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EMERGING SCHOLAR 

Penalized Likelihood Estimation of 
Gamma Distributed Response Variable 
via Corrected Solution of Regression 
Coefficients 
Rasaki Olawale Olanrewaju 
University of lbadan 
Ibadan, Nigeria 

 
 

 
 
A Gamma distributed response is subjected to regression penalized likelihood estimations 
of Least Absolute Shrinkage and Selection Operator (LASSO) and Minimax Concave 
Penalty via Generalized Linear Models (GLMs). The Gamma related disturbance controls 
the influence of skewness and spread in the corrected path solutions of the regression 
coefficients. 
 
Keywords: gamma, generalized linear models (GLMs), least absolute shrinkage and 
selection operator (LASSO), minimax concave penalty (MCP), skewness 
 

Introduction 

The classical regression model has been widely used in various disciplines with 
major interest on the response variable (Y) subjected to a set of linearized predictor 
(covariate) functions (Dette et al. 2006). Estimating the regression coefficients 
requires different types of techniques based on the conditional distribution of the 
random component (ε) or the distribution of the response variable and the form(s) 
of the covariate measurements (Berk et al. 2013).  

In a conventional classical regression approach, where the response variable 
is to be subjugated to Gaussian distribution with covariates (Xi) of the continuous 
type data, the Generalized Linear Models (GLMs) technique of parameter 
estimation via an identity smooth link function of ηi = g(μi) = μi and identity 
invertible link function of μi = g−1(ηi) = ηi. Because the link and invertible functions 



RASAKI OLAWALE OLANREWAJU 

3 
 

are identity (that is, transfer function not required), the GLMs technique of 
estimation coincides with General Linear Model (GLM); a technique of estimation 
for Gaussian conditional distribution of the random component or response variable 
(Fox, 2008; Antoniadis et al., 2014). Unlike the GLM, when the distribution of the 
random component or the response variable belongs to the exponential family 
coupled with any data form of the covariates, the GLMs via Maximum Likelihood 
Estimation (MLE), Quasi-Likelihood Estimation (QLE), Iterative Re-weighted 
Least Square (IRLS) etc. would be the ideal technique to diagnose and estimate the 
embedded parameters (Watkins, 2001). 

The aforementioned techniques (GLM and GLMs) pigeonholed a vital trait in 
high-dimensional, ultra-dimensional and high-throughput data in epidemiology, 
clinical studies, survival studies, genetics, bioinformatics and at times in finance 
where d ≥ n, that is, the number of covariates or intended regression coefficients to 
be estimated is greater than the considered or available sample size or sample space. 
(Zhou & Shen, 2001; Fan & Lv, 2008; Fan et al., 2009). 

Sparse regression estimation via penalized regularization and variable 
selection technique of important variables (seeking for smaller subset vital 
covariates) among others was forth put to checkmate this challenge (Zhou & Shen, 
2001; Tibshirani, 1996). Saldana & Feng (2018) buttressed the assertion of Yu & 
Feng (2014) that the sparse estimation and variable selection technique in a 
parametric context was based on penalized (pseudo-) likelihood approach. 
According to Fan et al. (2014), the approach was based on two methods – the least 
absolute penalization method of Least Absolute Shrinkage and Selection Operator 
(LASSO) proposed by (Tibshirani, 1996 & Tibshirani, 1997) and folded concave 
penalization either by Minimax Concave Penalty (MCP) (Zhang, 2010) or by 
Smoothed Clipped Absolute Deviation (SCAD) (Fan & Li, 2001). The LASSO 
shrinkage least penalization which encompasses the ridge regression, strongly rely 
on irreparable necessary condition for its selection consistent for penalizing the 
absolute size of the regression coefficients. Its solution paths are piecewise linear 
in nature to allow and enable algorithm type to compute the solution path efficiently 
(Fan et al., 2014; Zhao & Yu, 2006). Unlike the LASSO approach, the folded 
concave penalty (MCP) requires reparable condition for selection of variable 
consistency to correct the bias in LASSO (Nardi & Rinaldo., 2012). 

