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Present work has investigated the inferences in covariate autoregressive (C-AR) 

model when error term is non-Gaussian. Spherically symmetric behaviour is one of 

the non-Gaussian characteristic and may be seen in agricultural, economics and 

biological field. So, we have considered here the spherical symmetric error in C-AR 

model. Under Bayesian methodology, estimators of the model parameters are 

obtained by conditional posterior distribution. A Bayes factor is derived for testing 

the unit root hypothesis. A simulation study has conducted when error term follows 

t-distribution. In empirical study, we considered REER time series of SAARC 

countries to illustrate the applicability of the proposed model.  

 

Keywords: AR Process, Covariate, Spherical Symmetric Distribution, Prior and 

Posterior distributoion. 

 

  

Introduction 

In present scenario, time series analysis is a challenging and demandingresearch area 

because of its versatile applicability in different fields. In reference to modelling of 

time series, generally,errors are assumed normally distributed but sometimes it not 

happened so far, instead of this non-Gaussian distribution is more useful. The 

spherical symmetric form is one of the non-Gaussian distribution, and it is becoming 

popular in the last few decades. A wide literature is available in reference to 

regression modelling when errorsarebelonging to a class of spherical symmetric 

distribution, Ullah and Zinde-Walsh (1985) studied the estimation and testing 

procedure in a regression model. Jammalamadakaet al. (1987) discussed Bayes 

predictive inference in regression models. Forthe inferential assumption of 

parameters, several authors have studied the behaver of a random variable from a 

spherically symmetric distribution,see Strawderman (1974), Berger (1975), Judge et 

al. (1985), etc. For testing a linear regression parameterof the model, Wang and 

Wells (2002) explored the hypothesis testunder the assumption that errors are 

spherical distribution. Xu and Yang (2013) discussed a positive-rule stein-type ridge 

estimator and some related competing estimators in consideration of spherically 

symmetric disturbances.In Bayesian approach, Panday (2015) developed the state-
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space model with non-normal disturbances and estimated the parameters using the 

Gibbs sample technique and derived the marginal posterior densities.De Kock and 

Eggers (2017) proposed Bayesian variable selection for linear parametrizations with 

normal iid observations based on spherically symmetric distribution.Rather than 

error distribution, observed series is also affectedby other associates variables. These 

associated variables may be partially or continuously influence the series depends 

upon the circumstances. Therefore, these associate series is appropriate for the study 

to increase the efficiency of the model.  

There isa variety of literature exist to deal with covariate in the time series 

model.Hensen (1995)proposed a covariate augmented Dickey-Fuller (CADF) unit 

root test and obtained the asymptotic local power function of the CADF 

statistic.Recently Chang et al. (2017)developed bootstrap unit root tests with a 

covariate method to the CADF test to deal the time series with the nuisance 

parameter dependency and provided a valid basis for inference based on the CADF 

test.Also, Kumar et al. (2017, 2018)explored an autoregressive model with 

consideration of covariatevariables and extended to the panel data time series model. 

In this paper, we studied the C-AR time series model when error terms are 

spherically distributed under Bayesian approach. To carry out the Bayesian 

approach, model involving various parameters which is difficult to obtain 

theconditional posterior densities, in that case, Markov Chain Monte Carlo (MCMC) 

technique as Gibbs sampler is used. For the unit root test, Bayes factor is derived 

from posterior probability. A simulation study is carried outwhen the error is 

distributed multivariate t-distribution. The applicability of the model is also verified 

by the empirical study. 

 

Model Description 

Let us assume that  Ttyt ...,,2,1; = be a time series with intercept term ϕ. 

tt uy +=      (1) 

The error term utfollows AR(1) process associated with a stationary covariate  tw . 

Then, times series may be serially correlated to the covariate series, and utfollows the 

model 


+−=

−− ++=
p

rj

tjtjtt wuu
1

1          (2) 

Where ρ is an autoregressive coefficient and λj is a covariate coefficient. Utilizing 

equation (2) in (1), the model can be written as 

( ) 
+−=

−− +++−=
p

rj

tjtjtt wyy
1

11        (3) 
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Generally, the researcher considers the error term is normally distributed but in real 

life situations, the structure of the series has some skewed nature.  So, in this paper, 

we assume that errors Ttt ...,,2,1; = are distributed according to probability law 

which belongs to the class of spherically symmetric distribution.Considering the 

limitation of the study, we have considered the following probability density 

function of εt as 

( )
( ) ( ) ( )

( )







 dGf tt 








−= 


2

2

0

2/1

2/1

2
exp

2
     (4) 

where ( )  is a positive measurable function and ( )dG  is a cumulative distribution 

function of .  

