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One salient feature of randomized clinical trials is that patients are randomly allocated to treatment groups, but not 
randomly sampled from any target population. Without random sampling parametric analyses are inexact, yet they are 
still often used in clinical trials. Given the availability of an exact test, it would still be conceivable to argue convinc­
ingly that for technical reasons (upon which we elaborate) a parametric test might be preferable in some situations. 
Having acknowledged this possibility, we point out that such an argument cannot be convincing without supporting 
facts concerning the specifics of the problem at hand. Moreover, we have never seen these arguments made in practice. 
We conclude that the frequent preference for parametric analyses over exact analyses is without merit. In this article we 
briefly present the scientific basis for preferring exact tests, and refer the interested reader to the vast literature backing 
up these claims. We also refute the assertions offered in some recent publications promoting parametric analyses as 
being superior in some general sense to exact analyses. In asking the reader to keep an open mind to our arguments, we 
are suggesting the possibility that numerous researchers have published incorrect advice, which has then been taught 
extensively in schools. We ask the reader to consider the relative merits of the arguments, but not the frequency with 
which each argument is made.
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Introduction

Medical errors may be classified by the broken link in the 
chain connecting (a) study objectives to (b) medical data 
bases to (c) p-values to (d) study conclusions to (e) recom­
mendations to (f) accepted medical practice to (g) actual 
medical practice. Medical errors attributable to physicians 
deviating from accepted practice, corresponding to the last 
link in the chain, (f) to (g), may attract the most malprac­
tice suits and media attention. Yet the frequent insidious 
errors that occur at the second link, from (b) to (c), involv­
ing inappropriate statistical methodology, may result in 
even more damage (Bailar, 1976). In some cases, assump­
tions are required to calculate p-values, but when a plati­
num standard analysis is available so that “significance 
[may be] assessed in a way not involving unverifiable
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assumptions” (Tukey, 1993), it would be a (b) to (c) error 
not to use it.

In randomized clinical trials (RCTs), the random 
allocation of patients to treatment groups serves as the basis 
for valid between-group inference. In RCTs, then, neither 
random sampling from a target population nor unverifi­
able assumptions are required (Feinstein, 1993) to con­
struct between-group tests that allow Type I errors (false 
positive findings) to occur at no greater than a specified 
rate ( a ). These platinum standard tests are design-based 
permutation tests that use as the reference distribution the 
set of actual potential allocation sequences (Berger, 2000a, 
Section 3.1). We will refer to design-based platinum stan­
dard permutation tests as exact in the remainder of the ar­
ticle, yet two caveats are needed to qualify the use of the 
word “exact” in this context.

First, design-based tests are exact for the strong 
null hypothesis, which specifies that each patient would 
respond identically to each treatment under study. This 
strong null hypothesis is not the complement of the superi­
ority alternative hypothesis. There is an indifference re­
gion in which the weak null hypothesis (specifying com­
mon population response rates or means) is true but the 
strong null hypothesis is not. Design-based tests need not 
be exact on this region.

Second, exactness is not preserved, even for the 
strong null hypothesis, when the analysis is based on a
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randomization scheme other than the one that was actually 
used. Software may not always be available for construct­
ing a test that mimics the actual randomization used. The 
size of the study may preclude the possibility of enumerat­
ing all possible permutations of treatment allocations con­
sistent with the actual randomization used, and Monte Carlo 
approximations may be needed. So not every permutation 
test that is called exact is design-based, and it is not clear 
that permutation tests which are not design-based are more 
robust than parametric tests. Even design-based permuta­
tion tests, which are necessarily more robust (in the sense 
of keeping the power under a ) than parametric tests when 
the strong null hypothesis is true, may not be more robust 
than parametric tests when the weak null hypothesis is true 
and the strong null hypothesis is not. Although technically 
this opens the door to the possibility that in some cases the 
parametric test may be preferable to the best available per­
mutation test, none of us can recall this argument being 
used in practice to justify a parametric analysis. Without a 
detailed investigation of the robustness of each test in the 
specific situation, we would consider the best way to de­
cide between a parametric test and a permutation test to be 
the conditions for its exactness.

A parametric test requires both random sampling 
and proper specification of the distribution from which one 
is sampling randomly to be exact. In some sense, a differ­
ent random allocation scheme, which is all that is needed 
for non-design-based permutation tests to be exact, comes 
closer to the actual random allocation scheme than ran­
dom sampling from a known distribution does. In addi­
tion, inexactness caused by the use of Monte Carlo sam­
pling can be bounded by selection of the number of points 
in the sample space.