Both the LASSO and MCP use a penalty called turning parameter otherwise 
known as the regularized parameter η in correcting the irreparable and concavity. 
Different algorithms have been proposed for calculating the solution path of the 
estimates of the associated regression coefficients (β̂). Among the algorithms was 
the Least Square Angle Regression (LARS) and homotopy algorithm by Osborne 
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et al. (2000) for updating the solution path. Zou & Li (2008) improved on the LARS 
algorithm by adding a Local Linear Approximation (LLA) to the penalized 
likelihood for a best and robust solution. In addition, Wu (2011) initiated an 
Ordinary Differential Equation (ODE) based solution path algorithm which forgone 
the maximum penalized likelihood estimate for quasi-penalized likelihood estimate 
to update the solution path by LARS-algorithm via some variable selection criteria 
such as Extended BIC (EBIC), Penalized BIC (PBIC) etc. by varying the 
regularized parameter in LASSO and MCP. Unlike the LARS-algorithm, Breheny 
& Huang (2011) adopted an adaptive rescaling method, the method allowed the 
range of the turning parameter η to be widen similarly to that of the linear 
regression. Moreover, Xu et al. (2017) used the quadratic approximation to update 
the path solution of the regression coefficients with random component that was 
best explained by Poisson and Binomial distributions. They came-up with a new 
solution path correction called approximate path for penalized likelihood estimators 
because it turns to be faster than the conventional coordinate descent method. They 
varied the turning parameter in LASSO and MCP before reaching the number of 
vital covariates to neutralize the problem. 

The intent of this study is to improve on Xu et al. (2017)’s work by 
considering the gamma probability distribution random component due to its 
capability, not to only control, absolve, influence spread and skewness but to also 
streamline high-dimensional readings and measurements to (0,∞) as they are mostly 
represented in a positive continuous form. Furthermore, the approximate path for 
penalized likelihood estimators will be employed via the quadratic Newton-
Raphson convergence technique to correct the updated solution path of (β̂) by a 
stepwise and pre-selected turning parameter in the least absolute shrinkage penalty 
of LASSO and folded concave penalty of MCP. 

Generalized Linear Models and Penalized Likelihood 
Estimations 

Given a linear regressors function (a linear predictor) with response variable (Yi) of 
a known conditional distribution  
 
 Yi = θi = β'Xi = β0 + β1Xi1 + β2Xi2 + ⋯ βnXin + εi (1) 
 
or in matrix form Y = Xβ + ε where Y = (y1, …, yn)T is the response vector matrix, 
β = (β1, …, βn)T is vector matrix of the true parameter of the regression coefficients, 
X is the n × d design matrix of the covariates while ε = (ε1, …, εn) is the vector 
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matrix of the random components that is gamma independently distributed with a 
smooth and invertible linearizing (link function) g(·), μi =E(Yi) to the linear 
predictors 
 
 g(μi) = θi = β0 + β1Xi1 + β2Xi2 + ⋯ βnXin (2) 
 

For an invertible link function (mean function) 
 
 μi = g−1(θi) = g−1(β0 + β1Xi1 + β2Xi2 + ⋯ βnXin) (3) 
 
Fox (2008), Feng & Yu (2013), and Xu et al. (2017) defined the likelihood of any 
exponential family with n-dimensional observations (yi, xi) written in a canonical 
form in a GLMs context as 
 

   (4) 

	
Where θ = X'β, b(θ) is the natural parameter, y(θ) is the canonical form,  

nuisance parameter (constant) and . 
The log-likelihood of f(y;x,β) with respect to β of the n-dimensional 

proportionality in (4), that is,   
 

   (5) 

 
Saldana & Feng (2018) and Xu et al. (2017) defined the objective function 

Penalized Likelihood Estimator (PLE) for estimating n-dimensional vector of 'β' 
via least absolute penalization or folded concave penalization function as  
 

