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In this paper we proposed a generalization of generalized Poisson-Lindley 

distribution which includes generalized Poisson-Lindley distribution, Poisson-

Lindley distribution, Poisson- weighted Lindley distribution, negative binomial 

distribution and geometric distribution as special cases. Statistical properties based 

on moments, maximum likelihood estimation and applications of the distribution 

have been discussed. 

 

Keywords: Poisson-Lindley distribution, Generalized Poisson-Lindley distribution, 
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INTRODUCTION 

Sankaran (1970) introduced a one parameter Poisson-Lindley distribution (PLD) to 

model count data having probability mass function (pmf) 
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This distribution arises from the Poisson distribution when its parameter  follows 

Lindley distribution introduced by Lindley (1958) with probability density function 

(pdf) 
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Ghitanyet al (2008) studied various properties including shapes, moments, 

generating functions, hazard rate and mean residual life functions, stochastic 

ordering, order statistics, Renyi entropy measure, mean deviations, Bonferroni and 

Lorenz curves, and stress-strength reliability along with estimation of parameter 

using both the method of moments and the method of maximum likelihood 

estimation and application of Lindley distribution to model waiting time data in a 

bank. Ghitanyet al (2008, 2009) have also proposed the size-biased and zero-

truncated versions of PLD to model count data when the data to be modeled originate 

from a generating mechanism that structurally excludes zero counts.  

Mahmoudi and Zakerzadeh (2010) introduced a two-parameter generalized Poisson-

Lindley distribution (GPLD) having pmf 
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It can be easily verified that (1.1) is a particular case of (1.3) at 1 = . The first four 

moments about origin and the variance of GPLD are given by 
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It can be easily verified that at 1 = , these moments reduce to the corresponding 

moments of PLD.  

Zakerzadeh and Dolati (2009) have introduced a three parameter generalized Lindley 

distribution (GLD) having pdf 
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Lindley distribution, gamma distribution and weighted Lindley distribution (WLD) 

are particular cases of (1.4) at ( )1 = = , ( )0 =  and ( ) = , respectively. Note 

that GPLD in (1.3) is a Poisson mixture of GLD in (1.4) taking 1 = . Shanker and 

Shukla (2016) have detailed comparative study on modeling of real lifetime data 

from engineering and biomedical sciences using GLD and generalized gamma 

distribution (GGD) introduced by Stacy (1962) and concluded that there are several 

lifetime data where GGD gives much better fit than GLD. 

The pmf of Poisson-weighted Lindley distribution (P-WLD) introduced by El-

Monsef and Sohsah (2014) is given by 
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It can be easily verified that PLD is a particular case of P-WLD for 1 = . Shanker 

and Shukla (2017) have detailed study on P-WLD and obtained raw moments and 

central moments and studied the nature and behavior of coefficient of variation, 

coefficient of skewness, coefficient of kurtosis and index of dispersion. Further, 

Shanker and Shukla (2017) discussed the maximum likelihood estimation for 
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estimating its parameters and discussed the goodness of fit of P-WLD and concluded 

that P-WLD competes wellwith Poisson distribution (PD), PLD, NBD and GPLD. 

Note that P-WLD in (1.5) is a Poisson mixture of a two-parameter weighted Lindley 

distribution (WLD) proposed by Ghitanyet al (2011) having pdf 
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Note that Lindley distribution is a particular case of WLD at 1 = .Shankeret al 

(2016) discussed various moments based properties including coefficient of 

variation, coefficient of skewness, coefficient of kurtosis and index of dispersion of 

weighted Lindley distribution and its applications to model lifetime data from 

biomedical sciences and engineering. Shankeret al (2017) have proposed a three-

parameter weighted Lindley distribution (TPWLD) which includes a two-parameter 

weighted Lindley distribution as particular cases and discussed its various structural 

properties, estimation of parameters and applications for modeling lifetime data from 

engineering and biomedical sciences. 