For these reasons, we consider only cases in which 
the permutation test (even if not design-based) can safely 
be presumed to be more robust than the parametric test, 
and we note that this covers every case we have encoun­
tered in practice. The disturbing overuse of parametric 
analyses in these cases cannot be explained by the lag time 
required for new methods to gain acceptance in practice 
(Altman & Goodman, 1994) -  in fact permutation tests are 
not new (Ludbrook & Dudley, 1998, Section 4.1). More 
likely, this trend is due to a combination of the reluctance 
of journal editors to accept correctness in place of prece­
dent (Ludbrook & Dudley, 1998) and some recent publi­
cations that endorse parametric analyses.

For example, Agresti and Coull (1998) cited the 
conservatism of exact methods as a reason to use approxi­
mate methods. Because their article was not especially 
focused on hypothesis testing or on RCTs, it does not strike 
us as entirely inconsistent with our views, although we do 
find it inappropriate to cite their article to justify the use of 
parametric tests in RCTs.

Other articles have specifically proposed that

parametric tests be used in RCTs. For example, Barber 
and Thompson (2000) criticized the use of the exact 
Wilcoxon-Mann-Whitney (WMW) test instead of the para­
metric t-test in a RCT. Likewise, Shuster (1990) and Hewett 
et al. (2000) were both critical of Fisher’s exact test for 
binary data.

We return to these articles after illustrating the 
discrepancy between the nominal a  level and the actual 
a  level. In arguing the obvious point that the actual level 
ought not exceed the nominal level (whether or not it is 
0.05) we refute the application of Agresti and Coull’s (1998) 
assertions to hypothesis testing in RCTs. We specialize 
this argument to the case of continuous data, using as an 
example a recent RCT to compare open access to routine 
appointments for inflammatory bowel disease (Williams 
et al., 2000a). We pay particular attention to the points 
made by Barber and Thompson (2000), and refute the key 
one about the relative merits of the t-test and the WMW 
test. We specialize to the comparison between the Chi- 
squared test and Fisher’s exact test for binary data, using 
as an example a recent study of the effect of neuromuscu­
lar training on knee injuries in female athletes (Hewett et 
al., 1999). Here we refute the points made by Shuster 
(1990) and Hewett et al. (2000). Then, we discuss and 
refute some of the reasons often cited for using a paramet­
ric test instead of an exact one. Finally, we provide rec­
ommendations.

Strict Preservation of the Type I Error Rate ( a )
As the probability of a false positive, the Type I 

error rate ( a ) has been called the regulator’s risk in the 
drug evaluation context. This may suggest that only regu­
lators need to concern themselves with the frequency, un­
der null conditions (i.e., an ineffective medical interven­
tion), with which analyses claim statistical significance (i.e., 
superior efficacy). This is a dangerous view, because even 
a medical error attributable to a break in the second link of 
the chain, (b) to (c), is still a medical error that can cause 
tremendous damage (Bailar, 1976). The “only assurance 
of the low likelihood of [the approval of ineffective com­
pounds that have serious adverse effects] is the Type I er­
ror” which must “occur at tolerably low rates [for] the com­
munity [to] best be assured that the conclusions of the trial 
most likely reflect the anticipated experience of patients” 
(Moye, 1999, bracketed material added for clarity).

In this section, we take a careful look at the ac­
tual a  level, and distinguish it from the tolerably low rate, 
which is (or should be) the nominal a  level. In this dis­
cussion we must bear in mind the added importance of the 
Type I error rate due to the frequent unquestioning accep­
tance of positive between-group results (Berger, 2000a, 
Section 1; Voutilainen, 2001). We note that allowing the 
nominal a  level to vary with the nature of the disease and 
the safety profile of the agent under study may be quite
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reasonable. In no way do we insist that 0.05 should 
always be used for a . We do, however, insist that there 
be adherence to whatever a  level is selected.

Berger (2000a, Section 3.1) demonstrated the 
potential for a parametric test to violate this basic tenet, 
and yet cover it up by calculating the a  level incorrectly. 
This occurs because a parametric test is exact as an answer 
to one question, yet it is used for a different question. As 
an illustration, consider Table 14.2 in Section 14.2.6 of 
Berger and Ivanova (2001), based on the 2x2 contingency 
table {(12,10);(3,19)} originally presented by Fox et al. 
(1993). Columns are response outcomes (no or yes) and 
rows are treatments, ondansetron (OND) vs. combination 
therapy (ODC). The chi-square p-values are exact as an­
swers to the question “If one were to sample randomly 
from a chi-square distribution (with one degree of free­
dom), then what is the probability of finding results as ex­
treme or more extreme than those we observed?”.

