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INVITED ARTICLES 
Multivariate Location: Robust Estimators And Inference 

 
 
The sample mean can have poor efficiency relative to various alternative estimators under arbitrarily small 
departures from normality. In the multivariate case, (affine equivariant) estimators have been proposed for 
dealing with this problem, but a comparison of various estimators by Massé and Plante (2003) indicated that 
the small-sample efficiency of some recently derived methods is rather poor. This article reports that a 
skipped mean, where outliers are removed via a projection-type outlier detection method, is found to be more 
satisfactory. The more obvious method for computing a confidence region based on the skipped estimator 
(using a slight modification of the method in Liu & Singh, 1997) is found to be unsatisfactory except in the 
bivariate case, at least when the sample size is small. A much more effective method is to use the Bonferroni 
inequality in conjunction with a standard percentile bootstrap technique applied to the marginal distributions. 
 
Keywords: Outlier detection; Tukey’s halfspace depth, skipped estimators, outlier-projection estimator 
 
 

Introduction 
 
A fundamental problem is estimating a measure 
of location associated with some multivariate 
distribution and then computing a confidence 
region based on the estimator used. Of course, 
the sample mean performs well under normality 
based on various well-known criteria. However, 
from an applied point of view, there are 
compelling reasons to consider alternative 
measures of location. One has to do with the 
effects of outliers on efficiency. Tukey (1960) 
predicted that outliers are common in applied  
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work, and modern outlier detection methods 
indicate that this is indeed the case (outlier 
detection rules based on the mean and usual 
covariance matrix, in conjunction with a 
Mahalanobis distance, are well known to be 
unsatisfactory; see for example, Rousseeuw & 
Leroy, 1987). 

Moreover, arbitrarily small departures 
from normality (based on any of several metrics 
for comparing distributions) can result in 
outliers commonly appearing in a random 
sample which in turn can mean poor efficiency 
when using the sample mean. Another concern 
is that when sampling from an asymmetric 
distribution, the population mean can poorly 
reflect what is typical. 

In the univarate case, many alternatives 
to the sample mean have been proposed (e.g, 
Andrews et al., 1972). Several maintain 
relatively high accuracy under normality relative 
to the sample mean and have high efficiency in 
situations where the sample mean performs 
poorly. Simultaneously, inferential (hypothesis 
testing) methods have been found that perform 
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well over a broad range of situations, including 
general conditions where methods based on 
means perform in an unsatisfactory manner (e.g., 
Wilcox, 1997; 2003). 

As for the multivariate case, one could 
of course simply apply univariate estimators to 
the marginal distributions, but it is known that 
usually this does not satisfy a criterion that is 
frequently imposed. To elaborate, first consider 
the univariate case, let X be any random variable 
having distribution F, let 1( , , )nT X X… be some 
statistic based on the random sample 1, , nX X… , 
and let a and b be any two constants. Then for 

1( , , )nT X X…  to qualify as a measure of 
location, a minimum requirement typically 
imposed is that 
 
    1 1[ ( ,..., ) ] ( ,..., )+ = +n nT a X X b aT X X b  
 
(e.g., Staudte & Sheather, 1990). The usual 
population mean and median satisfy this 
requirement as do many other robust measures 
of location. This requirement says, for example, 
that given a typical measure of temperature in 
Fahrenheit, if converted to Celsius, the typical 
measure should be transformed in the obvious 
way. 

Now consider the case where X is any p-
variate random variable, A is any nonsingular 
square matrix, and B is a vector having length p. 
Then 1( , , )nT X X… is said to be an affine 
equivariant measure of location if 
 

1 1( ,..., ) ( ,..., ) .n nT X A X A B T X X A B+ = +  (1) 
 
So the measure of location is transformed 
properly under rotations as well as changes in 
scale and shifts in the possible values of X. 
There are many robust affine equivariant 
measures of location in the univariate case, but 
typically, if they are applied to the marginal 
distributions in the multivariate case, they are no 
longer affine equivariant. For example, the 
marginal medians are not affine equivariant as 
noted by Donoho and Gasko (1992). So a 
general goal has been to search for affine 
equivariant location estimators in the 
multivariate case that guard against the 
deleterious effects of outliers. 