The main motivation of this paper is to obtain a generalization of generalized 

Poisson-Lindley distribution (GGPLD) by taking a Poisson mixture of three-

parameter GLD (1.4),  which includes generalized Poisson-Lindley distribution 

(GPLD), Poisson-Lindley distribution (PLD), Poisson-weighted Lindley distribution 

(P-WLD), negative binomial distribution (NBD) and geometric distribution (GD) as 

particular cases.  Its moments and moments associated measures have been derived 

and discussed. The estimation of its parameters has been discussed using maximum 

likelihood estimation. The applications of the distribution have been discussed with 

some count datasets and the goodness of fit of the distribution has also been 

compared with other discrete distributions.  

 

A GENERALIZATION OF GENERALIZED POISSON-LINDLEY 

DISTRIBUTION 

Assuming that the parameter  of the Poisson distribution follows a three-parameter 

GLD (1.4), the Poisson mixture of three-parameter GLD can be obtained as 
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We would call this distribution in (2.2) as the generalization of generalized Poisson-

Lindley distribution (GGPLD). We denote it by GGPLD ( ), ,   . It can be easily 

verified that GPLD in (1.4) and PLD in (1.1) are special cases of GGPLD for ( )1 = , 

and ( )1 = = respectively. Further, the Poisson - Weighted Lindley distribution (P-

WLD), negative binomial distribution (NBD) with parameters r =  and 
1

p



=

+

and the geometric distribution with parameter 
1

p



=

+
 are also particular cases of 

(2.2) for ( ) = , ( )0 = and ( )1, 0 = = , respectively.  

The nature and behavior of GGPLD for varying values of the parameters , ,  and 

  have been explained graphically in figure 1. 
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Figure. 1: Probability mass function plot of GGPLD for varying values of 
parameters , ,  and   
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MOMENTS AND ASSOCIATED MEASURES 

Using (2.1), the r th factorial moment about origin of the GGPLD (2.2) can be 

obtained as 
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Taking 1, 2,3,and 4r = in (3.1), the first four factorial moments about origin of 

GGPLD (2.2) can be obtained  

( )

( )

( )1

   


  

+ +
 =

+
 

( )

( ) ( ) 
( )2 2

1 2    


  

+ + +
 =

+
 

( )

( ) ( ) ( ) 
( )3 3

1 2 3     


  

+ + + +
 =

+
 

( )

( )( )( ) ( ) 
( )4 4

1 2 3 4      


  

+ + + + +
 =

+
. 

Now using the relationship between factorial moments about origin and the moments 

about origin, the first four moments about origin of GGPLD (2.2) can be obtained as 
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Now, using the relationship between moments about mean and the moments about 

origin, the moments about mean of the GGPLD (2.2) can be obtained as 
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The coefficient of variation ( ).CV , coefficient of Skewness ( )1 , coefficient of 

Kurtosis ( )2 and index of dispersion ( )   of the GGPLD (2.2)) are thus obtained as  
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Again it can be easily verified that at 1 = and 1 = = , these moments based 

measures reduce to the corresponding measures of GPLD and PLD.  

Nature and behavior of coefficient of variation, coefficient of skewness, coefficient 

of kurtosis and index of dispersion of GGPLD for varying values of parameters , , 

and   have been shown graphically in figure 2. 
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Figure. 2: Nature and behavior of coefficient of variation, coefficient of 
skewness, coefficient of kurtosis and index of dispersion of GGPLD for 
varying values of parameters , ,  and  . 