   (6) 

 

  

f y;x,β( ) = c y( )exp y θ( )− b θ( )
α φ( )

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

α φ( )
φ ∈ 0,∞( )

ln f y;x,β( )∞ℓ β; y,x( )

ℓ y;β( ) =
yi θ i( )− b θ i( )⎡⎣ ⎤⎦

i=1

n

∑
n

L β̂( ) = β̂ η( ) = argminβ η β − 1
n
ℓ y;β( )

i=1

n

∑⎡

⎣
⎢

⎤

⎦
⎥

β̂ η( ) = argminβ −ℓ y;β( )+ fη β( )⎡⎣ ⎤⎦ =
1
n

yiθ β( )i − b θ β( )i( )⎡
⎣

⎤
⎦

i=1

n

∑⎡
⎣
⎢

⎤

⎦
⎥ +η β
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where fη(·) is the LASSO or MCP function ∍ η > 0 is the regularized parameter that 
controls the strength of the log-likelihood for a unique minimizer (β̂) that must meet 
the first-order Karush-Kuhn-Tucker (KKT) conditions as follows: 
 

   (7) 

 
with a grid penalty of  
 

   (8) 

 
Equation (8) can then be updated via  
 

   

 
Using an approximation quadratic stepwise and size iteration of , 
then 
 

  (9) 

 
where H(a) and Z(a) are the first and second derivatives of β̂ w.r.t. η. 

Gamma Probability Density Function 
Let y be a 1 × n-dimensional vector for a response variable that follows a gamma 
distribution of a continuous exponential family with probability density function.   
 

∂ℓ
∂β0

= 0

∂ℓ
∂βi

=η sgn β̂k( ) for i = 1,!,n ∍ β̂k ≠ 0

∂ℓ
∂βi

<η                       for i = 1,!,n ∍ β̂k = 0

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

η ≥ηmax = Max
∂ℓ
∂βi

βi = 0 1≤ i ≤ n

Ca = 1≤ i ≤ n; ∂ℓ
∂βi

≥ηa
⎧
⎨
⎩

⎫
⎬
⎭
∪ 0{ }

Δa =ηa+1 +ηk

β̂Ca
a+1,0( ) = β̂Ca

a( ) +H a( ) ⋅ Δη +
1
2
Z a( ) ⋅ Δa2
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with scale parameter ω > 0; shape parameter α > 0; where the scale parameter 
influences the spread (center of location) of the distribution while the shape 
parameter controls the skewness parameter of the distribution such that as the shape 
parameter increases as the distribution symmetric expands. It is to be recalled that 
in a GLMs context . 

The Gamma LASSO Penalization Likelihood Estimate 
Note the canonical link and inverse functions for gamma density function are 

 respectively. 
 

   

 
The KKT conditions are: 
 

  

 

f y( ) = y
ω

⎛
⎝⎜

⎞
⎠⎟

α−1

×
e − y

ω
⎛
⎝⎜

⎞
⎠⎟

ωΓ α( )  for  y ∈ 0,∞( ); Γ α( ) = exxα−1∂x
0

∞

∫

E Y( ) =ωα ;V Y( ) = φµi2 ∍φ = 1α

µ−1 &ηi−1 = ′β Xi( )

L β( ) = − 1
n

yi ′β Xi( )− ′β Xi( )−1{ }+η βk
k=1

d

∑
i=1

n

∑

= 1
n

′β Xi( )−1 − yi β i Xi( ){ }+η βk
k=1

d

∑
i=1

n

∑ .