The main motive behind the present study is to test the unit root hypothesis and 

estimate the model parameters under consideration of spherically symmetric error. 

Under the unit root hypothesis, model (3) becomes 


+−=

− +=
p

rj

tjtj wy
1



                                                                                                  (5) 

Model (3) and (5) can be written in matrix notation as follows 

( )  ++−+= − WlYY T11                                                                                   (6) 

+= WY                                                                                                            (7) 

where  

( ) ( )'1101

'

21 ...;... −− == TT yyyYyyyY
 

( ) ( )'211

'

21 ...;... TT YYyyyY  =−== −

 

( ) ( )''

1021 1...11;...... == +−+− Tprr l

 





















=

−−+−+

−+

−−

pTrTrT

prr

prr

www

www

www

W









21

21

11

 

 



 

KUMAR ET AL. 

 

5 

 

Bayesian Framework 

Bayesian approach contains not only recorded observations but alsohasadditional 

information regarding the parameters known as prior. There is an independent area 

of the researcher about the form and nature of prior. So, we have assumed that 

intercept and error variance follow conjugate normal and chi-square distribution, 

respectively.A uniform distribution is considered for autoregressive coefficient (ρ) 

and covariate coefficient. The joint prior distribution(Berger (2013)) of model 

parametersis 

( )

( )

 







+−−









−

=

−
+

1)(
2

exp

2
2)2(1

2

0

22

1

1
2

1








v
a

P
v

v

    (8) 

The likelihood function forthe models (6) and (7) denoted by L1and L0 are 

respectively 

( )
( )

( )
( )( )

( )( ) ( )











dGWlYY

WlYYL

T

T

T

T

T





−−−−





−−−−−=

−

−





1

1
2

exp

)2(

1

'

12

0 2

2

1

   (9)

 

( )

( )
( )

( ) ( ) ( )







 dGWYWYL

T

T

T









−−−= 


'

2
0

2

2

0
2

exp

)2(             (10)

 

First, we are interested totest the unit root hypothesis 1:0 =H against the 

alternative  1;1:;:1 −= aassH  . The unit root test is very important 

before drawing the inference in ARIMA methodology see Box and Jenkins (1976), 

Phillips and Ploberger(1994), Lubrano (1995), etc. For testing unit root hypothesis, 

we used the posterior probability of H1 and H0 to obtain the Bayes factor.  Bayes 

factor  is the ratio of posterior probability under null and alternative 

hypothesis with equal prior probability. For more details, refer to Berger (2013) and 

Chen et al. (2016). The posterior probability under H1 and H0is 

( )
( )  ( )( )

( ) ( )  ( )
( ) 



−−+−−

−−
++









−








 −−+


=
1

0
222

2

1

2

1

'
2

1
2

1

)(,
2

2)2(1

,
2

|
a T

prvTvprT

pr

dGd

C
v

a

AWW
prvT

HYP 





                  (11) 
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
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where  

'1' )( WWWWI −−=  

)()1())(,( 2'2  +−= TT llA  

)()()1())(,( 2

01

'  +−−= −YYlB T  

 

)1(
2

1

))(,())(,())(,()()(
)(2

1
))(,(

2

0

1'

1

'

12








++

−−−= −

−− BABYYYYC

 

 
2

1
)(

)(2

1
))(( '

2
+= YYD


  

In Bayesian testing procedure, the linking of the respective model is obtained 

through Bayes factor (B10) which is the ratio of posterior probability for the 

respective hypotheses. We used the Kass and Raftery (1995) Bayes factor for 

rejection or acceptance ofa hypothesis. Forestimation of parameters of model,derived 

the conditional posterior distribution ofϕ, ᴧ, ρ and τ which is as follows. 

( ) 






 −− 1

12

1

11

1
,~ˆ HHZN




                                                                                    

(13)  

( ) 







 −− 1

22

1

22

1
,~ˆ HHZN


                                                                                (14) 

( ) 






 −− 1,,
1

,~ˆ 1

32

1

33 lHHZTN


                                                                             (15) 








 ++
V

Tv
Gamma ,

2

1
~̂                                                                                         (16) 
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where, 

)()1( 22'

1  +−= TT llH  

WWH '

2 =  

( ) ( ) TT lYlYH −−= −− 1

'

13  

021

'

1
)(

1
))(1( 


 +−−−= − WYYlZ T  

))1(( 12  −−−= − TlYYZ  

)()( '

13 WlYlYZ TT −−−= −   

 1)()())1(())1((
)(

1 2

0

2

1

'

12
+−+−−−−−−−−= −− 


WlYYWlYYV TT

The conditional posterior distribution of all parameters is conditionally in standard 

distribution form. Hence, we can use Gibbs algorithm to simulate the posterior 

sample from equations (13) to (16). For better interpretation, different loss functions 

(Asymmetric Loss Functions (ALF), Squared Error Loss Functions (SELF) and 

Precautionary Loss Function (PLF)) are considered under Bayesian approach(for 

details referNorstrom (1996), Schroeder and Zieliński (2011)).  

