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Truncation arises in many situations when failure of a unit is observed only if it fails 

before and/or after a certain period; since any unit, either industrial or biological 

cannot operate in the same condition forever. A random variable is said to be 

truncated if it is observed over part of its range where it can occur in various 

situations. For instance, in survival analysis, failures during the warranty period may 

not be counted. Items may also be replaced after certain time following the 

replacement policy, so that failures of the item are ignored.  
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1. Introduction 

Truncation arises in many situations when failure of a unit is observed only if it fails 

before and/or after a certain period; since any unit, either industrial or biological 

cannot operate in the same condition forever. A random variable is said to be 

truncated if it is observed over part of its range where it can occur in various 

situations. For instance, in survival analysis, failures during the warranty period may 

not be counted. Items may also be replaced after certain time following the 

replacement policy, so that failures of the item are ignored.  

Double truncated distributions are used in cases where the occurrences are limited to 

values which lie above or below a given threshold or within a specified range. If 

occurrences are limited to values which lie below a given threshold, the lower (left) 

truncated distribution is obtained. Similarly, if occurrences are limited to values 

which lie above a given threshold, the upper (right) truncated distribution is 

obtained. [See Zhang and Xie (2011) and Isiket al (2017)]  

Right truncation happens when studying of life testing and reliability of items such 

as an electronic component, light bulbs, etc.For instance,in industry, sometimes a 

minimum time; c, is required before which no failure occurs. This minimum time c is 

known as the guarantee time. Another use for right truncation at c is in 

epidemiological or biomedical applications where c may represent the latent period 

of some disease. For example, in cancer research problems, c is regarded as the time 
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elapsed between first exposure to carcinogen and theappearance of the tumor. [See 

Ateya and AL-Hussaini (2007)] 

Left truncation takes place when failure of a unit is observed only if it fails after a 

certain period. Sometimes units may not be followed at the beginning of an 

experiment until all of them fail and the experimenter may have to start at a certain 

time and stop at a certain time when some of the units may still be working. 

[SeeOkasha and Alqanoo (2014)] 

Many researchers who are interested in analyzing truncated data encountered in 

different fields, proposed the truncated versions of the usual statistical 

distributions.The truncated distributions iswide applicable e.g. to improve a 

forecasting actuarial model and particularly for modelling data from insurance 

payments that establish a deductible, to study the waiting times before service of the 

banks’ customers,to the statistical analysis of masses of stars and of diameters of 

asteroids, to analyze the diameter data of trees truncate data specific threshold level, 

to predict the height distribution of small trees based on incomplete laser scanning 

data, to modelling the diameter distribution of forest, to characterize the observed 

Portuguese fire size distribution, to seismological data, on the development of the pit 

depths on a water pipe, etc.[See Singh et al.(2014)]  

Some references in the field of the truncation distributions include AL-Yousef 

(2002), AL-Hussainiet al. (2006), Ateya and AL-Hussaini (2007), Nadarajah 

(2008),Zhang and Xie (2011), Raschke (2012), Okasha and Alqanoo (2014), Singh et 

al.(2014), Isiket al (2017) and Al-Omari (2018). 

Kumaraswamy (1980) proposed a two-parameter Kumaraswamy distribution on (0, 

1) denoted by Kum(α, β) withprobability density function (pdf) and cumulative 

distribution function (cdf) as follows: 

𝑔(𝑦; 𝛼, 𝛽) = 𝛼𝛽𝑦𝛼−1(1 − 𝑦𝛼)𝛽−1, 0 < 𝑦 < 1,                                                                     (1) 

and 

𝐺(𝑦; 𝛼, 𝛽) = 1 − (1 − 𝑦𝛼)𝛽, 0 < 𝑦 < 1.                                                                                (2) 

Where α and β are the shape parameters. 

The Kum distribution is applicable to many natural phenomena whose outcomes 

have lower and upper bounds, such as heights of individuals, scores obtained in a 

test, atmospheric temperatures and hydrological data. Also, it could be appropriate in 

situations where scientists use probability distributions which have infinite lower and 

or upper bounds to fit data, when in reality the bounds are finite. The Kumpdfhas the 

same basic properties as the beta distribution, but has the key advantage of a closed 

form cdf. [See Jones (2009)]  

The inverted Kumaraswamy(IKum) distribution is important in a wide range of 

applications; engineering, medical research and lifetime problems.Abd AL-Fattah et 

al. (2017)discussedthe IKum distribution and derived the relation between the IKum 
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and other distributions. They obtained the maximum likelihood (ML), Bayes 

estimators and confidence intervals for the parameters, the reliability function (rf) 

and the hazard rate function (hrf) of the IKum distribution based on Type II 

censored samples. Also they illustrated the theoretical procedures by numerical study 

via simulation and real data. The IKum distribution can be derived from 

Kumdistribution using the transformation  𝑋 =
1

𝑌
− 1, when 𝑌 has a Kum 

distribution. 