1
n

−
ˆ′β
xi

⎛

⎝⎜
⎞

⎠⎟

−2

− yi
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥i=1

n

∑ − xik =
1
n

− xi
ˆ′β

⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

n

∑ − xik =η sgn β̂k( );β̂k ≠ 0

1
n

− xi
ˆ′β

⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

n

∑ − xik ≤η;β̂k = 0

β̂0 =
ˆ′β( )2

i=1

n

∑

yixi2( )
i=1

n

∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
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Setting Ca as defined 
 

   

 
Updating gives 
 

  

 

Recall that the   in the GLM context, where  

 

  

 
  

 

  

The Correction via Newton-Raphson Approximation for Convergence 

  

 

  

 

  (10)  

Ca = k : 1
n

yi − β̂ a( )xi( )−1 xik⎡
⎣⎢

⎤
⎦⎥i=1

n

∑ ≥ηa
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∪ 0{ }

Var a( ) = diag e
2 β̂ a( )′x1
⎛
⎝⎜

⎞
⎠⎟

α
,………, e

2 β̂ a( )′xn
⎛
⎝⎜

⎞
⎠⎟

α

⎧

⎨
⎪

⎩
⎪

⎫

⎬
⎪

⎭
⎪

V Y( ) = φµi2 φ = 1
ω

hinitial≠0
a( ) = − ′Xca− 0{ }Var

a( )Xca− 0{ }⎡
⎣

⎤
⎦
−1
sgn β̂ca− 0{ }

a( )( )
a( )∑ = diag Var a( )Xca− 0{ }hinitial≠0

a( )⎡
⎣

⎤
⎦

Zinitial≠0
a( ) = − ′Xca− 0{ }Var

a( )Xca− 0{ }⎡
⎣

⎤
⎦
−1
× ′Xca− 0{ }

a( )∑ Xca− 0{ } × hinitial≠0
a( )

∂La( )

∂βca
= 1n ′Xca

e
2 β̂ a( )′x1
⎛
⎝⎜

⎞
⎠⎟

α
−Y

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
+η a( ) sgn 0,β̂ca− 0{ }

a( )( )′

∂2 La( )

∂βca ∂ ′β ca

= 1n ′XcaVar
a( )Xca

β̂ca
a,k+1( ) = β̂ca

a,k( ) − ∂2 La( )

∂βca ∂ ′β ca

⎛

⎝
⎜

⎞

⎠
⎟

−1
∂La( )

∂βca

⎛

⎝
⎜

⎞

⎠
⎟
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Equation (10) is the corrected solution path of the coefficients vector for 

LASSO penalty.  is to be iterated until the optimal solution of vector  is 
reached. The Newton-Raphson was chosen because it converges faster than the 
coordinate descent method. 

The Gamma MCP Penalization Likelihood Estimate 
Zhang (2010), Zhang & Huang (2008) defined the penalty for MCP to be 
 

   

 
where Pηγ(t) is the Cumulative Distribution (CD) of X and γ > 0 measures the 
concavity of the penalty and η is the regularized parameter. 
 

  

 

   

 
Defining the active set  
 

β̂ca
a,k+1( ) β̂ca

fη β( ) = pη ,γ t( ) =η 1− x
ηγ

⎛
⎝⎜

⎞
⎠⎟ +

0

t

∫ ∂t

L β( ) = 1
n

yi ′β Xi( )− ′β Xi( )−1{ }
i=1

n

∑ +η 1− x
ηγ

⎛
⎝⎜

⎞
⎠⎟ +

0

t

∫ ∂t
k=1

d

∑

1
n

− xi
ˆ′β

⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥i=1

n

∑ − xik =η 1−
β̂k
ηγ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
sgn β̂k( )

1
n

− xi
ˆ′β

⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− xik = 0

i=1

n

∑

1
n

− xi
ˆ′β

⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− xik

i=1

n

∑ ≤η

β̂0 =
ˆ′β( )2

i=1

n

∑

yixi2( )
i=1

n

∑

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
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For rescaling of γ 
 

   

 

   

 
 and  are as defined initially; in = initial value, 

  

 

   