 

Simulation Study 

A simulation technique is an imitation of the action of a practical process or system. 

It is widely useful to provide the inference of the proposed methodology when a real 

application is not available. In present scenario, this technique is well developed in 

statistical/mathematical softwareslike R, Python, Matlab, etc. which validates the 

parameters of the model from simulated samples. For the proposed model, we used R 

for generating the time series considering errors have spherically symmetric 

distribution. For simplicity, we assumed that the covariate series follows AR(1) 

process with an intercept 0.2 and autocorrelation coefficient 0.8.The distribution of ζ 

is assumed to be a positive random variable and follows chi-square distribution with 

n degree of freedom. Then, the error distribution is obtained as student t-distribution 

when ( ) 2

1

/)(
−

= n . Hence, the likelihood function of the proposed model is  

https://en.wikipedia.org/wiki/Imitation
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( )( ) ( )( )







+−+−+−+−+


















 +


= −− WlYYWlYY
nv

n

vT

L TTvTT

T








111

2
2)2(

2
1

'

1

222

2

The size of the series is taken as T=100. To initiate the process, the initial value of 

the series and covariate is y0=6 and w0=5, respectively. For estimation and testing 

the unit root hypothesis, true value of the parameters (P) areϕ =10, ᴧ=4, ρ=(0.90, 

0.92, 0.94, 0.98, 0.99)and hyperparameterv=3. For more generalized inference, 

Bayes factor is calculatedunder various degrees of freedom like 10, 20, 30, 40 and 

50.Table 1 reports the unit root testing using Bayes factor (B10) with different 

degrees of freedom as well as lower and higher values of ρ. From Table 1, we 

observe that as the degrees of freedom and ρ changes, the value of Bayes factor also 

changes. But all the results significantly rejected the unit root hypothesis because of 

the large values of Bayes factor. 

 

Table 1: Testing with different degrees of freedom and ρ 

DF n=10 n=20 n=30 n=40 n=50 

Ρ ̂
 B10 ̂

 B10 ̂
 B10 ̂

 B10 ̂
 B10 

0.9 0.903 681.574 0.882 566.783 0.893 572.586 0.907 636.977 0.899 616.894 

0.92 0.920 777.064 0.918 567.677 0.915 592.137 0.915 590.874 0.915 631.813 

0.94 0.941 707.849 0.927 554.457 0.933 551.672 0.939 621.312 0.933 579.017 

0.96 0.958 631.002 0.957 537.286 0.954 575.744 0.953 606.264 0.951 592.467 

0.98 0.981 565.460 0.982 538.737 0.976 563.424 0.976 600.949 0.971 588.150 

0.99 0.989 517.477 0.985 522.986 0.985 546.107 0.991 565.846 0.981 562.666 

Tables 2-4 provide mean squared error (MSE) and absolute bias (ABS)of estimated 

values under different estimation methods. From these tables, we notice that Bayes 

estimators are having minimum MSE and ABS in comparison to MLE. When the 

degree of freedom is increased, MSE is approximately decreased in all estimators. 

Under each loss function, we observe that an almost similar magnitude in terms of 

MSE and ABS for ρ and ᴧare recorded. But there is a difference in MSE and ABS 

for ϕ and τ. In this case, the absolute loss function gives better results. Similar results 

are also observed with the varying values of autoregressive coefficients. Tables 5-7 

represent the confidence and HPD interval with the varying degree of freedom as 

well as ρ. It shows that width of the interval is small when Bayes technique is 

considered. 
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Table 2: Estimation of parameters with different loss functions at ρ=0.90 

 

DF 

 