Had the' experiment actually employed random 
sampling from a distribution that actually had a chi-square 
distribution, then this question would be equivalent to “If 
one were to repeat the experiment performed, under null 
conditions (the equivalence of OND and ODC), then what 
is the probability of finding results as extreme or more 
extreme than those we observed?”. In fact there was no 
random sampling, the population does not have a chi-square 
distribution, and the exact answer to the former question is 
not an exact answer to the latter question. To obtain an 
exact answer to the latter question, which is the one of 
interest, we hypothetically repeat the experiment. This 
means re-randomizing the allocation repeatedly, using the 
same randomness (probability structure) that was used to 
determine the actual allocation. Under the strong null hy­
pothesis of no treatment effect the responses are indepen­
dent of the allocation, so the responses do not change. This 
allows us to compute the test statistic for each of these 
hypothetical repeats of the experiment. This is how plati­
num standard permutation tests ensure exactness.

The one-sided actual a  level is the probability, 
under the null hypothesis (OND and ODC being equally 
effective), of declaring that ODC is more effective than

OND. This declaration will be made if the p-value is as 
low as or lower than the nominal a  level, so the nominal 
a  level determines the number of ODC responses required 
by each test to claim significant superiority of ODC. If we 
pick a nominal a  level of 0.0250, then the rejection re­
gion consists of those outcomes for which the p-value is 
no greater than 0.0250. It turns out that both tests would 
have the same rejection region, consisting of the outcomes 
for which ODC has 19 or more responses. But this event 
occurs with probability 0.0049, and not 0.0250. For this 
nominal a  level both tests are conservative (and equally 
conservative). The outcome of ODC having 18 responses 
has a chi-square p-value o f0.0282 and a Fisher p-value of 
0.0273, so it does not qualify for inclusion in either 0.0250 
rejection region (its p-value is too large). But if we change 
the nominal a  level from 0.0250 to 0.0275, then Fisher’s 
exact test could fit the additional outcome into its rejec­
tion region, while the chi-square test could not. Because 
the chi-square rejection region still has null probability 
0.0049, it still has the same actual a  level, 0.0049. But 
Fisher’s exact test now has a larger rejection region, with 
null probability 0.0273, which serves as its actual a  level. 
In this case, Fisher’s exact test is much less conservative 
than the chi-square test. This information appears in the 
table below.

With a nominal a  level of0.0500, each test could 
include the 18 outcome but not the 17 outcome in its rej ec- 
tion region, because p(17)=0.1014>0.05 and 
p(17)=0.1017>0.05, respectively, for Fisher’s exact test and 
the chi-square test. Again, both tests are equally conserva­
tive. With a nominal a  level of 0.2625 the tests again 
diverge, with Fisher’s exact test rejecting for 17 but not 16 
(p=0.2628), while the chi-square test can reject for both 
(p=0.2624 for 16), but not for 15 (p=0.5000). With an 
actual a  level of 0.1014, Fisher’s exact test is quite con­
servative; but the chi-square test, with its actual a  level of 
0.2628, is anti-conservative. We have seen three distinct 
cases, but we did not see a case in which the chi-square 
test was simultaneously valid and less conservative than 
Fisher’s exact test. Because the Fisher actual a-level will

Table 1. Fisher’s Exact Test Vs Chi-Square Test

Nominal a  Fisher’s exact test Chi-square test Compared to Fisher’s exact
(one-sided) cut-off actual a  cut-off actual a  test the chi-square test is

0.0250 19 0.0049 19 0.0049 equally conservative

0.0275 18 0.0273 19 0.0049 more conservative

0.0500 18 0.0273 18 0.0273 equally conservative

0.2625 17 0.1014 16 0.2628 anti-conservative
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be that attainable p-value closest to but not exceeding the 
nominal Type I error rate, no test can be simultaneously 
valid and less conservative than it. In fact, any exact test is 
minimally conservative in this sense. As such, even con­
servatism, which is often used as an argument against ex­
act tests (Agresti & Coull, 1998), favors the exact test un­
less the parametric test gains an unfair advantage by being 
anti-conservative.