Ca = Ca−1 ∪Na{ }−Ma ∍

Na = k = 1,!,d \Ca−1 :
1
n

− xi
ˆ′β

⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− xik

i=1

n

∑ >ηa
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

Ma = k ∍ Ca−1 ∩Ca−2 : sgn β̂k
a−1( )( )sgn β̂k

a−2( )( ) < 0{ }

H in≠0
a( ) = 1

n
′XCaVar

a( ) ′XCa− 0{ } −Ψ inf
⎛
⎝⎜

⎞
⎠⎟

−1

sgn β̂Ca− 0{ }
a( )( )

Zin≠0
a( ) = 1

n
′XCaVar

a( ) ′XCa− 0{ } −Ψ inf
⎛
⎝⎜

⎞
⎠⎟

−1

i ′XCa− 0{ }Σ
a( )XCa− 0{ }Hin≠0

a( )

∍Var a( ) Σ a( )

Ψ = 1
γ 1
,!, 1

γ n
⎛
⎝⎜

⎞
⎠⎟
, sgn β̂Ca− 0{ }

a( )( ) =
sgn β̂Ca ,1

a( )( )I β̂Ca ,1
a( ) η a( )γ{ }

!!

sgn β̂Ca ,na
a( )( )I β̂Ca ,nk

a( ) η a( )γ{ }

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

sgn β̂k
a( )( ) = 1n − xi

ˆ′β
⎛

⎝⎜
⎞

⎠⎟

2

− yi
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
− xik

i=1

n

∑
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The Correction via Newton-Raphson Approximation for Convergence     

  

 

   

 

  (11)  

 
 is to be iterated until optimal solution of the vector matrix is reached. 

Equation (11) is the corrected solution path of the coefficients vector for MCP 
penalty 

Selection Criterion of the Turning Parameter (η) 
The execution of the penalized likelihood estimate solely boils down to the 

choice the turning point η in LASSO and (η,γ) in MCP. According to Yu & Feng 
(2014), Chen & Chen (2008), they claimed that can be achieved via information 
criteria such as AIC, BIC, HQ etc. and proposed an addition extra penalty to BIC 
called Extended BIC (EBIC) for 0 ≤ γ < 1 such that 
 

  (12) 

 
where  is the parameter θ whose components outside s being set to 

be zero or some pre-selected values, θ̂(s) is the maximum likelihood estimator of θ(s) 
while v(s) is the number of component(s). 

∂La( )

∂βCa
= − 1

n
′XCaVar

a( ) Var a( )( )−1 Y − e
2 β̂ a( )′xi
⎛
⎝⎜

⎞
⎠⎟

α

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
− XCa β̂Ca

a( )
⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

+η a( ) sgn 0,β̂ca \ 0{ }
a( )( )

× 1−
β̂Ca− 0{ }
a( )

η a( )γ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∂La( )

∂βCa ∂ ′βCa
= 1
n

′XCaVar
a( ) −Ψ inf

β̂Ca
a ,k+1( )

= β̂Ca
a ,k( )

− ∂La( )

∂βCa ∂ ′βCa

⎛

⎝
⎜

⎞

⎠
⎟

−1
∂La( )

∂βCa

⎛

⎝
⎜

⎞

⎠
⎟

β̂Ca
a ,k+1( )

EBICγ s( ) = −2log L θ̂ s( )( )+ v s( ) log n( )+ 2γ log d
k

⎛

⎝⎜
⎞

⎠⎟

s⊂ 1,…,d{ },θ s( )
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Simulation 

A simulation study of eight (8) covariates (d) were generated for a six (6) sample 
size (n) such that the response variable was generated from a gamma distribution 
with shape parameter 0.5, 1, 2 and 3.2 respectively, that is Y ~ Gamma(α). The size 
of the responses corresponds to the sample size to satisfy the condition of d > n. 
The gamma responses and the covariates were first subjected to the GLMs to 
ascertain the influence of shape parameter (α) on corrected solution of the 
regression coefficients β̂ and to the corresponding link function after which the 
result of different path solutions of penalized  LASSO and MCP were obtained at 
different level of α = 0.5, 1, 2, and 3.2.   
 