 

 

MAXIMUM LIKELIHOOD ESTIMATION OF PARAMETERS 

Let ( )1 2, ,..., nx x x be a random sample of size n from the GGPLD (2.2) and let xf be 

the observed frequency in the sample corresponding to  ( 1,2,3,..., )X x x k= =  such 

that 
1

k

x

x

f n
=

= , where k is the largest observed value having non-zero frequency. The 

log likelihood function of GGPLD (2.2) can be given by 
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1

1 1

log 1 log 1 log 1 log 1 log log 1

log log 1 log 1

k

x

x

k k

x x

x x

L n x f

f x x f x

       

    

=

= =

= + − + + −  + − + − +  

+  + −  + + + + +      



 

 

The maximum likelihood estimates ( )ˆ ˆˆ, ,   of ( ), ,   ofGGPLD (2.2) is the 

solutions of the following log likelihood equations  

( )

( ) ( )1

1log
0

1 1 1

k
x

x

n fL n n x

x

 

         =

+
= − − + =

 + + + + + +  
  

( ) ( )
( )

( )1 1

1log
log 1 0

1 1

k k
x

x

x x

fL
n n f x

x

 
   

     = =

+ +  
= − + + + + = 

 + + + + 
   

( )

( )1

log
0

1

k
x

x

x fL n

x



      =

+
= − + =

 + + + +
 . 

 where x is the sample mean and ( ) ( )1 log 1
d

d
  


+ =  + and

( ) ( )log
d

x x
d

  


+ =  + are digamma functions. 

These three log likelihood equations do not seem to be solved directly. However, the 

Fisher’s scoring method can be applied to solve these equations. We have 

( ) ( )

( ) ( ) ( )

22

2 2 22 2
1

1 1log

1 1 1

k
x

x

n n fL n x

x

  

       =

+ +
= − + + +

 + + + + +  


( ) ( )
( )

( )

22

22
1 1

1log
1

1

k k
x

x

x x

fL
n f x

x

 
   

    = =

+ +
 = − + + + −

 + + +  
   

( )

( )

( )

22

2 22
1

log

1

k
x

x

x fL n

x



      =

+
= −

 + + + +  
  

( ) ( )

2 2

2
1

log log

1 1

k
x

x

x fL n L

x



        =

 
= + =

  +  + + +  
  

( )

( )

( )

2 2

2 2
1

log log

1

k
x

x

x fL n L

x

 

        =

+ 
= − =

   + + + +  
  

( )

( )

2 2

2
1

1log log

1

k
x

x

x fL L

x



      =

+ 
= − =

   + + +  
 , 

where ( ) ( )1 1
d

d
   


 + = + and ( ) ( )

d
x x

d
   


 + = + are trigamma 

functions. 
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The maximum likelihood estimates ( )ˆ ˆˆ, ,   of ( ), ,   ofGGPLD (2.2)  is the 

solution of the  following equations  

0
0

0
0

0

2 2 2

2

02 2 2

02

2 2 2 0

ˆ
ˆ2

ˆ
ˆ

ˆ
ˆ

log log log log

ˆ

log log log log
ˆ

ˆ
loglog log log

L L L L

L L L L

LL L L
 

 
 

 


 

      

 
     

 

    
=

=
=

=
=

=

     
           −  
       

− =               −       
          

0

 

where 0 0 0, , and    are the initial values of , and   respectively. These 

equations are solved iteratively till sufficiently close values of ˆ ˆˆ, and   are 

obtained.  

 

APPLICATIONS 

In this section the applications of the GGPLD has been discussed with some count 

datasets from biological sciences and thunderstorms events. The dataset in table 1 is 

the data regarding the number of red mites on apple leaves, available in Bliss (1953). 

The dataset in tables 2 and 3 are the Mammalian Cytogenetic dosimetry Lesions in 

Rabbit Lymphoblast induced by streponigrin (NSC-45383), available in Catchesideet 

al (1946). The dataset in table 4 is the number of micronuclei after exposure at dose 

4 Gy of irradiation, counted using the cytochalasin B method, available in Piug and 

Valero (2006). The dataset in tables 5 and 6are the frequencies of the observed 

number of days that experienced X thunderstorm events at Cape kennedy, Florida for 

the 11-year period of record in the month of June and July, January 1957 to 

December 1967 and are available in Falls et al (1971) and Carter (2001). The 

goodness of fit of GGPLD has been compared with the goodness of fit given by 

Poisson distribution (PD), PLD, NBD and GPLD. Note that the estimates of the 

parameters are based on maximum likelihood estimates for all the considered 

distributions. Based on the values of chi-square ( )2 , 2log L− and AIC (Akaike 

Information criterion), it is obvious that GGPLD gives closer fit over the considered 

distributions. Note that AIC has been calculated using the formula

2log 2AIC L k= − + , where k  is the number of parameters involved in the 

distribution. 
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Table 1: Observed and Expected number of European red mites on Apple leaves, 

available in Bliss (1953) 