For a more extreme example of a comparison 
between an anti-conservative parametric test and a conser­
vative exact test, consider the 2x2 table {(8,2);(4,6)}. That 
is, there are 2/10 successes in the control group, and 6/10 
successes in the active group. With a nominal a  level of 
0.05 one-sided, the actual a  levels are 0.0099 for Fisher’s 
exact test and 0.0849 for the chi-square test. Because 
0.0849 is closer to 0.05 than 0.0099 is, some would argue 
that the chi-square test at the 0.0849 level is most appro­
priate. In fact, it may or may not be more appropriate than 
Fisher’s exact test at the 0.0099 level, but these are not the 
only options. If the response variable is observed fairly 
soon after randomization, then one could consider an adap­
tive procedure in which recruitment to the study stops only 
when the conservatism is small enough. This might be 
judged to be the case if either the observed p-value inter­
val (Berger, 2001) is entirely on one side of a  or the p- 
value interval that contains a  is itself contained in a fairly 
tight pre-defined interval around a . So a larger sample 
size might resolve this problem satisfactorily. But even 
without resorting to larger sample sizes, it is also clear that 
if the chi-square test can be run at an actual 0.0849 level, 
then 0.0849 is an attainable p-value, meaning that there is 
an outcome for which 8.49% of the outcomes are as or 
more extreme. This means that Fisher’s exact test can also 
be conducted at the 0.0849 level.

So now there are two issues. First, is it accept­
able to use a test with an actual a  -level larger than the 
planned 0.05? Second, if the answer to the first question 
is yes, then which test should be used at the 0.0849 level? 
Berger (2000b) noted the inappropriate willingness of some 
researchers to accept the general conservatism of exact 
tests, without considering the extent of conservatism of 
the exact test in question, as sufficient reason to answer 
yes to the first question. Yet the extent of conservatism of 
any exact test may be quantified by the p-value interval 
(Berger, 2001). Furthermore, conservatism is not a prob­
lem, because the lower the Type I error rate the better. The 
attendant loss of power may be a problem, so the power 
needs to be considered.

In any event, if the answer to the first question is 
no, then clearly Fisher’s exact test must be used at the 
0.0099 level. Regarding the second question, we note that 
with a nominal a  -level of 0.0849 both the Fisher and 
chi-square p-values would be significant exactly 8.49% of

the time. There is still an important distinction, however, 
in that no more than 5% of the time would the Fisher p- 
value be significant at the 0.05 level. This is not the case, 
however, for the chi-square test, for which the p-value 
would be significant at the 0.05 level 8.49% of the time. If 
events that should occur with probability one in a thou­
sand “do not occur with this frequency, there is something 
seriously wrong with our understanding of probability” 
(Bailar, 1976). Likewise, if the 5th percentile of a distribu­
tion is actually exceeded by 8.49% of the outcomes, then 
it is not really the 5th percentile of the distribution. If the 
nominal a  level is planned to be 0.05, then it might be 
reasonable in some cases to use an actual a  level that 
exceeds it, perhaps 0.0849. To do so, and then after the 
fact report 0.05 as the a  level used, is tantamount to plan­
ning a study with 200 patients, actually recruiting only 180 
patients, yet still reporting the actual sample size as 200. 
Because parametric tests are guilty of this type of decep­
tion, conservatism cannot justify their use in practice.

The Parametric t-test vs the Wilcoxon-Mann-Whitney 
(WMW) Test

In this section we consider the merits of the WMW 
test relative to the parametric t-test for unadjusted between- 
group comparisons on the basis of continuous data. We 
first point out that there are numerous versions of the WMW 
test (Bergmann, Ludbrook, & Spooren, 2000), and this is 
likely what prompted Ludbrook (1996) to support exact 
tests in general yet specifically criticize the WMW test. In 
any event, it is the exact version of the WMW test that we 
consider. Williams et al. (2000a) used the WMW test (the 
exact version, we assume) to assess resource use and costs 
in a RCT comparing open access to routine appointments 
for inflammatory bowel disease.

Barber and Thompson (2000) commented that:

1) “resource use and cost data tend to have highly skewed 
distributions”,
2) “t-test methods are only strictly valid for data that are 
normally distributed”,
3) “the most appropriate simple method for comparing 
mean costs is the ordinary t-test”,
4) “use of inappropriate methods for the analysis of cost 
data is all too common”.