P 

MLE SELF ALF PLF 

MSE ABS MSE ABS MSE ABS MSE ABS 

n=10 Ρ 1.86E-05 3.25E-03 9.52E-06 2.36E-03 9.25E-06 2.30E-03 9.52E-06 2.36E-03 

Φ 4.60E+00 1.57E+00 7.92E-02 2.00E-01 1.21E-01 2.64E-01 8.38E-02 2.16E-01 

ᴧ 5.88E-03 6.10E-02 5.46E-03 5.89E-02 4.96E-03 5.54E-02 5.47E-03 5.90E-02 

Τ 5.47E+00 2.31E+00 4.02E+00 1.99E+00 4.06E+00 2.00E+00 3.96E+00 1.98E+00 

n=20 Ρ 1.79E-05 3.26E-03 9.12E-06 2.34E-03 8.80E-06 2.27E-03 9.11E-06 2.34E-03 

Φ 4.07E+00 1.51E+00 7.74E-02 2.02E-01 1.42E-01 2.96E-01 8.29E-02 2.20E-01 

ᴧ 5.36E-03 5.67E-02 4.82E-03 5.47E-02 4.16E-03 5.01E-02 4.83E-03 5.48E-02 

Τ 1.78E+00 1.31E+00 9.33E-01 9.34E-01 9.49E-01 9.43E-01 9.00E-01 9.16E-01 

n=30 Ρ 1.42E-05 2.99E-03 7.30E-06 2.12E-03 7.04E-06 2.06E-03 7.30E-06 2.12E-03 

Φ 3.87E+00 1.48E+00 8.20E-02 2.11E-01 1.43E-01 2.97E-01 8.42E-02 2.20E-01 

ᴧ 4.43E-03 5.25E-02 4.32E-03 5.18E-02 3.81E-03 4.76E-02 4.33E-03 5.19E-02 

Τ 7.29E-01 8.40E-01 3.03E-01 5.04E-01 3.11E-01 5.12E-01 2.85E-01 4.88E-01 

n=40 Ρ 1.45E-05 2.94E-03 7.21E-06 2.10E-03 6.93E-06 2.04E-03 7.21E-06 2.10E-03 

Φ 3.77E+00 1.48E+00 8.31E-02 2.11E-01 1.42E-01 2.97E-01 8.61E-02 2.21E-01 

ᴧ 4.69E-03 5.35E-02 4.35E-03 5.22E-02 3.83E-03 4.78E-02 4.36E-03 5.23E-02 

Τ 3.70E-01 5.87E-01 1.16E-01 2.91E-01 1.19E-01 2.96E-01 1.07E-01 2.79E-01 

n=50 Ρ 1.64E-05 3.09E-03 7.83E-06 2.12E-03 7.53E-06 2.05E-03 7.83E-06 2.12E-03 

Φ 4.27E+00 1.56E+00 7.66E-02 1.99E-01 1.41E-01 2.92E-01 8.11E-02 2.14E-01 

ᴧ 4.65E-03 5.37E-02 4.47E-03 5.25E-02 3.93E-03 4.83E-02 4.49E-03 5.26E-02 

Τ 1.91E-01 4.12E-01 6.56E-02 2.09E-01 6.60E-02 2.10E-01 6.34E-02 2.04E-01 

 

Table 3: Estimation of parameters with different loss functions at ρ=0.95 

 

DF 

 