Number of 

Red mites per 

leaf 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD GGPLD 

0 

1 

2 

3 

4 

5 

6 

7 

8 

70 

38 

17 

10 

9 

3 

2 

1 

0 

47.6 

54.6 

31.3 

11.9 

3.4 

0.8 

0.2 

0.1 

0.1 

67.2 

38.9 

21.2 

11.1 

5.7 

2.8 

1.4 

0.9 

0.8 

69.5 

37.6 

20.1 

10.7 

5.7 

3.0 

1.6 

0.9 

0.9 

69.8 

36.7 

20.1 

10.9 

5.8 

3.1 

1.6 

0.8 

1.2 

69.9 

36.6 

20.2 

11.0 

5.8 

3.1 

1.6 

0.8 

1.0 

Total 150 150.0 150.0 150.0 150.0 150.0 

ML estimates 

 

 ˆ 1.14666 =  ˆ 1.26010 =

 

ˆ 1.11914 =  

ˆ 1.02459 =

 

ˆ 1.09620 =

ˆ 0.78005 =

 

ˆ 1.09860 =

ˆ 0.69603 =
ˆ 1.42003 =  

Standard 

Errors 

 0.08743 0.11390 0.40136 

0.42097 

 

0.25400 

0.31550 

0.25887 

0.97563 

5.22472 
2   26.50 2.49 2.91 2.43 2.45 

d.f  2 4 3 3 2 

p-value  0.0000 0.5595 0.4057 0.4880 0.2937 

2log L−   485.61 445.02 469.38 444.62 444.61 

AIC  487.61 447.02 447.02 448.62 450.61 

 

Table 2: Mammalian Cytogenetic dosimetry Lesions in Rabbit Lymphoblast induced 

by streponigrin (NSC-45383), Exposure- 60 |g kg  

Class/Ex

posure 

( |g kg

) 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD GGPLD 

0 

1 

2 

3 

4 

5 

6 

413 

124 

42 

15 

5 

0 

2 

374.0 

177.4 

42.1 

6.6 

0.8 

0.1 

0.0 

405.7 

133.6 

42.6 

13.3 

4.1 

1.2 

0.5 

412.7 

124.9 

41.5 

14.2 

4.9 

1.7 

1.1 

412.9 

124.1 

42.0 

14.3 

4.9 

1.6 

1.2 

413.0 

124.1 

42.0 

14.4 

4.9 

1.6 

1.0 

Total 601 601.0 601.0 601.0 601.0 601.0 

ML 

estimates 

 ˆ 0.47421 =
 

ˆ 2.68537 =
 

ˆ 1.76494 =
 

ˆ 2.16876 =
 

ˆ 2.17980 =
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ˆ 0.83700 =

 

 

 

ˆ 0.71287 =

 

ˆ 0.70100 =

 
ˆ 1.08585 =

 

Standard 

Errors 

 0.0280

9 

0.16467 0.40075 

0.17964 

0.38481 

0.20487 

0.95510 

1.04202 

7.45628 
2   48.17 1.34 0.12 0.10 0.06 

d.f  2 3 2 2 1 

p-value  0.0000 0.7206 0.94129 0.9520 0.8096 

2log L−   1165.3

5 

1113.76 1112.39 1112.36 1112.36 

AIC  1167.3

5 

1115.76 1116.39 1116.36 1118.36 

 