It is certainly true that many distributions are highly skewed, 
and even bell-shaped distributions need not be normally 
distributed. Furthermore, even if a variable has a normal 
distribution in the target population of interest, allowing 
for non-random sampling from this normal distribution 
allows for the possibility of accepting or rejecting an ob­
servation on the basis of the observation itself. Using the 
rejection method (Hoaglin, 1983) would then allow for the
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retained observations to have any distribution we want them 
to have. Hence, a lack of random sampling necessarily 
precludes the possibility of asserting normality of the sam­
pling distribution of the data. If random allocation was 
used, then it is the only part of the study that was “experi­
mental” (manipulated), and the sampling distribution is a 
permutation distribution. This permutation distribution 
may converge to normality as the sample size grows infi­
nitely large, but we feel safe in agreeing with Geary (1947) 
and Hunter and May (1993) that no data (based on a finite 
sample size) have a normal distribution. So, we agree with 
Barber and Thompson’s (2000) first point.

The second point has an ambiguity owing to the 
improper placement of the word “only” in the sentence. In 
light of the third point, it is conceivable that “only” was 
meant to start the sentence and limit the class of valid analy­
ses to the t-test. However, given the context in which this 
sentence appears, it seems more likely that “only” was 
meant to follow “valid” so as to limit the situations in which 
the t-test is valid to those in which the data are normally 
distributed. If this latter interpretation is the correct one, 
then we agree with the second point. In fact, the perceived 
robustness to non-normality of parametric methods (as will 
be discussed) is somewhat of an illusion (Hunter & May,
1993).

We develop our comments on the third point by 
first noting that Thompson and Barber (2000) claimed that 
“only the t-test on untransformed data can be appropriate 
for costs, since it is the only one that addresses a compari­
son of arithmetic means”. Even conceding the point that it 
is reasonable to compare mean costs, we can still disagree 
with the third point, which may be interpreted broadly to 
include the exact t-test, although the use of the word “ordi­
nary” makes it is more plausible that only the parametric t- 
test was intended. As articulated above, parametric tests 
(including the t-test) fail to preserve the Type I error rate 
in RCTs. As such, we cannot agree with the third point if it 
is interpreted the plausible way. In considering the more 
favorable interpretation of the third point, we note that our 
desire to maximize power to detect mean differences might 
suggest that the exact t-test would be ideal. However, mean 
differences may well be accompanied by differences in 
spread and/or shape (Hart, 2001), and the nature of these 
differences will affect which test is most powerful. In fact, 
one could construct an exact test using any test statistic, 
including the between-group mean difference in raw costs 
(the exact t-test), in ranks (the WMW test), or in Van der 
Waerden normal scores. Often the WMW test is more 
powerful and/or more robust than the t-test (Lachenbruch, 
1992; Higgins & Blair, 2000; Weinberg and Lagakos, 
2001), so we cannot agree with the third point of Barber 
and Thompson (2000) even if it is interpreted to include 
the exact t-test.

Regarding the fourth point, we note that only an

exact test can protect against a Type I error attributable to 
assuming normality. Using an exact test based on a test 
statistic that is broadly powerful to detect mean differences, 
and getting a low p-value, Williams et al. (2000a) con­
vincingly demonstrated that “open access greatly reduces 
secondary care costs” (Williams et al., 2000b). Barber 
and Thompson (2000) demonstrated that for this data set, 
either the normality assumption was sufficiently flawed or 
the difference in means was sufficiently accompanied by 
shifts in shape and/or scale that the t-test failed to detect 
this difference. Apparently, Barber & Thompson (2000) 
failed to recognize that their primary contribution is the 
demonstration of the truth of the fourth point, which they 
accomplished by illustrating that the frequently used para­
metric t-test can be quite misleading (Williams et al., 
2000b), and is therefore inappropriate.

The Chi-squared Test vs Fisher’s Exact Test
In a recent study of the effect of neuromuscular 

training (Hewett et al., 1999), the chi-square test was used 
to analyze knee injuries in female athletes. Clancy (2000) 
commented that “Because the observed and expected num­
ber of knee injuries was less than five in at least one cell, 
an approximate method is inappropriate. An appropriate 
method in this instance would have been a Fisher’s exact 
test. Incidentally, use of this exact method demonstrated 
no statistical significance ..., suggesting that the extreme 
variability present in the small sample resulted in an incor­
rect finding when an approximate method was used. This 
provides all sports medicine researchers with a potent ex­
ample of why appropriate statistical analysis is extremely 
important.” We comment below on choosing tests based 
on expected cell counts. For now, note that Fisher’s exact 
test is a misnomer, because as discussed above it is not 
exact unless there is random allocation that has as its only 
restriction that the treatment totals are fixed at their ob­
served values (Berger, 2000a, Section 3.1). As the Hewett 
et al. (1999) study appears to have been nonrandomized, 
neither Fisher’s exact test nor the chi-square test is exact 
in this context. Yet, in response Hewett et al. (2000) ap­
peared to accept that Fisher’s exact test was in fact exact, 
responding only that:

