785(0.95531) 0.52793(0.95528) 0.48524(0.95527) 0.61924(0.95565) 0.59486(0.95588) 0.49405(0.95493) 0.6232(0.95566) 0.55441(0.95578) 0.52192(0.95536) 

30 CI (0.33914,0.68937) (0.34009,0.68966) (0.32236,0.65419) (0.30732,0.71307) (0.316,0.7026) (0.31215,0.65294) (0.30949,0.7171) (0.32175,0.69629) (0.32903,0.68311) 

 L(CP) 0.35023(0.95485) 0.34957(0.95455) 0.33183(0.9541) 0.40575(0.9552) 0.3866(0.95535) 0.34079(0.95366) 0.40761(0.95529) 0.37454(0.95522) 0.35408(0.95429) 

60 CI (0.38708,0.62723) (0.38767,0.62724) (0.37558,0.60785) (0.3666,0.64367) (0.37348,0.63636) (0.36577,0.60729) (0.36782,0.64559) (0.37523,0.6341) (0.38043,0.62597) 

 L(CP) 0.24015(0.95162) 0.23957(0.9519) 0.23228(0.95184) 0.27708(0.9531) 0.26288(0.95288) 0.24151(0.95207) 0.27777(0.95307) 0.25886(0.9527) 0.24554(0.95226) 
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Table 8. Asymptotic confidence interval, coverage probability, length of interval and average estimate of parameter for θ = 1 and 
θ = 2 
 

n θ=1 MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 CI (0.0,0.49284) (0.0,0.4963) (0.0,0.41888) (0.0,0.63644) (0.0,2.12861) (0.0,0.41827) (0.0,0.63579) (0.0,0.47304) (0.0,0.44608) 

 L(CP) 0.49284(0.95829) 0.4963(0.95815) 0.41888(0.95811) 0.63644(0.97149) 2.12861(0.99855) 0.41827(0.95804) 0.63579(0.97044) 0.47304(0.95905) 0.44608(0.95828) 

15 CI (0.10626,0.3177) (0.10686,0.31817) (0.09788,0.29197) (0.08394,0.33424) (0.08781,0.3286) (0.09411,0.29129) (0.08554,0.33744) (0.09602,0.31935) (0.10056,0.31006) 

 L(CP) 0.21143(0.95535) 0.2113(0.95547) 0.19409(0.95499) 0.2503(0.95648) 0.24079(0.95691) 0.19718(0.95503) 0.2519(0.95627) 0.22333(0.95487) 0.2095(0.95509) 

30 CI (0.13549,0.27639) (0.13585,0.27653) (0.12875,0.26231) (0.123,0.28574) (0.1264,0.28165) (0.12454,0.26188) (0.12387,0.28735) (0.12868,0.27911) (0.13151,0.27391) 

 L(CP) 0.1409(0.95412) 0.14068(0.95412) 0.13356(0.95405) 0.16274(0.95504) 0.15525(0.95547) 0.13734(0.95414) 0.16349(0.95493) 0.15044(0.95465) 0.1424(0.95419) 

60 CI (0.15509,0.25075) (0.1553,0.25079) (0.15045,0.24305) (0.147,0.2572) (0.14972,0.2543) (0.14643,0.24297) (0.14749,0.25797) (0.15044,0.25335) (0.15246,0.25018) 

 L(CP) 0.09567(0.95179) 0.09548(0.95179) 0.0926(0.95187) 0.1102(0.95345) 0.10459(0.95284) 0.09654(0.95202) 0.11048(0.95347) 0.10291(0.9527) 0.09772(0.95248) 

           

n θ=2 MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 CI (0.0,1.22411) (0.0,1.23321) (0.0,1.04063) (0.0,1.44465) (0.0,2.05718) (0.0,1.0395) (0.0,1.48829) (0.0,1.17287) (0.0,1.10971) 

 L(CP) 1.22411(0.95766) 1.23321(0.9579) 1.04063(0.95746) 1.44465(0.96443) 2.05718(0.98609) 1.0395(0.95747) 1.48829(0.96447) 1.17287(0.95799) 1.10971(0.95788) 

15 CI (0.26578,0.79363) (0.26711,0.79504) (0.24456,0.72981) (0.21207,0.83131) (0.22207,0.81692) (0.23479,0.72884) (0.21611,0.83931) (0.24134,0.79575) (0.2518,0.77372) 

 L(CP) 0.52785(0.95531) 0.52793(0.95528) 0.48524(0.95527) 0.61924(0.95565) 0.59486(0.95588) 0.49405(0.95493) 0.6232(0.95566) 0.55441(0.95578) 0.52192(0.95536) 