P 

MLE SELF ALF PLF 

MSE ABS MSE ABS MSE ABS MSE ABS 

n=10 ρ 8.81E-06 2.22E-03 3.39E-06 1.36E-03 3.40E-06 1.36E-03 3.39E-06 1.36E-03 

ϕ 2.49E+01 3.39E+00 3.49E-02 1.42E-01 3.48E-02 1.41E-01 3.57E-02 1.45E-01 

ᴧ 5.51E-03 5.75E-02 4.98E-03 5.55E-02 4.98E-03 5.55E-02 4.98E-03 5.55E-02 

Τ 4.99E+00 2.11E+00 3.61E+00 1.89E+00 3.64E+00 1.90E+00 3.56E+00 1.87E+00 

n=20 ρ 7.47E-06 2.05E-03 2.78E-06 1.26E-03 2.78E-06 1.26E-03 2.78E-06 1.26E-03 

ϕ 2.19E+01 3.20E+00 2.97E-02 1.30E-01 2.97E-02 1.30E-01 3.03E-02 1.31E-01 

ᴧ 5.36E-03 5.55E-02 4.17E-03 5.11E-02 4.17E-03 5.11E-02 4.17E-03 5.11E-02 

Τ 1.69E+00 1.24E+00 6.76E-01 7.90E-01 6.90E-01 8.00E-01 6.54E-01 7.76E-01 

n=30 ρ 8.55E-06 2.18E-03 3.10E-06 1.34E-03 3.11E-06 1.34E-03 3.10E-06 1.34E-03 

ϕ 2.22E+01 3.33E+00 2.93E-02 1.29E-01 2.93E-02 1.29E-01 3.00E-02 1.32E-01 

ᴧ 5.07E-03 5.46E-02 4.79E-03 5.37E-02 4.79E-03 5.36E-02 4.79E-03 5.37E-02 

Τ 7.29E-01 8.31E-01 1.78E-01 3.76E-01 1.85E-01 3.84E-01 1.69E-01 3.64E-01 

n=40 ρ 7.82E-06 2.12E-03 2.73E-06 1.26E-03 2.73E-06 1.26E-03 2.73E-06 1.26E-03 

ϕ 2.56E+01 3.44E+00 2.79E-02 1.26E-01 2.81E-02 1.26E-01 2.87E-02 1.29E-01 

ᴧ 4.42E-03 5.27E-02 4.13E-03 5.16E-02 4.13E-03 5.16E-02 4.13E-03 5.17E-02 

Τ 3.58E-01 5.75E-01 5.93E-02 2.00E-01 6.03E-02 2.03E-01 5.82E-02 1.97E-01 

n=50 ρ 7.53E-06 2.06E-03 2.76E-06 1.25E-03 2.76E-06 1.25E-03 2.76E-06 1.25E-03 

ϕ 2.32E+01 3.37E+00 2.70E-02 1.27E-01 2.71E-02 1.26E-01 2.75E-02 1.29E-01 

ᴧ 4.22E-03 5.08E-02 3.93E-03 4.96E-02 3.94E-03 4.96E-02 3.93E-03 4.96E-02 
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Τ 1.89E-01 4.07E-01 5.80E-02 1.87E-01 5.56E-02 1.83E-01 6.20E-02 1.93E-01 

 

Table 4: Estimation of parameters with different loss functions at ρ=0.99 

 

DF 

 

P 

MLE SELF ALF PLF 

MSE ABS MSE ABS MSE ABS MSE ABS 

n=10 ρ 1.98E-06 7.93E-04 7.74E-07 5.87E-04 7.77E-07 5.87E-04 7.74E-07 5.87E-04 

ϕ 4.21E+02 6.20E+00 1.64E-03 3.10E-02 1.89E-03 3.32E-02 3.03E-03 4.38E-02 

ᴧ 3.52E-03 3.68E-02 4.19E-03 5.10E-02 4.20E-03 5.11E-02 4.19E-03 5.10E-02 

Τ 2.69E+00 1.14E+00 3.57E+00 1.88E+00 3.61E+00 1.89E+00 3.52E+00 1.86E+00 

n=20 ρ 1.51E-06 7.49E-04 7.05E-07 5.72E-04 7.07E-07 5.73E-04 7.05E-07 5.72E-04 

ϕ 1.93E+02 4.69E+00 1.46E-03 2.96E-02 1.71E-03 3.23E-02 2.27E-03 3.84E-02 

ᴧ 3.45E-03 3.70E-02 3.87E-03 4.88E-02 3.88E-03 4.89E-02 3.87E-03 4.88E-02 

Τ 9.29E-01 6.95E-01 6.81E-01 7.97E-01 6.96E-01 8.07E-01 6.60E-01 7.83E-01 

n=30 ρ 1.30E-06 7.06E-04 5.32E-07 5.39E-04 5.33E-07 5.40E-04 5.32E-07 5.39E-04 

ϕ 4.93E+02 5.25E+00 1.33E-03 2.88E-02 1.55E-03 3.05E-02 2.08E-03 3.61E-02 

ᴧ 3.31E-03 3.78E-02 3.74E-03 4.92E-02 3.75E-03 4.93E-02 3.74E-03 4.92E-02 

Τ 4.30E-01 4.90E-01 1.65E-01 3.61E-01 1.72E-01 3.69E-01 1.57E-01 3.49E-01 

n=40 ρ 1.51E-06 7.39E-04 6.48E-07 5.71E-04 6.50E-07 5.72E-04 6.48E-07 5.71E-04 

ϕ 2.59E+02 4.89E+00 1.38E-03 2.92E-02 1.52E-03 3.01E-02 2.16E-03 3.67E-02 

ᴧ 2.84E-03 3.42E-02 3.20E-03 4.52E-02 3.21E-03 4.52E-02 3.20E-03 4.52E-02 

Τ 2.12E-01 3.35E-01 5.72E-02 1.94E-01 5.79E-02 1.96E-01 5.64E-02 1.92E-01 

n=50 ρ 1.20E-06 6.84E-04 5.30E-07 5.36E-04 5.31E-07 5.37E-04 5.30E-07 5.36E-04 

ϕ 6.32E+02 4.47E+00 1.37E-03 2.81E-02 1.57E-03 3.03E-02 1.91E-03 3.48E-02 

ᴧ 3.11E-03 3.61E-02 3.51E-03 4.75E-02 3.52E-03 4.76E-02 3.51E-03 4.75E-02 

Τ 1.18E-01 2.50E-01 6.71E-02 1.97E-01 6.44E-02 1.92E-01 7.18E-02 2.04E-01 

 