One of the earliest affine equivariant 
estimators that guards against outliers was 
proposed by Rousseeuw and Leroy (1987) and is 
known as the minimum volume ellipsoid (MVE) 
estimator. It begins by searching for the ellipsoid 
containing half of the data that has the smallest 
volume. If the sample mean is computed based 
on this half of the data, ignoring the other half, it 
is evident that it guards against outliers, but 
efficiency is poor compared to the usual sample 
mean when sampling from a normal distribution. 
More recently, Rousseeuw and van Driesen 
(1999) argued that the MVE estimator be 
replaced by the minimum covariance 
determinant (MCD) estimator which searches 
for a subset of half of the data having the 
smallest generalized variance. But like the MVE 
estimator, efficiency is low when sampling from 
a multivariate normal distribution. 

Donoho and Gasko (1992) studied a 
multivariate location estimator that is based in 
part on Tukey’s notion of halfspace depth. Their 
approach is of direct interest in this article and 
details are given later in the paper. But before 
continuing, a rough outline of their strategy 
helps. The basic idea is to quantify how deeply 
each point iX is nested within the cloud of data, 
and then eliminate a fixed proportion of those 
points that are not deeply nested.  

That is, use the centrally located data to 
estimate a measure of location and ignore the 
data on the edges of the data cloud. In the 
univariate case, their estimator reduces to a 
trimmed mean which is known to have many 
practical advantages. In particular, a 20% 
trimmed mean (where the largest 20% and the 
smallest 20% of the observed values are 
trimmed, and the average of the remaining data 
is used) maintains reasonably high efficiency 
under normality (e.g., Rosenberger & Gasko, 
1987). This raises the issue of whether a similar 
amount of trimming performs well when 
working with multivariate data, and it is found 
that this is not the case. 

Yet another approach was recently 
proposed by Liu, Parelius and Singh (1999) and 
represents a generalization of the method studied 
by Donoho and Gasko (1992). One difference is 
that Liu et al. consider a wider choice of 
methods for measuring the depth of a point 
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within a data cloud. The particular 
generalization of a univariate trimmed mean 
described by Liu et al. (1999, pp. 795-796) was 
considered in this study, but it did not correct the 
problems with the Donoho and Gasko trimmed 
mean described later in this article. So for 
brevity, the complex computational details of 
their method are not described here. 

One more general approach is to first 
search for outliers using some affine equivariant 
method, roughly meaning that if the data are 
transformed as indicated by the left side of 
equation 1, outliers before transforming the data 
remain outliers after transformation. Next, 
eliminate any outliers that are found and simply 
compute the mean of the remaining data. In the 
univariate case, this general strategy yields what 
is known as a skipped estimator, so the term is 
used here.  

The focus here is on one particular 
outlier detection method for reasons discussed 
later in the paper. The choice of method is not 
arbitrary, but it is stressed that alternative outlier 
detection techniques might be found to have 
practical value in future studies. It is noted that 
Massé and Plante (2003) compared the 
efficiency of several multivariate estimators and 
found all of the affine equivariant estimators to 
have relatively poor efficiency under normality. 
The skipped estimator studied here corrects that 
problem. 
 
The Estimators Studied 

This section provides a formal 
description of the six estimators considered. 
Four of the estimators belong to the class of 
generalized trimmed means studied by Donoho 
and Gasko (1992); four different amounts of 
trimming are considered. Results in Massé and 
Plante (2003) indicate that these estimators can 
be unsatisfactory, and previous results, based on 
other distributions and criteria, support their 
conclusions. The fifth estimator is based on 
removing outliers with a projection-type method 
and averaging the values that remain, and the 
sixth is the usual median of the marginal 
distributions. Although this last estimator is not 
affine equivariant, it is included with the goal of 
adding perspective on the expected accuracy of 
the other estimators considered. 
 

The Donoho-Gasko Trimmed Mean 
The Donoho and Gasko (1992) 

estimator is based on Tukey’s notion of 
halfspace depth, which represents an approach to 
generalizing the notion of ranks to multivariate 
data. An important feature of Tukey’s depth is 
that no assumptions are made about the 
distribution from which observations are 
randomly sampled. In particular, it is not 
assumed that the distribution is elliptical. 