30 CI (0.33914,0.68937) (0.34009,0.68966) (0.32236,0.65419) (0.30732,0.71307) (0.316,0.7026) (0.31215,0.65294) (0.30949,0.7171) (0.32175,0.69629) (0.32903,0.68311) 

 L(CP) 0.35023(0.95485) 0.34957(0.95455) 0.33183(0.9541) 0.40575(0.9552) 0.3866(0.95535) 0.34079(0.95366) 0.40761(0.95529) 0.37454(0.95522) 0.35408(0.95429) 

60 CI (0.38708,0.62723) (0.38767,0.62724) (0.37558,0.60785) (0.3666,0.64367) (0.37348,0.63636) (0.36577,0.60729) (0.36782,0.64559) (0.37523,0.6341) (0.38043,0.62597) 

 L(CP) 0.24015(0.95162) 0.23957(0.9519) 0.23228(0.95184) 0.27708(0.9531) 0.26288(0.95288) 0.24151(0.95207) 0.27777(0.95307) 0.25886(0.9527) 0.24554(0.95226) 
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Table 9. Performance rank for average confidence length 
 

n θ MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 0.2 5 6 2 8 9 1 7 4 3 
 0.5 5 6 2 7 9 1 8 4 3 
 1.0 5 6 2 7 9 1 8 4 3 
 2.0 5 6 2 8 7 1 9 4 3 

  Rank 205 246 82 307 349 41 328 164 123 
           

15 0.2 5 4 1 8 7 2 9 6 3 
 0.5 4 5 1 8 7 2 9 6 3 
 1.0 5 4 1 8 7 2 9 6 3 
 2.0 5 4 1 8 7 2 9 6 3 

  Rank 195 174 41 328 287 82 369 246 123 
           

30 0.2 4 3 1 8 7 2 9 6 5 
 0.5 4 3 1 8 7 2 9 6 5 
 1.0 4 3 1 8 7 2 9 6 5 
 2.0 4 3 1 8 7 2 9 6 5 

  Rank 164 123 41 328 287 82 369 246 205 
           

60 0.2 3 2 1 8 7 4 9 6 5 
 0.5 3 2 1 8 7 4 9 6 5 
 1.0 3 2 1 8 7 4 9 6 5 
 2.0 3 2 1 8 7 4 9 6 5 

  Rank 123 82 41 328 287 164 369 246 205 

 
 
Table 10. Overall performance of average confidence length 
 

N MME MLE MPS MLS WLS MOP MCVM ADT ADRT 

5 5 6 2 7 9 1 8 4 3 

15 5 4 1 8 7 2 9 6 3 

30 4 3 1 8 7 2 9 6 5 

60 3 2 1 8 7 4 9 6 5 

O Rank 175 153 51 318 307 92 359 226 164 

Conclusion 

In the present article, we have considered nine different classical estimation 

techniques for estimating the unknown lifetime characteristic from the Logarithmic 

Transformed Exponential distribution. Here, the considered estimation methods are, 

namely, Method of moments, method of maximum likelihood estimate, maximum 

product spacing method, least squares estimation, weighted least squares estimation, 

method of percentile, method of Cramer von-Mises, Anderson-Darling and Right-
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tailed Anderson-Darling. The performance of the estimators has been compared on 

the basis of bias, mean squared error, absolute difference between true and 

estimated cdf, maximum absolute difference between true and estimated 

distribution function, and average entropy difference. Asymptotic confidence 

intervals have been simulated on the basis of the estimates obtained through the 

above-mentioned methods and coverage probabilities and average confidence 

intervals have been obtained. The methods are then ranked from 1 to 9 for best to 

worst. 

On the basis of the rankings, we may conclude that MPS method is the best 

for small sample size (n = 5), although for this situation ARDT also performs more 

are less equally well. However, for the interval estimation, for n = 15, the ARDT is 

found to be the best. For other sample sizes, the MLE performs the best. But MPS 

has shortest average length confidence interval for all the considered situations. The 

intervals based on MLE are ranked at 3. From the above discussions, we may 

conclude that for the estimation of the parameter of the Logarithmic Transformed 

Exponential distribution, we may use MPS or ADRT method for small sample 

(sample size less than 15). For samples of larger sizes (i.e., n > 15), MLE method 

may be recommended for use. However, if one is interested in the interval 

estimation, asymptotic confidence interval may be obtained by the use of MPS 

method. 
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