“the chi-square test is unconditional in that a sig­
nificance probability produced by it refers to the 
long-term likelihood in repeated experiments of 
observing an outcome more extreme than ours, 
regardless of the marginal cell counts in these 
future experiments under the null hypothesis 
(more applicable and inclusive to future stud­
ies). Fisher’s exact test, on the contrary, is con­
ditional and is, technically, only applicable to 
future experiments like ours in which the
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marginal cell counts are fixed at the exact values 
that we obtained in our particular study. The sig­
nificance probability of the Fisher’s exact test is 
much more limited in scope than a chi-square 
probability, which is one of the reasons Fisher’s 
exact test is rarely used by statisticians.”

Hence, it is reasonable to assume that the same 
discussion would have ensued had the study actually been 
a RCT. A similar set of views was expressed over ten years 
ago by Shuster (1990, p. 26), who stated that Fisher’s ex­
act test “is not a true p-value, since the additional proviso 
is made that in the replication of the experiment, you must 
match the total number of successes with that observed”. 
The RCT design is well summarized by Kempthome (1979) 
as Origin III sampling, for which valid probability state­
ments about what might have happened with different 
samples are not supported (Berger, 2000a, Section 2.2). 
Applying a parametric test cannot extend the scope to which 
valid inferences apply, but producing the appearance of 
such extension can be dangerously seductive. Condition­
ing on the observed marginal totals, as Fisher’s exact test 
does, is required for exactness and validity, and hence is 
not a weakness (Berger, 2000a, Section 4.3). In fact, by 
providing internal validity (exactness) through recogniz­
ing the limitations of the study design, Fisher’s exact test 
can actually enhance, and not compromise, the possibility 
for external validity Berger (2000a, Section 5). As such, 
we find that while the chi-square test may have asymptoti­
cally good properties in the random sampling context, its 
use in RCTs reflects familiarity, and not appropriateness.

So Why Do Researchers Use Parametric Analyses?
In the Introduction we allowed for the possibility 

that one could argue convincingly that a given parametric 
test might be preferred to the best available permutation 
test provided that it were more robust in preserving the 
nominal Type I error rate on the indifference region and 
the strong null region. However, simply stating that para­
metric tests are robust, without comparing the robustness 
of a particular parametric test to that of a competing exact 
test, cannot be convincing. When such a comparison is 
not offered, and we have never seen one in practice, ro­
bustness cannot be offered as a reason to use a parametric 
test.

We demonstrated above that conservatism of ex­
act tests is not a valid reason to select a parametric test 
either. Another reason that is often cited, especially if a 
preliminary test of the assumptions underlying the validity 
of the parametric test is conducted, is the frequent agree­
ment of the exact and parametric tests. The lack of obvi­
ous problems resulting from all these years of using para­
metric tests has also been cited. One reason for using 
parametric tests that is not often cited, but maybe deduced

from the lack of attention dedicated to this issue, is that 
some may feel that this is a fourth decimal point issue that 
is not ready for prime time. We find no merit in any of 
these reasons. In the remainder of this section we provide 
journal editors and regulatory authorities with responses 
they can use if and when they encounter such arguments.

If credibility for the parametric test derives from 
assurances that its p-value will likely be close to the corre­
sponding exact one, then this is tantamount to an admis­
sion that the exact test is the gold standard (or, perhaps, 
the platinum standard). Approximate tests cannot be any 
more exact than the exact tests they are trying to approxi­
mate and, as approximations to the exact tests, are correct 
only to the extent that they agree with the exact test. A 
“heads I win, tails you lose” situation then arises, because 
if the parametric and exact tests lead to essentially the same 
inference, then this is as much an argument in favor of the 
exact test as it is for the parametric test, and there is no 
benefit to using the parametric test. If they do not agree, 
then the exact test needs to be used.