The pdf and cdf of the IKum distribution are given, respectively, by 

𝑓(𝑥; 𝛼, 𝛽) = 𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)(𝛽−1),   𝑥 > 0, 𝛼, 𝛽 > 0,                        (3) 

and 

𝐹(𝑥; 𝛼, 𝛽) = (1 − (1 + 𝑥)−𝛼)𝛽, 𝑥 > 0, 𝛼, 𝛽 > 0,                                                                 (4) 

Where X~IKum with shape parameters α>0,β>0. 

The rest of this paper is organized as follows: in Section 2, the distribution of the 

double truncated IKum (TIKum) distribution is derived. Some of its statistical 

propertiesare introduced in Section 3. In Section 4, ML estimators of the parameters, 

rf,hrfand reversed hazard rate function (rhrf)are obtained for the TIKum distribution 

based on complete samples. ML two-sample prediction for a future observation is 

considered in Section 5.A numerical study and an application to two real data sets are 

presented in Section 6; to discuss the various results developed. 

 

2. The Distribution of the Double Truncated Inverted Kumaraswamy 

A random variable 𝑋is said to have double TIKum(𝜃) distributionif its pdf and cdf 

are given, respectively, by 

𝑓(𝑥; 𝜃) = 𝑘 (1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1,      𝑐 < 𝑥 < 𝑑,                                                 (5) 

where the constant k is 

𝑘 =
𝛼𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽  
 ,   

𝜃 = (𝛼, 𝛽, 𝑐, 𝑑)′, 𝑐is the lower point truncation and 𝑑is the upper point truncation.  

The corresponding cdf is 

𝐹(𝑥; 𝜃) =
(1 − (1 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽
,      𝑐 < 𝑥 < 𝑑 .                                          (6) 
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The rf, hrf and rhrfhave the following forms, respectively, 

𝑅(𝑥)  =
(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽
 ,          𝑐 < 𝑥 < 𝑑,                                         (7) 

ℎ(𝑥) =
𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽  
, 𝑐 < 𝑥 < 𝑑,                                           (8) 

and 

𝑟ℎ(𝑥) =
𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1

(1 − (1 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽  
,         𝑐 < 𝑥 < 𝑑.                                         (9) 

2.1 Graphical description 

Plots of pdf, hrf and rhrf of TIKum for different values of the parameter α, β, 

truncation points c and dare given, respectively, in Figures 1-3. From Figure1, one 

can observe that the curve of the TIkum density is monotonically decreasing and it 

has a unimodal curve. In Figure 2 the hrf curve represents most major hazard shapes 

such as decreasing, approximately symmetric and bathtub shaped respectively which 

depends on the values of its parameters. From Figure 3 one can notice that the curves 

of the rhrf are bathtub; decreasing, almost fixed and increasing. 

(1)          

 

 

(2) 

 

Figure 1: Plots of the probability density function of double TIKum(c=0.5, 
d=3) 
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(3)           

 

 (4)   

 

Figure 2: Plots of the hazard rate function of double TIKum (c=10, d=40) 

 

(5)          

 

 (6)   

 

Figure 3: Plots of the reversed hazard rate function of double TIKum(c=10, 
d=40) 
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3. Statistical Properties 

In this section, main properties of the TIKum (α,β,d,c) distribution are derived such 

as the quantile, median, the moments, moment generating function and order 

statistics.  

3.1 Quantiles of the Truncated Inverted Kumaraswamy Distribution  

The quantile function of the probability distribution is the inverse of its cdf andis 

used to describe the percentiles of the distribution. Hence, by inverting (6), an 

explicit expression for the quantile function of X is given below 

𝑄(𝑞) = 𝐹−1(𝑞), 0 < 𝑞 < 1 

          =  [1 − [𝑞(1 − (1 + 𝑑)−𝛼)𝛽 + (1 − (1 + 𝑐)−𝛼)𝛽(1 − 𝑞)]
1

𝛽]
−

1

𝛼

− 1,                         (10) 

where Q(q) is the quantile function of the double TIKum and qϵ(0,1). 

The median; the second quartile, can be obtained using (10) when q=0.5, 

Median =  [1 − [0.5(1 − (1 + 𝑑)−𝛼)𝛽 + (1 − (1 + 𝑐)−𝛼)𝛽(1 − 0.5)]
1

𝛽]
−

1

𝛼

− 1.              (11) 

3.2 The Mode of the Truncated Inverted Kumaraswamy Distribution 

The mode of the double TIKum distribution is given by 

Mode = (
𝛼 + 1

𝛼𝛽 + 1
)

−
1

𝛼

− 1,   𝛼𝛽 ≥ 1, 𝛼 > 0, 𝛽 > 0.                                                                   (12) 

3.3 Moments and moment generating function 

The rth non central moment of the double TIKum distribution is 

𝜇𝑟
′ =

𝑘

𝛼
∑ (

𝑟
𝑗) (−1)𝑟−𝑗 [𝐵𝑙 (1 −

𝑟

𝛼
, 𝛽) − 𝐵𝑢 (1 −

𝑗

𝛼
, 𝛽)] ,

𝑟

𝑗=0
 

                                                                                        𝑟 = 1,2, … ,     𝛼 > 𝑗   , 𝑗 = 0,1, … , 𝑟,       (13) 

where 𝑢 = (1 + 𝑑)−𝛼, 𝑙 = (1 + 𝑐)−𝛼, 

(
𝑟
𝑗) =

𝒓!