A formal definition of Tukey’s depth is 
relegated to an appendix. To provide some 
intuitive sense of Tukey’s strategy we duplicate 
a description found in Wilcox (in press). Look at 
Figure 1 which shows a scatterplot of 
electroencephalographic (EEG) measures taken 
at two sites in the brain. These data are from 
Raine, Buchsbaum and LaCasse (1997) where 
the general goal was to investigate brain 
abnormalities among murderers.  

Consider the left most point indicated by 
a circle and imagine any line going through this 
point. Any line forms what are called two 
halfspaces. The points on or above a line form a 
closed halfspace, and the same is true for all of 
the points on or below the line. Because the left 
point indicated by the circle is located on the 
edge of the scatterplot, it is evident that a line 
can be drawn through this point so that it is the 
only point in one of the closed halfspaces. Now 
consider the right circle. Because it is more 
deeply nested within the scatterplot, a relatively 
large proportion of the scatterplot will be on or 
above any line drawn through this point, and a 
relatively large proportion will be on or below 
the line as well.  

For any line L drawn through a point, 
consider the proportion of points on or above 
this line, as well as on or below this line, and let 

LP  be the smaller of these two proportions. Then 
Tukey’s depth is the smallest LP value among all 
lines L. For p-variate data (where L becomes a 
plane), the maximum depth among a scatterplot 
of points can be as high as 1/2 or as low as 
1/( 1)p + (Donoho & Gasko, 1992). So for 
bivariate data ( 2)p = , if the depth for every 
point were computed, it is possible that the  

 



MULTIVARIATE LOCATION: ROBUST ESTIMATORS AND INFERENCE 
 

5 

 
 
 
 

largest depth would not exceed 1/3, but it could 
be as high as .5. 

Tukey’s notion of depth can be 
computed exactly in the bivariate case 
(Rousseeuw & Ruts, 1996). In Figure 1, there 
are 14n = points, and the halfspace depth for the 
left circle is 1/14. For the right circle, the 
halfspace depth is 5/14. For p-variate data, 

2p > , Rousseeuw and Struyf (1998) describe 
an approximation of Tukey’s depth which is 
used here. 

The Donoho-Gasko analog of the γ-
trimmed mean, γ̂ξ , is the average of all points 
which are at least γ deep in the sample. That is, 
points having depth less than γ are trimmed and 
the mean of the remaining points is computed. 
For example, suppose .1γ = and consider again 
the data in Figure 1. There are four points that 
have a depth less than .1 so the .1 trimmed mean  

 

 
 
 
 

is the mean after these four points are 
eliminated. Because the maximum depth is not 
necessarily .5, a generalization of the median, 
often called Tukey’s median, is taken to be the 
mean of the points having the maximum depth. 
In Figure 1, the maximum depth is .357 which 
corresponds to only one point: (.58, .65)− . 
 
A Skipped Estimator 

As previously indicated, a skipped 
estimator is the sample mean of the data after 
outliers have been removed. A practical problem 
is not finding a reasonable outlier detection 
method for multivariate data, but rather choosing 
a method from among the many that have been 
proposed. Rousseeuw, Ruts and Tukey (1999) 
suggest a method based on the notion of 
halfspace depth. They focus mainly on the 
bivariate case, but in principle the method can be 
used when 2p > ; also see Liu et al. (1999) as 
well as Romanazzi (1997).  

Figure 1. EEG measures used to illustrate Tukey’s notion of depth. 
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An approach based on convex hull 
peeling is discussed by Zani, Riani and 
Corbellini (1998) but is known to be somewhat 
less robust than halfspace depth as shown by 
Donoho and Gasko (1992). Another approach, 
that has been studied extensively, is related to 
the strategy behind the MVE and MCD 
estimators previously described. That is, find the 
ellipsoid with the smallest volume or smallest 
covariance determinant that encompasses at least 
half of the data, and use the corresponding mean 
and covariance matrix to detect outliers. (See, 
for example, Davies, 1987; Fung, 1993; Hampel, 
Ronchetti, Rousseeuw & Stahel, 1986; 
Rousseeuw & Leroy, 1987; Rousseeuw & van 
Zomeren, 1990; Rousseeuw & van Driesen, 
1999; Tyler, 1991; For additional references, see 
Peña & Prieto, 2001; cf. Woodruff & Rocke, 
1994.)  