Table 3: Mammalian Cytogenetic dosimetry Lesions in Rabbit Lymphoblast induced 

by streponigrin (NSC-45383), Exposure- 90 |g kg  

Class/Exposure 

( |g kg ) 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD GGPLD 

0 

1 

2 

3 

4 

5 

6 

155 

83 

33 

14 

11 

3 

1 

127.8 

109.0 

46.5 

13.2 

2.8 

0.5 

0.2 

158.3 

77.2 

35.9 

16.1 

7.1 

3.1 

2.3 

155.1 

80.6 

36.7 

15.9 

6.7 

2.8 

2.2 

155.3 

80.1 

36.9 

16.0 

6.7 

2.8 

2.2 

155.3 

80.1 

36.9 

16.1 

6.8 

2.8 

2.0 

Total 300 300.0 300.0 300.0 300.0 300.0 

ML estimates  ˆ 0.85333 =
 

ˆ 1.61761 =
 

ˆ 1.56009 =
 

ˆ 1.33128 =

 

ˆ 1.80860 =
ˆ 1.18743 =

 

ˆ 1.83019 =
ˆ 1.12587 =
ˆ 1.41395 =

 

Standard 

Errors 

 0.05333 0.11327 0.41479 

0.33752 

0.40045 

0.370072 

0.501159 

1.18510 

7.80636 
2   24.969 1.51 1.60 1.69 1.78 

d.f  2 3 2 2 1 

p-value  0.0000 0.6799 0.4488 0.42955 0.1821 

2log L−   800.92 766.10 765.86 765.79 765.79 

AIC  802.92 768.10 769.86 769.79 771.79 

 



 

RAMASHANKER ET AL. 

 

15 

 

Table 4: Number of micronuclei after exposure at dose 4 Gy of  irradiation, counted 

using the cytochalasin B method and available in Piug and Valero (2006)  

Number of 

micronuclei 

Observed 

frequency 

Expected frequency 

PD PLD NBD GPLD GGPL

D 

0 

1 

2 

3 

4 

5 

6 

7 

1974 

1674 

869 

342 

102 

26 

13 

2 

1816.0 

1839.9 

932.1 

314.8 

79.7 

16.1 

2.7 

1.6 

2396.8 

1300.3 

668.8 

332.1 

160.9 

76.5 

35.8 

30.8 

1966.2 

1695.5 

331.5 

857.5 

108.4 

31.6 

8.4 

2.9 

1964.9 

1696.6 

857.9 

331.5 

108.3 

31.5 

8.41 

2.9 

1966.5 

1695.2 

857.3 

331.6 

108.5 

31.6 

5.5 

2.8 

Total 5002 5002.0 5002.0 5002.0 5002.0 5002.0 

ML 

estimates 

 1.0 19ˆ 13 =
 

1.3 36ˆ 87 =
 

 

5.7 97ˆ 91 =  

ˆ 5.79197 =

 

 

ˆ 5.88560 =
 

ˆ 5.81844 =

 

ˆ 5.91675 =
 

ˆ 5.69437 =

 
ˆ 2.53870 =

 

Standard 

Errors 

 0.01423 0.02251 0.82644 

0.83264 

 

0.82310 

0.84660 

1.31079 

2.26181 

40.7924

9 
2   62.21 337.08 3.37 3.36 3.37 

d.f  4 5 4 4 3 

p-value  0.0000 0.0000 0.4976 0.4995 0.3381 

2log L−   13535.8

2 

13836.70 13471.80 13471.8

1 

13471.8 

AIC  13537.8

2 

13836.70 13475.80 13475.8

1 

13477.8 

 

Table 5: Frequencies of the observed number of days that experienced X 

thunderstorm events at Cape kennedy, Florida for the 11-year period of record in the 

month of June, January 1957 to December 1967.  