𝑗!(𝑟−𝑗)!
is a binomial coefficient,𝐵𝑢(. , . )and𝐵𝑙(. , . )is the incomplete beta 

function. From (13) the mean, 𝜇, and the variance,𝜎2, of the double TIKum 

distribution are given, respectively, by 
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𝜇 = 𝐸(𝑋) =
𝑘

𝛼
[𝐵𝑙 (1 −

1

𝛼
, 𝛽) − 𝐵𝑢 (1 −

1

𝛼
, 𝛽)] , 𝛼 > 1 ,                                                       (14) 

and 

𝜎2 = 𝑉𝑎𝑟(𝑋) =
𝑘

𝛼
[𝐵𝑙 (1 −

2

𝛼
, 𝛽) − 2𝐵𝑙 (1 −

1

𝛼
, 𝛽) + 2𝐵𝑢 (1 −

1

𝛼
, 𝛽) − 𝐵𝑢 (1 −

2

𝛼
, 𝛽)] 

                                 − [
𝑘

𝛼
[𝐵𝑙 (1 −

1

𝛼
, 𝛽) − 𝐵𝑢 (1 −

1

𝛼
, 𝛽)]]

2

.                                                   (15) 

The coefficient of variation (CV), skewness(SK) and kurtosis (KU) of the TIKum 

distribution can be obtained as follows: 

𝐶𝑉 = √
𝜇2

′

𝜇1
′2  , 

𝑆𝐾 =
𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 2𝜇1
′3

(𝜇2
′ − 𝜇1

′2)
3

2⁄
 , 

and 

𝐾𝑈 =
𝜇4

′ − 4𝜇3
′ 𝜇1

′ + 6𝜇2
′ 𝜇1

′ − 3𝜇1
′4

(𝜇2
′ − 𝜇1

′2)2
. 

The moment generating function 𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) is  

𝑀𝑥(𝑡)  = ∑
𝑡𝜄

𝜄
[
𝑘

𝛼
∑ (

𝜄
𝑗) (−1)𝜄−𝑗 [𝛽𝑙 (1 −

𝑗

𝛼
, 𝛽) − 𝛽𝑢 (1 −

𝑗

𝛼
, 𝛽)]

𝜄

𝑗=0
],                

∞

𝜄=0
 

𝜄 = 1,2, …     , 𝛼 > 𝑗, 𝑗 = 0,1, … , 𝜄.                (16) 

3.4 Order statistics of the truncated Inverted Kumaraswamy distribution 

The pdf of the𝑖𝑡ℎ order statistic,𝑋(𝑖),from a random sample of size n from the double 

TIKum (𝛼, 𝛽, 𝑐, 𝑑)distribution is 

𝑓𝑋(𝑖)
(𝑥) =

𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
[

𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽  
] 

                × [
(1 − (1 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽
]

𝑖−1
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              × [
(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽
]

𝑛−𝑖

, 𝑐 ≤ 𝑥 ≤ 𝑑  .                                   (17) 

The pdf of the smallest order statistic can be obtained when i=1, in (17) as follows: 

𝑓𝑋(1)
(𝑥) = 𝑛 [

𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽  
] 

   × [
(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑥)−𝛼)𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽
]

𝑛−1

, 𝑐 ≤ 𝑥 ≤ 𝑑  .   

Similarly, the pdf of the largest order statistic can be obtained when i=n, in (17) as 

follows: 

𝑓𝑋(𝑛)
(𝑥) = 𝑛 [

𝛼𝛽(1 + 𝑥)−(𝛼+1)(1 − (1 + 𝑥)−𝛼)𝛽−1

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽  
] 

                       × [
(1 − (1 + 𝑥)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽

(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽
]

𝑛−1

, 𝑐 ≤ 𝑥 ≤ 𝑑  . 

 

4. Maximum likelihood estimation 

Let𝑋1, 𝑋2, … , 𝑋𝑛be a random sample drawn from a population having a double 

TIKum(𝜃)pdf given by (5). The likelihood function (LF) is given by 

𝐿(𝜃; 𝑥) = (𝛼𝛽)𝑛((1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽)
−𝑛

∏(1 + 𝑥𝑖)−(𝛼+1)

𝑛

𝑖=1

 

                        × ∏(1 − (1 + 𝑥𝑖)−𝛼)𝛽−1 ,                                                                                   (18) 

𝑛

𝑖=1

 

where𝑥 = (𝑥1, 𝑥2 … , 𝑥𝑛) is the vector of observations and 𝜃 = (𝛼, 𝛽, 𝑐, 𝑑)′. 