Feinstein (1993) wrote that “a statistician defend­
ing the general use of t and chi-square tests in modem re­
search could point to their frequent accuracy. With the 
same argument, an old school clinician might point out 
that diabetes mellitus can usually be diagnosed by tasting 
the urine or applying Benedict’s reagent. With the avail­
ability of better and equally easy ways to diagnose diabe­
tes, however, these old procedures were gradually replaced 
by techniques that are more reliable. Similarly, when the 
aid of computers allows permutation or randomization tests 
to be performed easily, the t-test and chi-square test will 
probably begin to disappear as routine procedures. Even 
without computers, however, the permutation tests are the 
preferable and perhaps mandatory procedures to be used”. 
Even in those cases in which the two tests agree perfectly, 
Altman (1982, p. 67) makes a compelling case that setting 
a precedent for poor methodology encourages other re­
searchers to use the same poor methodology in the future. 
It is likely that in some of these future studies the results 
will be materially affected.

For these reasons, we believe that even if para­
metric tests tend to agree with exact tests, meaning that 
with “high” (left undefined) probability, the parametric p- 
value will be “close” (also left undefined) to the exact p- 
value, they still should not be used. Even with preliminary 
tests of the assumptions, the general similarity of the two 
tests does not exclude the possibility of discordant results 
between the tests for given data sets. This is because the 
preliminary test has as its null hypothesis the conditions 
that would allow for the use of the parametric test. The 
null hypothesis cannot be proven by a formal test of hy­
pothesis, especially when the test suffers from poor power, 
as the preliminary tests to detect conditions that would ren­
der the parametric test unreliable (such as non-normality)
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often do.
For example, Little (1989) presented a 2x2 table, 

with cell counts {(170,2);( 162,9)}. Because each expected 
cell count is at least 5, the chi-square test would be used, 
yet for one-sided testing (which is generally conducted at 
the 0.025 level) the chi-square test would find significance 
(p=0.0162) and Fisher’s exact test would not (p=0.0299). 
Barber and Thompson (2000), Berger (2000a, Section 2.3), 
and Clancy (2000) presented other real data examples in 
which use of the parametric test matters more than in the 
fourth decimal. Given the danger in restricting the use of 
exact analyses to cases in which the need for such use is 
obvious, the prudent approach is to be suspicious of as­
sumptions even when there is no apparent reason to be 
suspicious. The only way to validate a particular paramet­
ric p-value, and ensure that it differs from the correspond­
ing exact p-value in only the fourth decimal place, is to 
compare it to the exact p-value. If the exact p-value needs 
to be computed to validate the approximate one, then why 
not simply use the exact one, the ready availability of which 
renders the extent to which an approximate test approxi­
mates it irrelevant (Berger, 2000a)?

As for the precedent for using parametric analy­
ses without obvious damage, we note that p-values pro­
vided by inappropriate methodology are numbers between 
zero and one, and look just like p-values produced by ap­
propriate methodology. Alarms do not go off when an in­
appropriate method is used. In fact, two forces conspire to 
conceal the damage caused by the use of inappropriate 
methodology by separating the manifestation of this dam­
age from the antecedent usage of the inappropriate meth­
odology. Specifically, when inappropriate methodology 
causes damage, there is both a diffusion of the damage to a 
set of patients who do not act or think as a unified indi­
vidual and a lag time in the manifestation of this damage. 
Add to this that the patients may be sick anyway, and there 
is little hope of ever tracing the damage back to the cause. 
That damage actually does occur as the result of medical 
errors, and often goes unnoticed, has been well documented 
(Moore, 1995). How much easier would the life of an 
epidemiologist be if every risk were easily identified and 
linked to the damage it caused? In fact there have always 
been real risks that were not mitigated by our ignorance of 
their existence. The lack of an identifiable victim com­
plaining about the use of parametric tests cannot be inter­
preted as the lack of a victim.

Conclusion

It has been said that for evil to prevail all it takes is a few 
good people to stand by and do nothing. The same could 
be said for the “scandal of poor medical research” (Altman,
1994). To avoid being part of the problem, all involved 
parties should insist on quality methodology. This applies

especially to regulators and medical journal editors, who, 
given their “public duty to ensure that reports of research 
provide valid information” (WAME, 2001), might be seen 
as functioning as de facto regulators. Given that papers 
with poor methodology can cause harm (in numerous ways) 
and cannot be “unpublished” (Altman, 1982), consumers 
of medical publications (including practicing physicians 
and HMOs) should hold these publications to rigid stan­
dards before accepting and acting on the results (by alter­
ing reimbursement or prescribing patterns). That is, “be­
cause low p-values are not themselves persuasive but re­
quire solid methodology as a foundation, we must resist 
the pressure to view data positively that were produced 
from poor methodology” (Moye, 1999). Patients might 
want to ask their physicians about the evidence on which a 
decision is based. Given the importance of analyzing RCT 
data with methods that are applicable to and appropriate 
for RCTs, medical schools might consider offering degrees 
specifically in RCT design and analysis. Granting institu­
tions might want to ensure that medical research is sup­
ported by a reality-based trialist who will build robustness 
into the analyses by making a minimum of unverifiable 
assumptions.