X Observe

d 

frequenc

y 

Expected frequency 

PD PLD NBD GPLD GGPLD 

0 

1 

2 

3 

187 

77 

40 

17 

155.6 

116.9 

43.9 

11.0 

185.3 

83.4 

35.9 

15.0 

184.6 

84.5 

35.8 

14.8 

185.3 

83.5 

35.9 

15.0 

185.6 

82.9 

36.2 

15.1 
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4 

5 

6 

6 

2 

1 

2.0 

0.3 

0.3 

6.1 

2.5 

1.8 

6.0 

2.4 

1.9 

6.1 

2.5 

1.7 

6.1 

2.5 

1.6 

Total 330 330.0 330.0 330.0 330.0 330.0 

ML 

estimat

es 

 ˆ 0.75148 =
 

ˆ 1.80427 =
 

ˆ 1.55916 =
 

ˆ 1.17172 =

 

 

ˆ 1.80780 =
 

ˆ 1.00340 =

 

ˆ 1.79790 =
 

ˆ 0.66060 =

 
ˆ 4.11542 =

 

Standar

d Errors 

 0.04772 0.12573 0.41501 

0.29696 

0.39558 

0.32657 

0.42815 

0.73695 

6.62533 
2   31.6 1.43 1.68 1.42 1.21 

d.f  2 3 2 2 1 

p-value  0.0000 0.6985 0.4317 0.4916 0.2733 

2log L−

 

 824.50 788.88 789.18 788.88 788.65 

AIC  826.50 790.88 793.18 792.88 794.65 

 

Table 6: Frequencies of the observed number of days that experienced X 

thunderstorm events at Cape kennedy, Florida for the 11-year period of record in the 

month of July, January 1957 to December 1967.  

X Observe

d 

frequenc

y 

Expected frequency 

PD PLD NBD GPLD GGPLD 

0 

1 

2 

3 

4 

5 

177 

80 

47 

26 

9 

2 

142.3 

124.3 

54.3 

15.8 

3.5 

0.8 

177.7 

87.9 

41.5 

18.9 

8.4 

6.6 

171.8 

94.0 

43.3 

18.7 

7.8 

5.4 

172.7 

92.8 

43.2 

18.8 

8.0 

5.4 

173.2 

92.1 

43.3 

20.0 

7.9 

4.5 

Total 341 341.0 341.0 341.0 341.0 341.0 

ML estimates  ˆ 0.87390 =
 

ˆ 1.58353 =
 

ˆ 1.67672 =
ˆ 1.46527 =

 

ˆ 1.86350 =
ˆ 1.28028 =

 

ˆ 1.84560 =
ˆ 0.92720 =
ˆ 4.02700 =

 

Standard 

Errors 

 0.05062 0.1031

7 

0.45068 

0.37896 

0.42561 

0.40429 

0.46436 

0.70499 

8.78609 
2   39.4 5.16 5.77 5.39 3.94 
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d.f  2 3 2 2 1 

p-value  0.0000 0.1594 0.0558 0.0674 0.0471 

2log L−   911.00 880.50 880.35 879.93 879.55 

AIC  913.00 882.50 884.35 883.93 885.55 

 

From the goodness of fit given above it is obvious that GGPLD competes well with 

other distributions. In table 1, both GPLD and GGPLD gives equal fit. In table 2, 

GGPLD gives slightly better fit than GPLD. In table 3, PLD gives better fit. In table 

4, NBD, GPLD and GGPLD gives almost identical fit. In table 5, GGPLD gives 

better fit as compared to other distributions. In table 6, GGPLD gives closer fits than 

other considered distributions. 

 

CONCLUDING REMARKS 

A generalization of generalized Poisson-Lindley distribution (GGPLD), which 

includes generalized Poisson-Lindley distribution (GPLD), Poisson-Lindley 

distribution (PLD), Poisson-weighted Lindley distribution (P-WLD), negative 

binomial distribution (NBD) and geometric distribution (GD) as particular cases, has 

been proposed and studied.  Its moments and moments based measures have been 

derived and discussed. Estimation of parameters has been discussed using maximum 

likelihood estimation. The goodness of fit of the distribution has also been discussed 

with some count datasets and the fit has been compared with other discrete 

distributions.  
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