The ML estimators of the parameters c and d, the truncated points𝑐 and 𝑑 are, 

respectively, given by 

�̂�𝑀𝐿 = arg max 𝐿(𝜃; 𝑥) = 𝑋(1) = 𝑚𝑖𝑛(𝑋(𝑖)),                                                                             (19) 

and 

�̂�𝑀𝐿 = arg  max 𝐿(𝜃; 𝑥) = 𝑋(𝑛) = 𝑚𝑎𝑥(𝑋(𝑖)).                                                                           (20) 
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The logarithm of the LF in (18) is given by 

ℓ ≡ 𝑙𝑛 𝐿(𝜃; 𝑥) = 𝑛 𝑙𝑛(𝛼) + 𝑛 𝑙𝑛(𝛽) − 𝑛𝑙𝑛[(1 − (1 + 𝑑)−𝛼)𝛽 − (1 − (1 + 𝑐)−𝛼)𝛽] 

                                 −(𝛼 + 1) ∑ 𝑙𝑛(1 + 𝑥𝑖) + (𝛽 − 1) ∑ 𝑙𝑛(1 − (1 + 𝑥𝑖)−𝛼).
𝑛

𝑖=1

𝑛

𝑖=1
      (21) 

Replacing the parameters c and d by �̂� and �̂� in (21). Then equating the first partial 

derivatives of ℓ  with respect to 𝛼 and 𝛽 to zero, one obtains 

𝜕ℓ

𝜕𝛽
=

𝑛

�̂�
+ ∑ 𝑙𝑛(1 − (1 + 𝑥𝑖)−�̂�)𝑛

𝑖=1  −

𝑛
(1−(1+�̂�)

−�̂�
)

�̂�

𝑙𝑛(1−(1+�̂�)
−�̂�

)−(1−(1+𝑐̂)−�̂�)
�̂�

𝑙𝑛(1−(1+𝑐̂)−�̂�)

(1−(1+�̂�)
−�̂�

)
�̂�

−(1−(1+𝑐̂)−�̂�)
�̂�

= 0,                   (22) 

and 

𝜕ℓ

𝜕𝛼

=
𝑛

�̂�
− ∑ 𝑙𝑛(1 + 𝑥𝑖) + (�̂� − 1) ∑

(1 + 𝑥𝑖)−�̂�𝑙𝑛(1 + 𝑥𝑖)

(1 − (1 + 𝑥𝑖)−�̂�)

𝑛

𝑖=1

𝑛

𝑖=1

− 𝑛�̂�
(1 − (1 + �̂�)

−�̂�
)

�̂�−1

(1 + �̂�)
−�̂�

𝑙𝑛(1 + �̂�) − (1 − (1 + �̂�)−�̂�)
�̂�−1

(1 + �̂�)−�̂�𝑙𝑛(1 + �̂�)

(1 − (1 + �̂�)
−�̂�

)
�̂�

− (1 − (1 + �̂�)−�̂�)�̂�

= 0  .                                                                                                                                                      (23) 

Equations (22) and (23) are two nonlinear equations which can be solved using 

Newton- Raphson method to obtain the ML estimators�̂�and�̂�. The invariance 

property of the ML estimators can be used to obtain the ML estimator for the rf and 

the hrf; �̂�(𝑥) and ℎ̂(𝑥), as given below 

�̂�(𝑥) =    
(1 − (1 + �̂�)

−�̂�
)

�̂�

− (1 − (1 + 𝑥)−�̂�)
�̂�

(1 − (1 + �̂�)
−�̂�

)
�̂�

− (1 − (1 + �̂�)−�̂�)�̂�

 ,          �̂� < 𝑥 < �̂�,                                   (24) 

and 

ℎ̂(𝑥) =
�̂��̂�(1 + 𝑥)−(�̂�+1)(1 − (1 + 𝑥)−�̂�)

�̂�−1

(1 − (1 + �̂�)
−�̂�

)
�̂�

− (1 − (1 + 𝑥)−�̂�)�̂�

, �̂� < 𝑥 < �̂�.                                         (25) 
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The asymptotic normality of the ML estimates can be used to compute the 

asymptotic confidence intervals for the parameters, rfandhrf.  

Hence, a two sided approximate 100 (1-𝜏)% confidence intervals for 𝜔 is given by 

𝐿𝜔 =  �̂� −  𝑍(1− 𝜏 2)⁄ √𝑣𝑎𝑟(�̂�)and𝑈𝜔 =  �̂� +  𝑍(1− 𝜏 2)⁄ √𝑣𝑎𝑟(�̂�),(26) 

where𝐿𝜔 and 𝑈𝜔 are the lower limit (LL) and upper limit (UL), �̂�  is �̂�, �̂�, �̂�(𝑥), or 

ℎ̂(𝑥), respectively, and   Z(1− 𝜏 2)⁄  is a standard normalvariate and 𝜏 is the confidence 

coefficient. 

 

5. Maximum Likelihood Prediction 

This section considered the point and interval ML prediction for a future observation 

from the double TIKum (𝜃) distribution based on two-sample prediction. 