Table 5: Confidence and HPD Interval of parameters at ρ= 0.90 

DF P MLE SELF ALF PLF 

n=10 ρ (0.8911, 0.9087) (0.8944, 0.9065) (0.8941, 0.9061) (0.8944, 0.9065) 

ϕ (6.0006, 14.7752) (9.3704, 10.5567) (9.2951, 10.6897) (9.3866, 10.5810) 

ᴧ (3.8606, 4.1590) (3.8678, 4.1555) (3.8770, 4.1541) (3.8703, 4.1575) 

τ (-0.0935, 1.1597) (0.7065, 1.5978) (0.7142, 1.5988) (0.7163, 1.6084) 

n=20 ρ (0.8916, 0.9083) (0.8943, 0.9055) (0.8943, 0.9054) (0.8943, 0.9055) 

ϕ (5.9957, 14.2195) (9.4325, 10.5838) (9.1931, 10.6915) (9.4301, 10.5958) 

ᴧ (3.8465, 4.1403) (3.8711, 4.1459) (3.8692, 4.1310) (3.8729, 4.1479) 

τ (0.6459, 1.4311) (0.8850, 1.7920) (0.8841, 1.7873) (0.9005, 1.8093) 

n=30 ρ (0.8929, 0.9075) (0.8944, 0.9048) (0.8946, 0.9049) (0.8944, 0.9048) 

ϕ (6.1213, 13.9601) (9.3768, 10.5552) (9.1919, 10.6507) (9.3966, 10.5830) 

ᴧ (3.8671, 4.1345) (3.8596, 4.1241 (3.8675, 4.1190) (3.8592, 4.1236) 

τ (0.7169, 1.2988) (0.9306, 1.8283) (0.9271, 1.8224) (0.9460, 1.8455) 

n=40 ρ (0.8934, 0.9081) (0.8947, 0.9053) (0.8947, 0.9051) (0.8947, 0.9053) 

ϕ (5.8196, 13.2417) (9.3792, 10.6057) (9.2232, 10.6797) (9.3890, 10.6137) 

ᴧ (3.8554, 4.1275) (3.8596, 4.1205) (3.8700, 4.1220) (3.8615, 4.1230) 
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τ (0.7286, 1.3212) (0.8947, 1.8484) (0.8856, 1.8315) (0.9127, 1.8672) 

n=50 ρ (0.8916, 0.9072) (0.8944, 0.9056) (0.8944, 0.9053) (0.8945, 0.9056) 

ϕ (6.4401, 14.4326) (9.3219, 10.5006) (9.3013, 10.7879) (9.3337, 10.5242) 

ᴧ (3.8683, 4.1311) (3.8781, 4.1392) (3.8845, 4.1290) (3.8748, 4.1379) 

τ (0.7346, 1.2987) (0.8916, 1.8167) (0.9131, 1.8326) (0.9165, 1.8421) 

 

Table 6: Confidence and HPD Interval of parameters at ρ= 0.95 

DF P MLE SELF ALF PLF 

n=10 ρ (0.9433, 0.9548) (0.9458, 0.9533) (0.9458, 0.9534) (0.9458, 0.9533) 

ϕ (-0.1648, 20.2269) (9.6106, 10.3750) (9.6194, 10.3790) And (9.6476, 10.4156) 

ᴧ (3.8541, 4.1469) (3.8761, 4.1587) (3.8751, 4.1574) (3.8762, 4.1589) 

τ (0.6000, 3.1623) (0.8913, 1.7248) (0.8784, 1.7101) (0.9030, 1.7428) 

n=20 ρ (0.9445, 0.9555) (0.9467, 0.9530) (0.9466, 0.9530) (0.9467, 0.9530) 

ϕ (1.0599, 20.7525) (9.6823, 10.3934) (9.6470, 10.3599) (9.6979, 10.4146) 

ᴧ (3.8589, 4.1375) (3.8689, 4.1304) (3.8684, 4.1304) (3.8690, 4.1305) 

τ (0.7162, 2.2361) (1.0655, 1.9383) (0.9679, 1.8446) (1.0758, 1.9575) 

n=30 ρ (0.9436, 0.9554) (0.9463, 0.9532) (0.9463, 0.9532) (0.9463, 0.9532) 

ϕ (-0.9762, 18.6275) (9.6148, 10.3260) (9.6753, 10.3798) (9.7090, 10.4194) 

ᴧ (3.8517, 4.1359) (3.8538, 4.1247) (3.8530, 4.1241) (3.8540, 4.1247) 