The main article for detecting outliers 
based on the minimum volume ellipsoid (MVE) 
estimator is Rousseeuw and van Zomeren 
(1990). Rocke and Woodruff (1996) describe a 
method that uses the MVE and MCD estimators 
as starting values for computing estimators of 
location and scatter. Poon, Lew and Poon (2000) 
suggest a method based in part on a 
Mahalanobis distance, and yet another approach 
was recently proposed by Viljoen and Venter 
(2002).  

One more strategy, as suggested by 
Stahel (1981) and Donoho (1982), is motivated 
by the fact that each outlier among a 
multivariate sample must be an extreme point 
based on some projection of the data. Adopting 
this view, Peña and Prieto (2001) focus on how 
far points are from the usual sample mean, and 
they suggest how to choose interesting 
projections based on the estimated kurtosis 
coefficient of the projected observations. 

This study uses a projection-type 
method for detecting outliers for reasons to be 
described and because software is easily written 
to perform the calculations. To reduce the 
number of projections considered, the strategy 
used by Peña and Prieto (2001) is used where 
attention is focused on how far a point is from 
the center of the data. The idea is that by 
projecting points onto a line that passes through 
the center of the data, the distances between 
points on the projected line can be combined 

with known properties of univariate outlier 
detection methods in a manner that are 
advantageous for the problem at hand.  

But rather than use the sample mean, as 
was done by Peña and Prieto, the Donoho and 
Gasko (1992) multivariate median estimator m̂ξ , 
is used instead. Another difference is that n 
projections are considered. In contrast, with p-
variate data, Peña and Prieto search for 2p 
projections instead. 

To briefly elaborate, it is noted that the 
so-called outside rate per observation for an 
outlier detection method refers to the proportion 
of points declared outliers based on a sample of 
size n. When searching for an estimator that 
performs nearly as well as the sample mean 
under normality, it seems clear that the outside 
rate per observation should be reasonably low 
when sampling is from a multivariate normal 
distribution. Known results on univariate outlier 
detection methods, suggest how to control the 
outside rate per observation when considering 
projections, so this strategy is used in the current 
study. 

The details of the method used here are 
as follows. Fix i and for the point iX , project all 
n points onto the line connecting m̂ξ and iX and 
let jD  be the distance between m̂ξ and jX based 
on this projection. More formally, let 
 

ˆ ,i i mA X ξ= −  
 

ˆ ,j j mB X ξ= −  
 
where both iA  and jB are column vectors 
having length p, and let 
 

j
j j

j

 ,i

j

A B
C B

B B
′

=
′

 

 
1, ,j n= … . Then when projecting the points 

onto the line between iX and m̂ξ , the distance of 
the jth point from m̂ξ is  

j j ,D C= & &  
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where jC& &  is the Euclidean norm of the vector 

jC . 

Next, a boxplot rule for detecting 
outliers is applied to the jD  values, but rather 
than the standard rule, a modification that has 
close similarities to one used by Carling (2000) 
is employed. Let [ / 4 5/12]l n= + , where [.] is 
the greatest integer function, and let  
 

5
4 12
nh l= + − .  

 
Let (1) ( )nD D≤ ≤" be the n distances written in 
ascending order. The so-called ideal fourths 
associated with the jD  values are  
 

1 ( ) ( 1)(1 ) j jq h D hD += − +  
 
and  

 
2 ( ) ( 1)(1 ) .k kq h X hX −= − +  

 
Then the jth point is declared an outlier if  
                    

2
.95, 2 1( ), χ> + −j D pD M q q           (2) 

 
where DM  is the usual sample median based on 
the jD  values and 2

.95, pχ  is the .95 quantile of a 
chi-squared distribution with p degrees of 
freedom (cf. Rousseeuw & van Zomeren, 1999). 

The process just described is for a single 
projection; for fixed i, points are projected onto 
the line connecting iX  to m̂ξ . Repeating this 
process for each i, 1, ,i n= … , a point is declared 
an outlier if for any of these projections, it 
satisfies equation (2). Removing any outliers 
found by equation (2), and averaging the values 
that remain, will be called the OP (outlier-
projection) estimator and denoted by ôpξ . 