Suppose that 𝑋(1) < 𝑋(2) < ⋯ < 𝑋(𝑛)are the first nordered life times in a random 

sample from the double TIKum (𝜃) distributionand assume𝑌(1) < 𝑌(2) < ⋯ < 𝑌(𝑚)is 

a future independent random sample (of size 𝑚) from the same distribution. For the 

future sample of size 𝑚, let 𝑌(𝑠)denotes the 𝑠𝑡ℎ order statistic 1 ≤ 𝑠 ≤ 𝑚. 

The pdf of 𝑌(𝑠)can be obtained from (17) just by replacing 𝑥(𝑖) by 𝑦(𝑠) 

ℎ(𝑦(𝑠)|𝜃) = 𝐷(𝑠)𝑓(𝑦(𝑠)|𝜃)[𝐹(𝑦(𝑠)|𝜃)]
𝑠−1

[1 − 𝐹(𝑦(𝑠)|𝜃)]
𝑚−𝑠

, 𝑐 < 𝑦(𝑠) < 𝑑,                  (27) 

where 

𝐷(𝑠) = 𝑠 (
𝑚
𝑠

) =
𝑚!

(𝑠 − 1)! (𝑚 − 𝑠)!
 , 𝑠 = 1,2, … , 𝑚.                                                         (28) 

Substituting (5) and (6) in (17),thenusing (27) and the binomial expansion. Hence, 

the pdf of𝑦(𝑠)is as follows: 

 ℎ(𝑦(𝑠)|𝜃) = 𝐷(𝑠) 𝑍 𝛼 𝛽(1 + 𝑦(𝑠))
−(𝜶+𝟏)

(1 − 1 + 𝑦(𝑠)
−𝛼)

((𝑠−𝑗+𝑖)𝛽)−1
 

× (1 − (1 + 𝑑)−𝛼)(𝑚−𝑠−𝑖)𝛽(1 − (1 + 𝑐)−𝛼)𝑗𝛽 

× [(1 − (1 + 𝑑)−𝛼)𝛽 −  (1 − (1 + 𝑐)−𝛼)𝛽]
−𝑚

,        𝑐 ≤ 𝑦(𝑠) ≤ 𝑑;  𝜃 > 0,                         (29) 

Where 

𝑍 = ∑(−1)𝑗

𝑠−1

𝑗=0

(
𝑠 − 1

𝑗
) ∑ (−1)𝑖

𝑚−𝑠

𝑖=0

(
𝑚 − 𝑠

𝑖
),                                                                                 (30) 

and 𝐷(𝑠)is defined in (28). 
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Assuming that the parameters 𝜃 are unknown and independent, then the maximum 

likelihood prediction density (MLPD) of 𝑌(𝑠) given 𝑥 can be obtained using the 

conditional pdf of the order statistic which is given by (29) after replacing the vector 

of parameters𝜃 by their ML estimators 𝜃𝑀𝐿 as given below 

ℎ𝑠(𝑦(𝑠)|𝜃𝑀𝐿) = 𝐷(𝑠) 𝑍 �̂��̂�(1 + 𝑦(𝑠))
−(�̂�+1)

(1 − 1 + 𝑦(𝑠)
−�̂�)

((𝑠−𝑗+𝑖)�̂�)−1
 

× (1 − (1 + �̂�)
−𝛼

)
(𝑛−𝑠−𝑖)�̂�

(1 − (1 + �̂�)−�̂�)
𝑗�̂�

 

    × [(1 − (1 + �̂�)
−�̂�

)
�̂�

−  (1 − (1 + �̂�)−�̂�)
�̂�

]

−𝑛

, 𝑐 ≤ 𝑦(𝑠) ≤ 𝑑,    𝜃 > 0.                 (31) 

where𝐷(𝑠) is given by (28) and Z is given by (30). 

The ML predictive estimator (MLPE) of the future observation𝑌(𝑠) can be derived 

using (31) as follows: 

�̂�(𝑠)𝑀𝐿 = 𝐸(𝑦(𝑠)|𝜃𝑀𝐿) = ∫   𝑦(𝑠)
𝑦(𝑠)

ℎ𝑠(𝑦(𝑠)|𝜃𝑀𝐿) 𝑑𝑦(𝑠) 

             = ∫ 𝑦(𝑠)
𝑦(𝑠)

𝐷(𝑠) 𝑍 �̂��̂�(1 + 𝑦(𝑠))
−(�̂�+1)

(1 − 1 + 𝑦(𝑠)
−�̂�)

((𝑠−𝑗+𝑖)�̂�)−1
 

× (1 − (1 + �̂�)
−𝛼

)
(𝑛−𝑠−𝑖)�̂�

(1 − (1 + �̂�)−�̂�)
𝑗�̂�

 

  × [(1 − (1 + �̂�)
−�̂�

)
�̂�

− (1 − (1 + �̂�)−�̂�)
�̂�

]

−𝑛

 𝑑𝑦(𝑠), 𝑐 ≤ 𝑦(𝑠) ≤ 𝑑,     𝜃 > 0.        (32) 

where𝐷(𝑠)and Z are given, respectively, by (28) and (30). 