τ (0.6704, 1.3158) (1.0659, 1.8927) (1.0621, 1.8852) (1.0848, 1.9170) 

n=40 ρ (0.9438, 0.9548) (0.9467, 0.9533) (0.9467, 0.9533) (0.9467, 0.9533) 

ϕ (0.2021, 20.1662) (9.6849, 10.3413) (9.6781, 10.3276) (9.6982, 10.3449) 

ᴧ (3.8704, 4.1316) (3.8798, 4.1251) (3.8790, 4.1240) (3.8799, 4.1257) 

τ (0.7083, 1.3387) (1.0782, 1.9353) (1.0708, 1.9196) (1.0885, 1.9549) 

n=50 ρ (0.9439, 0.9552) (0.9467, 0.9531) (0.9467, 0.9531) (0.9467, 0.9531) 

ϕ (-0.4056, 18.8985) (9.6584, 10.3010) (9.6541, 10.3112) (9.6789, 10.3160) 

ᴧ (3.8792, 4.1360) (3.8859, 4.1266) (3.8862, 4.1278) (3.8859, 4.1268) 

τ (0.7122, 1.3193) (1.1041, 1.9298) (1.0925, 1.9123) (1.1097, 1.9436) 

 

Table 7: Confidence and HPD Interval of parameters at ρ= 0.99 

DF P MLE SELF ALF PLF 

n=10 ρ (0.9875, 0.9926) (0.9873, 0.9934) (0.9883, 0.9944) (0.9885, 0.9954) 

ϕ (-25.4935, 50.7221) (9.9119, 10.0669) (9.9181, 10.0843) (9.9519, 10.1148) 

ᴧ (3.8874, 4.1400) (3.4578, 4.1449) (3.8875, 4.1448) (3.8878, 4.1559) 

τ (0.6335, 3.1623) (0.8619, 1.7142) (0.8557, 1.7010) (0.8731, 1.7303) 

n=20 ρ (0.9864, 0.9925) (0.9874, 0.9915) (0.9885, 0.9925) (0.9875, 0.9945) 

ϕ (-11.1359, 45.8047) (9.9253, 10.0775) (9.9168, 10.0803) (9.9558, 10.1107) 

ᴧ (3.8666, 4.1169) (3.8657, 4.1241) (3.8666, 4.1143) (3.8667, 4.1141) 

τ (0.7844, 2.2361) (1.0700, 1.8692) (1.0652, 1.8576) (1.0805, 1.8883) 

n=30 ρ (0.9871, 0.9919) (0.9881, 0.9932) (0.9883, 0.9941) (0.9885, 0.9953) 

ϕ (-15.5651, 44.1145) (9.9293, 10.0722) (9.9243, 10.0742) (9.9521, 10.0974) 

ᴧ (3.8839, 4.1211) (3.8841, 4.1311) (3.8838, 4.1221) (3.8840, 4.1233) 

τ (0.7936, 1.8257) (1.1236, 1.9828) (1.1025, 1.9549) (1.1341, 2.0015) 

n=40 ρ (0.9866, 0.9927) (0.9872, 0.9943) (0.9885, 0.9913) (0.9884, 0.9943) 
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ϕ (-23.3936, 39.3858) (9.9308, 10.0711) (9.9293, 10.0781) (9.9578, 10.1042) 

ᴧ (3.8779, 4.1072) (3.8507, 4.1022) (3.8850, 4.1058) (3.8807, 4.1213) 

τ (0.7910, 1.5811) (1.0909, 1.9627) (1.0855, 1.9498) (1.1017, 1.9806) 

n=50 ρ (0.9876, 0.9922) (0.9876, 0.9914) (0.9867, 0.9924) (0.9887, 0.9955) 

ϕ (-12.1334, 38.8478) (9.9172, 10.0683) (9.9279, 10.0882) (9.9507, 10.1027) 

ᴧ (3.8845, 4.1182) (3.8846, 4.1127) (3.8855, 4.1130) (3.8846, 4.1227) 

τ (0.7912, 1.4156) (1.1041, 1.9819) (1.1015, 1.9758) (1.1142, 2.0013) 

 

Empirical Study 

In current trend, economy of a country is majorly measured by import and export of 

goods and commodities. This may be influence of the currency of a nation, mainly 

developing countries. India is one of the developing countries which also affect the 

portfolio currency issues. Hence, in this paper, we have used a real effective 

exchange rate (REER) for the South Asian Association for Regional Cooperation 

(SAARC) countries. Because REER contains information about the country currency 

which compare with other trading countries. SAARC is a regional organization of 

South Asia countries Afghanistan, Bangladesh, Bhutan, India, Nepal, Maldives, 

Pakistan and Sri Lanka. The series is recorded monthly from January 2009 to May 

2017. For the proper analysis, we have considered all SAARC countries of REER 

series except Maldives due to unavailability of sufficient observations. Here, REER 

of India is considered as an observed time series and other series of SAARC 

countries as a covariate.  First, we find out the appropriate degree of freedom for a 

particular covariate using information criterion. Figure 1 represents the AIC and BIC 

plot of SAARC countries with different degrees of freedom. 
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Figure 1: Information Criterion plot of SEERC countries 