 

 
 
Figure 1. Different structure of the coefficients at four varied level of shape parameters. 
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Four shape parameters of (0.5, 1, 2, and 3.2) with their corresponding rates at 
(1.02, 1.44, 1.99, and 2.44) respectively were considered. This was due to 
Delignette-Muller & Dutang (2017) assertion that if 0 < α < 1, it is assumed that 
skewness threat is minimal, if α = 1 the gamma distribution can be substituted for 
exponential distribution and if α > 3, it means the response data has been highly 
captivated by the threat of skewness. Figure 1 is when shape parameters 
αi i = 0.5, 1, 2, 3.2 respectively. It is to be noted that one of the corrected solutions 
of the regression coefficients was far apart positively skewed when shape parameter 
(α) 0.5 and 1 respectively. More so, the corrected solutions of the coefficients are 
more evenly when shape parameters (α) are 2 and 3.2, which hinted that the 
positively skewed of the response variable has been controlled. The shape 
parameter must have controlled the skewness in the distribution of the response 
variable for a conformable and similar size, shape, effective and relative position 
of the response distribution for symmetric expansion and effect on the path solution 
of the regression coefficients. 
 
 
Table 1. LASSO & MCP information criteria of at varied level of shape parameters. 
 

Pen 
 ɑ = 0.5 ɑ = 1 ɑ = 2 ɑ = 3.2 
  LASSO MCP LASSO MCP LASSO MCP LASSO MCP 

1 
eta 0.0977 0.0977 0.0614 0.0614 0.0890 0.0890 0.0218 0.0216 

EBIC (5.2721) (5.2544) (3.7933) (3.7933) (4.3000) (4.3000) (2.3692) (2.3692) 

2 
eta 0.0673 0.0673 0.0320 0.0320 0.0890 0.0890 0.0203 0.0200 

EBIC (5.2313) (5.2313) (3.7431) (3.7431) (4.2324) (4.2324) (2.9990) (2.9833) 

3 
eta 0.0509 0.0509 0.0320 0.0320 0.0890 0.0890 0.0277 0.0267 

EBIC (5.2043) (5.2042) (3.7400) (3.7400) (4.2977) (4.2977) (3.0469) (3.0462) 

4 
eta 0.0509 0.0509 0.0351 0.0351 0.0890 0.0890 0.0289 0.0297 

EBIC (5.2085) (5.2085) (3.7410) (3.7410) (4.2323) (4.2323) (2.4673) (2.4690) 

5 
eta 0.0509 0.0509 0.0464 0.0464 0.0890 0.0890 0.0310 0.0302 

EBIC (5.2052) (5.2052) (3.7442) (3.7442) (4.2327) (4.2327) (2.5270) (2.5231) 

6 
eta 0.0509 0.0509 0.0614 0.0614 0.0890 0.0890 0.0245 0.0242 

EBIC (5.2056) (5.2056) (3.7591) (3.7591) (4.2356) (4.2356) (3.0056) (3.0004) 

7 
eta 0.0811 0.0811 0.0614 0.0614 0.0890 0.0890 0.0890 0.0890 

EBIC (5.2135) (5.2135) (3.8026) (3.8022) (4.2323) (4.2323) (2.7468) (2.7461) 

8 
eta 0.0509 0.0509 0.0320 0.0320 0.0890 0.0890 0.0316 0.0313 

EBIC (5.2040) (5.2040) (3.7400) (3.7400) (4.2431) (4.2432) (3.0010) (2.9902) 
 
 