The ML predictive bounds for 𝑌(𝑠) 

A 100(1-𝜏) % maximum likelihood predictive bounds (MLPB) for the future 

observation 𝑌(𝑠), such that 𝑃(𝐿(𝑠)(𝑥) <  𝑌(𝑠) < 𝑈(𝑠)(𝑥)|𝑥) = 1 − 𝜏,are as follows: 

𝑃(𝑌(𝑠) > 𝐿(𝑠)(𝑥)|𝑥) = ∫ ℎ1(𝑦(𝑠)|𝜃 𝑀𝐿)𝑑𝑦(𝑠) =
∞

𝐿(𝑠)(𝑥)
1 −

𝜏

2
,                                                (33) 

and 

𝑃(  𝑌(𝑠) > 𝑈(𝑠)(𝑥)|𝑥) = ∫ ℎ1(𝑦(𝑠)|𝜃 𝑀𝐿)𝑑𝑦(𝑠) =
∞

𝑈(𝑠)(𝑥)

𝜏

2
.                                                    (34) 
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Substituting (31) in (33) and (34), the MLPB are obtained as follows: 

𝑃(𝑌(𝑠) > 𝐿(𝑠)(𝑥)|𝜃 𝑀𝐿) = ∫ 𝐷(𝑠) 𝑍 �̂��̂�(1 + 𝑦(𝑠))
−(�̂�+1)

(1 − 1 + 𝑦(𝑠)
−�̂�)

((𝑠−𝑗+𝑖)�̂�)−1
∞

𝐿(𝑠)(𝑥)

 

                                            × (1 − (1 + �̂�)
−𝛼

)
(𝑛−𝑠−𝑖)�̂�

(1 − (1 + �̂�)−�̂�)
𝑗�̂�

 

       × [(1 − (1 + �̂�)
−�̂�

)
�̂�

−  (1 − (1 + �̂�)−�̂�)
�̂�

]

−𝑛

 𝑑𝑦(𝑠) = 1 −
𝜏

2
,                                    (35) 

and 

𝑃(𝑌(𝑠) > 𝑈(𝑠)(𝑥)|𝜃 𝑀𝐿) = ∫ 𝐷(𝑠) 𝑍 �̂��̂�(1 + 𝑦(𝑠))
−(�̂�+1)

(1 − 1 + 𝑦(𝑠)
−�̂�)

((𝑠−𝑗+𝑖)�̂�)−1
∞

𝑈(𝑠)(𝑥)

 

                                            × (1 − (1 + �̂�)
−𝛼

)
(𝑛−𝑠−𝑖)�̂�

(1 − (1 + �̂�)−�̂�)
𝑗�̂�

 

   × [(1 − (1 + �̂�)
−�̂�

)
�̂�

−  (1 − (1 + �̂�)−�̂�)
�̂�

]

−𝑛

 𝑑𝑦(𝑠)𝑑𝑦(𝑠)  =
𝜏

2
  ,                                    (36) 

where𝑠 = 1, 2, 3, … , 𝑚. 

5.1 Special cases: 

• All results obtained in this paper for the TIKum distribution give corresponding 

results for the left TIKum distribution when 𝑑 = ∞ in (5). 

• Results can also be obtained for right TIKum distribution when 𝑐 = 0 in (5). 

 

6. Numerical Illustration 

This section aims to investigate the precision of the theoretical results of estimation 

and prediction on basis of simulated and real data. 

6.1 Simulation study 

In this subsection, a simulation study is conducted to illustrate the performance of 

the presented ML estimates on the basis of generated data from the 

TIKum(𝜃)distribution. The ML averages of the parameters, rf and hrf based on 

complete samples are computed.Moreover, confidence intervals of the parameters, rf 

and hrf are calculated. Also, the ML two-sample predictors (point and interval) for a 
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future observation are obtained. All simulation studies are performed using 

Mathematica 9.  

The simulation algorithm based on complete sample data is  

• Several data sets are generated from double TIKum distribution for a 

combination of the population parameter values of 𝛼, 𝛽, 𝑐and 𝑑 and for samples 

ofsize 30, 50 and 100 using R=400 replications for each sample size. 

• The transformation between the uniform distribution and double TIKum 

distribution is given as follows: 

𝑥𝑖 =  [1 − [𝑢𝑖(1 − (1 + 𝑑)−𝛼)𝛽 + (1 − (1 + 𝑐)−𝛼)𝛽(1 − 𝑢𝑖)]
1

𝛽]
−

1

𝛼

− 1.                           (37) 

• The population parameter values of 𝛼, 𝛽, 𝑐and  𝑑used in this simulation study are 

(1.5, 2, 0.6  and  2).  

• A computer program; depending on Mathematica 9, is derivedusing the iterative 

technique of Newton Raphsonmethod to solve the nonlinear likelihood equations 

simultaneously. Hence the ML averages �̂�, �̂�, �̂� and �̂� are computed. 

• Also, the rf and the hrf are estimated for different values of time;  𝑡0 =
(0.5, 0.8, 1). 