 

Observing Figure 1, we record the minimum AIC and BIC values of respective 

model in Table 8. Table 8 also observes that Bayes factor (B10) is comparatively 

high in each country when covariate series is included. Therefore, B10 strongly 

favours that the series rejects the null hypothesis, i.e., series is stationary. Once 

obtained the best suitable model with each covariate, estimation of parameters are 

carried out under different estimation methods where Indian REER is response 

series. The estimated values of MLE and Bayesian estimators with HPD interval are 

reported in Table 9. 
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Table 8: Selection of Best Suitable Model 

DF Countries Min. AIC Min. BIC B10 

5 Afghanistan 413.2639 423.8029 135.5360 

8 Bangladesh 410.2569 420.7958 213.2329 

5 Bhutan 413.4703 424.0092 117.0011 

3 Nepal 413.6300 424.1689 47.6660 

5 Pakistan 412.5019 423.0408 143.0281 

7 Sri Lanka 413.8527 424.3916 194.2551 

 

Table 9: Estimates and Confidence Interval for Selected Models 

DF Countries P MLE SELF ALF PLF CI 

 

 

5 

 

Afghanistan 

ρ 0.9510 0.9557 0.9588 0.9558 (0.9484, 0.9595) 

ϕ 48.5886 69.0581 73.5515 69.7209 (48.5886, 73.5515) 

ᴧ 0.0282 0.0179 0.0150 0.0186 (0.0148, 0.0283) 

τ 0.3466 0.8892 1.0224 0.9725 (0.0762, 1.2999) 

 

 

8 

 

 

 

Bangladesh  

ρ 0.9212 0.9296 0.9301 0.9296 (0.9163, 0.9372) 

ϕ 64.6240 79.1317 79.1281 79.1609 (76.2851, 81.5435) 

ᴧ 0.0290 0.0183 0.0182 0.0184 (0.0156, 0.0222) 

τ 0.3573 0.1780 0.1769 0.1797 (0.1342, 0.2303) 

 

 

5 

 

 

Bhutan 

ρ 0.9768 0.9753 0.9754 0.9753 (0.9744, 0.9766) 

ϕ 60.0033 80.8361 79.6659 80.9239 (79.6659, 90.4162) 

ᴧ 0.0169 0.0115 0.0119 0.0116 (0.0087, 0.0119) 

τ 0.3439 0.2457 0.2458 0.2488 (0.1678, 0.3219) 

 

 

3 

 

 

Nepal 

ρ 0.8543 0.8584 0.8593 0.8585 (0.8414, 0.8765) 

ϕ 30.5513 46.7379 44.6911 46.8590 (44.6911, 53.0181) 

ᴧ 0.1051 0.0816 0.0830 0.0821 (0.0634, 0.0939) 

τ 0.3564 0.0640 0.0614 0.0659 (0.0413, 0.0901) 

 

 

5 

 

Pakistan 

ρ 0.9388 0.9545 0.9566 0.9546 (0.9415, 0.9608) 

ϕ 58.5080 83.2600 84.0935 83.3036 (81.5354, 84.0935) 

ᴧ 0.0298 0.0127 0.0119 0.0130 (0.0118, 0.0157) 

τ 0.3478 0.1744 0.1743 0.1766 (0.1238, 0.2283) 

 

 

7 

 

 

Sri Lanka 

ρ 0.9451 0.9484 0.9491 0.9484 (0.9416, 0.9503) 

ϕ 62.6289 82.8046 83.1799 82.8225 (82.5800, 83.8421) 

ᴧ 0.0225 0.0124 0.0123 0.0125 (0.0117, 0.0137) 

τ 0.3297 0.1569 0.1563 0.1586 (0.1124, 0.1992) 

 

Conclusion 

Present work investigated Bayesian inference of covariate autoregressive (C-AR) 

model under the condition that error is spherically symmetrically distributed. Under 

Bayesianmethodology, estimators of the model parameters are obtained by 

conditional posterior distribution. Further, the posterior probability is used for testing 

the unit root hypothesis. In the real application, we recorded that series is stationary 
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for all SAARC countries. However, minimum AIC and BIC are recorded when 

degree of freedom of t-distribution is less than 10.This model may be further 

extended for panel and vector autoregressive model.   
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