From Table 1, when the shape parameter equals 0.5, the minimal EBIC for 
both LASSO and MCP of the corrected solutions of the coefficients was (5.2040) 
if covariate x8 is penalized, when the shape parameter equals 1, the least EBIC for 
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both LASSO and MCP was (3.7400) provided either covariate x3 or x8 is been 
penalized. In addition, when the shape parameter equals 2, the minimum EBIC for 
both LASSO and MCP was (4.2323) if and only if covariate x4 or x7 is been 
penalized. Furthermore, when shape parameter equals 3.2 (already hinted by the 
control of positively skewed of the response variable from Fig. 1) the diminutive 
size (smallest) value of EBIC for both LASSO and MCP of the corrected solution 
of the whole system was (2.3692) if x1 is penalized for η > 0 and γ = [0,1) values in 
MCP iteration. So, 
 

   (13) 

 
 

YLASSO = 3.15− 0.02x2 + 0.19x3 − 0.43x4

+0.02x5 + 0.11x6 − 0.07x7 − 0.26x8

for α = 3.2,ω = 1.2;η = 0.0218; Adjusted R2 = 85.78;
MSE = 0.0156

YMCP = 3.16− 0.03x2 + 0.20x3 − 0.44x4

+0.02x5 + 0.11x6 − 0.07x7 − 0.26x8

for α = 3.2,ω = 1.2;η = 0.0216,γ = 0,1⎡⎣ );  Adjusted R2 = 86.05;

MSE = 0.0154

⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
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Figure 2. EBIC of LASSO and MCP at different established of turning parameters.  
 
 
Table 2. Penalized regression coefficients of LASSO at ɑ = 3.2, ω = 1.2, diminutive size 
of EBIC. 
 

Pen Inter x1 x2 x3 x4 x5 x6 x7 x8 
1 3.15 - -0.02 0.19 -0.43 0.02 0.11 -0.07 -0.26 
2 3.15 0.06 - 0.15 -0.4 0.03 0.08 -0.04 -0.32 
3 3.21 0.17 -0.14 - -0.44 -0.08 0.08 -0.15 -0.3 
4 2.95 -0.11 0.04 0.26 - -0.07 -0.1 -0.01 -0.29 
5 3.14 0.05 -0.06 0.14 -0.44 - 0.1 -0.07 -0.31 
6 3.21 0.1 -0.14 0.16 -0.48 -0.02 - -0.1 -0.32 
7 3.14 0.05 0.01 0.17 -0.41 0.02 0.09 - -0.31 
8 3.11 -0.13 -0.09 0.32 -0.47 0.06 0.11 -0.14 - 

 
 
Table 3. Penalized regression coefficients of MCP at ɑ = 3.2, ω = 1.2, diminutive size of 
EBIC. 
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Pen Inter x1 x2 x3 x4 x5 x6 x7 x8 

1 3.16 - -0.03 0.20 -0.44 0.02 0.11 -0.07 -0.26 
2 3.14 0.06 - 0.14 -0.40 0.04 0.08 -0.03 -0.31 
3 3.21 0.17 -0.13 - -0.43 -0.08 0.075 -0.15 -0.30 
4 3.00 -0.11 0.03 0.27 - -0.07 -0.09 -0.01 -0.25 
5 3.13 0.05 -0.06 0.13 -0.44 - 0.09 -0.07 -0.31 
6 3.21 0.11 -0.14 0.16 -0.48 -0.02 - -0.10 -0.32 
7 3.14 0.05 0.04 0.17 -0.41 0.02 0.09 - -0.31 
8 3.11 -0.13 -0.09 0.32 -0.47 0.06 0.11 -0.14 - 

 

Conclusion 

The ability of gamma independently distributed responses to moderate spread and 
control the influence of skewness in a corrected and updated path solutions of the 
regression coefficients via penalized regularization and variable selection technique 
of LASSO and MCP give viable option to handle the threat of known or unknown 
outlier(s) and oblique position of the response data. This work can be extended to 
the generalized gamma distribution with kurtosis parameter embedded to control 
the peakedness or flatness of the graph of the frequency distribution especially with 
respect to the concentration of values near the mean as compared with the normal 
distribution in order not to distort corrected regression coefficients from 
approaching the true values. 
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