• Evaluating the performance of the estimates of𝛼, 𝛽, 𝑐, 𝑑, 𝑅(𝑡0) and ℎ(𝑡0)is 

considered through some measurements of accuracy. The precision and variation 

of the MLestimates, are studied using therelative absolute bias (RAB) and the 

relative error (RE), where 

𝑅𝐴𝐵 =
|�̂�−𝜃|

𝜃
 ,   𝑅𝐸 =

√ 𝐸𝑅(�̂�)

𝜃
where the estimated risk; 𝐸𝑅(𝜃) =

1

𝑀
∑ (𝜃𝑖 − 𝜃)

2𝑀
𝑖=1 . 

• Table 1 presented the ML averages, estimated risks, relative absolute biases, 

variances and 95% Confidence intervals of the parameters; from the double 

TIKum distribution for different samplesof size n=30, 50, 100  and number of 

replications R=400. 

• Table 2 displayed the ML averages, estimated risks, relative absolute biases of 

ML estimates and 95% confidence intervals of the reliability and hazard rate 

at 𝑡0 = (0.5, 0.8, 1); from TIKum distribution for different samples of size 

n=30, 50, 100  andnumber of replications R=400. 

• The ML two-sample predictors and bounds are presented in Table 3.  

 

 



 

KHALIFA 

 

15 

 

6.2 Concluding Remarks  

• One can observe from Table 1 and 2 that the ML averages are very close to 

the initial values of the parameters as the sample size increases. Also, RABs and REs 

are decreasing when the sample size is increasing. Also, the estimates are consistent 

and approaches the true parameter values as the sample size increases. 

• The previous remark is expected since increasing the sample size means that 

more information is provided by the sample and hence increases the accuracy of 

the estimates. 

• The ML averages intervals include the estimates. 

• The lengths of the confidence intervals of the parameters become narrower as 

the sample size increases. 

6.3 Applications 

In this subsection, how the proposed methods can be used in practice is 

demonstrated. Two real lifetime data sets are analyzed. 

Application 1: 

The first application is given by Hinkley (1977). The data refers to thirty successive 

values of March precipitation (in inches) in Minneapolis/St Paul: 0.77, 1.74, 0.81, 

1.20, 1.95, 1.20, 0.47, 1.43, 3.37, 2.20, 3.00, 3.09, 1.51, 2.10, 0.52, 1.62, 1.31, 0.32, 

0.59, 0.81, 2.81, 1.87, 1.18, 1.35, 4.75, 2.48, 0.96, 1.89, 0.90, 2.05.  

Application 2:  

The second application is the time between failures for repairable items used by 

Murthy et al. (2004).The data is 1.43, 0.11, 0.71, 0.77, 2.63, 1.49, 3.46, 2.46, 0.59, 

0.74, 1.23, 0.94, 4.36, 0.40, 1.74, 4.73, 2.23, 0.45, 0.70, 1.06, 1.46, 0.30, 1.82, 2.37, 

0.63, 1.23, 1.24, 1.97, 1.86, 1.17. 

To check the validity of the fitted model, the Kolmogorov–Smirnov and chi–squared 

goodness of fit tests are performed through the R programming language. The p 

values are given, respectively, by 0.925 and 0.6649. The p value given in each case 

showed that the model fits the data very well. 

The ML estimates of the parameters, rf, hrf and their ERs and RABs, for the real data 

based on complete sample are displayed in Table 4. The ML two-sample predictors 

(point and interval) for a future observation are presented in Table 5. 

From Tables 4 and 5, one can observe that: 

• The estimates are very close to each other for each data set.  

• The ML intervals include the estimates. 
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• The results based on the real data ensure the simulation results.  

 

Table 1. ML averages, estimated risks,relative absolute biases, variances and 95% 

confidence intervals of the parameters from the double TIKum distribution for 

different samples ofsize n and replication  R=400(α=1.5, β=2, c=0.6 and d=2) 

n �̂� Averages ER RAB Variance UL LL Length 

 

30 

�̂� 

�̂� 

�̂� 

�̂� 

1.5377 

2.0883 

0.6282 

1.9649 

0.3548 

0.3422 

0.0016 

0.0132 

0.0252 

0.0441 

0.0469 

0.0426 

0.3534 

0.3344 

0.0008 

0.0059 

1.5755 

2.2125 

0.6842 

2.0666 

0.4546 

1.2662 

0.5722 

1.7631 

1.1209 

0.9462 

0.1119 

0.3035 

 

50 

�̂� 

�̂� 

�̂� 

�̂� 

1.4201 

2.0985 

0.6157 

1.9508 

0.2530 

0.2995 

0.0005 

0.0047 

0.0233 

0.0299 

0.0262 

0.0246 

0.2466 

0.2961 

0.0002 

0.0022 

2.0244 

2.4194 

0.6454 

2.0435 

1.3208 

2.0013 

0.5859 

1.8581 

0.7036 

0.4181 

0.0594 

0.1854 

 

100 

�̂� 

�̂� 

�̂� 

�̂� 

1.4193 

2.0597 

0.6145 

1.9762 

0.1493 

0.2301 

0.0001 

0.0012 

0.0213 

0.0293 

0.0141 

0.0119 

0.1476 

0.2265 

0.0001 

0.0006 

1.5238 

2.3953 

0.6242 

2.0251 

1.2964 

2.0506 

0.5927 

1.9273 

0.2274 

0.3447 

0.0315 

0.0978 

 