Because those who claim to be methodological 
experts often disagree among themselves, there is both 
conflicting information and misinformation being taught 
in schools and published in both the medical and the sta­
tistical literature. Two steps might put medical research­
ers in a better position to evaluate the analyses a statisti­
cian proposes. First, medical researchers could think hard 
about how best to analyze the data, possibly reading 
Feinstein (1993) carefully if the study is a RCT. Second, 
the medical researcher could require the statistician to jus­
tify the proposed analyses with logic and reason, instead 
of (or in addition to) references. It would help if the stat­
istician would provide an informed consent document to 
spell out the assumptions and limitations of the proposed 
analyses. See the Appendix for an example dealing with 
parametric analyses. Although it is unlikely that statisti­
cians who use parametric analyses would make themselves 
look bad by providing such a document, the medical re­
searcher could bring some version of this document to the 
attention of the statistician to initiate the discussion about 
the analyses planned.

Developers of statistical software and authors of 
text books should offer analyses with a minimum of re­
quired assumptions and should make explicit the assump­
tions and limitations of all analyses. This presently is not 
the case (Bergmann, Ludbrook, & Spooren, 2000). Real­
ity-based trialists should, when confronting a researcher 
endorsing a parametric analysis, consider the advise of 
Bross (1990), who wrote that “if we politely call a method 
‘dubious’, the criticism can be brushed off as a ‘difference 
of opinion between experts’. However, if most
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statisticians call a method ‘fraudulent’, the criticism can­
not be brushed off so easily.”. Hopefully this article will 
prove useful to reality-based trialists in their efforts to ar­
gue effectively against parametric analyses, or at least us­
ing parametric analyses without carefully checking their 
situation-specific robustness.

As for the researcher who wants to resist reality- 
based analyses, and maintain the status quo of routinely 
using parametric tests, we agree with Bross (1990) that 
“the user of a statistical method has the responsibility for 
dealing with the scientific question: Are the assumptions 
valid? In particular, when human health and safety might 
be jeopardized ..., a statistician has a direct responsibility 
to protect the public health and safety by following fail­
safe principles in dealing with any assumptions”. Given 
the logical basis for reality-based analyses, it is likely only 
a matter of time before the medical profession catches on 
that the normal theory that perplexed them in medical 
school actually has little or no place in RCTs. When this 
happens, and proper analyses become the rule instead of 
the exception, the emperor’s new clothes will be seen for 
what they are, and some may well wonder why the naked 
emperor was allowed to rule for so long. We would not 
want to be in a position of having to explain why right up 
until the time that we were forced to cease and desist we 
continued to use inappropriate methods that resulted in 
medical errors leading to unnecessary morbidity and mor­
tality. Although much work remains to fully elucidate the 
optimal methods for comparing medical interventions, and 
while there may never be a bias-proof system, there can be 
no excuse for not getting the easy ones right.
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Appendix

Sample Informed Consent Document for Statisticians to 
Provide to Medical Researchers (or Vice Versa)

By signing this form you agree that you have been 
informed of the following. In trusting me with your data, 
you recognize that I might perform analyses that are tech­
nically correct only if various conditions are true. The 
reality is that these conditions could not possibly be true. 
Yet in basing the analyses on the truth of these conditions 
we can follow the tradition of using such parametric analy­
ses. It is unlikely that the results we obtain will differ very 
much from those we would have obtained had we used 
exact methods, which are readily available. In fact, it would 
not be difficult for me to compare the approximate results 
to the exact results, but I will not do so, because, as stated, 
it is unlikely that they will differ by very much. This means 
that there is the possibility that the parametric results will 
differ sufficiently from the exact results to lead to different 
conclusions. These conclusions may then be inappropri­
ate, but this would not be discovered right away, because I 
will not compute the exact results. In the event that in the 
future it is revealed that damage resulted from the use of 
improper statistical methods, you agree to indemnify me.
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