Table 2. ML averages, estimated risks, relative absolute biases and 95% confidence 

intervals of the reliability and hazard rate at  𝑡0 = (0.5, 0.8, 1) from TIKum 

distribution for different samples of size n andreplication R=400 (α=1.5, β=2, c=0.6 

and d=2) 

n 𝒕𝟎 Estimators Averages ER RAB UL LL Length 

30 0.5 �̂�(𝒕𝟎) 0.8512 0.0025 0.0168 0.9457 0.5568 0.3889 

�̂�(𝒕𝟎) 0.1728 0.0812 0.0986 0.2837 0.0222 0.2614 

0.8 �̂�(𝒕𝟎) 0.5988 0.0076 0.0099 0.7694 0.4283 0.3411 
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�̂�(𝒕𝟎) 0.3165 0.0999 0.1074 0.3754 0.2459 0.1295 

1 �̂�(𝒕𝟎) 0.4761 0.0102 0.0145 0.6736 0.3387 0.3349 

�̂�(𝒕𝟎) 0.4611 0.0936 0.0775 0.5625 0.3659 0.1967 

50 0.5 �̂�(𝒕𝟎) 0.8482 0.0015 0.0132 0.9219 0.7745 0.1474 

�̂�(𝒕𝟎) 0.1826 0.0543 0.0369 0.2039 0.1013 0.1027 

0.8 �̂�(𝒕𝟎) 0.5145 0.0073 0.0159 0.7805 0.4485 0.3319 

�̂�(𝒕𝟎) 0.2196 0.0633 0.0259 0.3090 0.1801 0.1289 

1 �̂�(𝒕𝟎) 0.4665 0.0047 0.0060 0.6006 0.3324 0.2682 

�̂�(𝒕𝟎) 0.4818 0.0416 0.0559 0.5028 0.3609 0.1419 

100 0.5 �̂�(𝒕𝟎) 0.8422 0.0010 0.0059 0.9037 0.7806 0.1231 

�̂�(𝒕𝟎) 0.2195 0.0314 0.0221 0.3230 0.2113 0.1017 

0.8 �̂�(𝒕𝟎) 0.5075 0.0021 0.0044 0.6967 0.5183 0.1784 

�̂�(𝒕𝟎) 0.3715 0.0211 0.0258 0.4480 0.3309 0.1171 

1 �̂�(𝒕𝟎) 0.4421 0.0029 0.0172 0.5809 0.3738 0.2072 

�̂�(𝒕𝟎) 0.5982 

 

0.0191 0.0114 0.6404 0.4027 0.1377 

 

Table 3. ML predictive and bounds of the future observation under two-sample 

prediction (  𝒏𝟏 = 𝟏𝟎𝟎,  𝒏𝟐 = 𝟑𝟎, 𝜶 = 𝟏. 𝟓, 𝜷 = 𝟐, 𝒄 = 𝟎. 𝟔  𝐚𝐧𝐝  𝒅 = 𝟐) 

s �̂�(𝒔)𝑴𝑳 UL LL Length 

3 0.6865 0.9645 0.6183 0.0762 

18 1.2874 1.4985 1.0100 0.4886 

30 3.6865 2.1871 1.6183 0.5687 
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Table 4. ML estimates of the parameters, rf, hrf, their estimated risks and relative 

absolute biases for the real data 

Real data n Estimators ML ER RAB 

 

 

 

Application 

I 

 

 

 

30 

�̂� 

�̂� 

�̂� 

�̂� 

�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

1.5376 

2.8995 

0.3200 

4.7500 

0.9204 

0.5234 

0.1139 

0.0101 

0.0784 

0.5625 

0.0148 

0.0190 

0.2814 

0.0335 

0.4667 

0.1875 

0.1167 

0.3575 

 

 

 

Application 

II 

 

 

 

 

30 

 

 

�̂� 

�̂� 

�̂� 

�̂� 

�̂�(𝒕𝟎) 

�̂�(𝒕𝟎) 

1.4378 

2.4002 

0.1100 

4.7300 

0.8366 

0.6059 

0.0189 

 0.1602 

 0.2401 

 0.5329 

0.0562 

0.0085 

0.1060 

0.2001 

0.8167 

 0.1825 

0.2208 

 0.1318 

 

Table 5. ML predictive and bounds of the future observation for real data under two-

sample prediction 

 

s 

Application I Application II 

�̂�(𝒔)𝑴𝑳 UL LL Length �̂�(𝒔)𝑴𝑳 UL LL Length 

1 0.0437 0.0472 0.0431 0.0040 0.0697 0.0683 0.0650 0.0032 

9 0.0937 0.0985 0.0925 0.0062 0.1891 1.1928 0.1873 0.0045 

17 1.2469 1.2532 1.2451 0.0081 1.0827 1.0966 1.0792 0.0063 
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