A simple and seemingly desirable 
modification of the method just described is to 
replace the interquartile range 2 1( )q q− with the 
median absolute deviation (MAD) measure of 

scale based on the jD values. So here, MAD is 
the median of the values 
 

1| |, ,| |D n DD M D M− −… . 
 
Then the jth point is declared an outlier if  
                  

2
.95,

MAD , 
.6745j D pD M χ ⎛ ⎞> + ⎜ ⎟

⎝ ⎠
           (3) 

 
where the constant .6745 is typically used 
because under normality, MAD/.6745 estimates 
the standard deviation. (Equation 3 represents an 
approximation of the method given by equation 
1.3 in Donoho & Gasko, 1992.) One appealing 
feature of MAD is that it has a higher finite 
sample breakdown point versus the interquartile 
range, where the finite sample breakdown point 
of an estimator refers to the minimum proportion 
of points that must be altered to make the value 
of a statistic arbitrarily small or large. MAD has 
a finite sample breakdown point of 
approximately .5, while for the interquartile 
range it is only .25.  

In this study, however, the focus is on 
using a projection-type method in conjunction 
with the interquartile range, rather than MAD. 
The reason stems from the outside rate per 
observation, np . As previously suggested, to 
maintain relatively high accuracy under 
normality when using a skipped estimator, the 
outside rate per observation should be 
reasonably close to zero.  

It is common to search for a method 
with a rate approximately equal to .05; this 
usually provides good efficiency under 
normality. A negative feature of equation (3) is 
that np appears to be considerably less stable as 
a function of n. In the bivariate case, for 
example, it is approximately .09 with 10n = and 
drops below .02 as n increases. So the relative 
accuracy of the corresponding skipped estimator 
varies with n. For the same situations, np based 
on equation 2 ranged between .043 and .038. So 
the approached based on equation 3 is not 
pursued here. 

To further elaborate on why the MVE 
outlier detection method was discarded, it is 
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noted that under normality, and when all 
variables are independent, its outside rate per 
observation is approximately .05, but when there 
is dependence, the rate can be considerably 
higher (Wilcox, 2003). The result is that if 
points declared outliers are removed, and the 
sample mean of the remaining points is 
computed, efficiency remains relatively high 
under independence, but it can be relatively low 
otherwise, so this approach was abandoned. If 
the MVE measures of location and scatter are 
replaced by the MCD estimators previously 
mentioned, again general situations were found 
where efficiency is poor under normality, which 
was not surprising because in these situations the 
outside rate per observation was even higher 
than was found for the MVE method. 

The outside rate per observation for 
many outlier detection methods has not been 
studied and addressing this issue goes beyond 
the scope of this article. So, of course, some 
variation of the skipped estimator studied here 
might give improved results in some sense, but 
this remains to be determined. 
 
Confidence Region 
 Given that location is estimated using 

ôpξ , how should a confidence region for ξ, the 

parameter estimated by ôpξ , be computed?  The 
initial strategy was to use the bootstrap method 
in Liu and Singh (1997). A direct application of 
their method, or some slight variation of it, has 
been found to perform well for a wide range of 
problems (Wilcox, 2003). Here, however, this 
approach was found to be unsatisfactory and was 
eventually abandoned. A much more satisfactory 
approach, in simulations, is to proceed as 
follows. 

Let jξ represent the jth element of the 
vector ξ, 1, ,j p= … . Let ijX , 

1, , ; 1, ,i n j p= =… … , represent a random 
sample from some p-variate distribution. 
Generate a bootstrap sample by resampling with 
replacement n rows from the n by p matrix 
corresponding to ijX , and denote this bootstrap 

sample by ijX ∗ . Let 1
ˆ ˆ ˆ( , , )pξ ξ ξ∗ ∗ ∗= … represent the 

OP estimate of ξ based on this bootstrap sample. 

Repeat this process B times and let ˆ
jbξ ∗  be the 

estimate of ξj based on the bth bootstrap sample, 

1, ,b B= … . Then from basic principles (e.g., 
Efron & Tibshirani, 1993), an approximate 
1 α− confidence interval for jξ  is given by 

( 1) ( )
ˆ ˆ( ,  )j l j uξ ξ∗ ∗

+ , where for fixed j (1) ( )
ˆ ˆ

j j Bξ ξ∗ ∗≤ ≤"  

are the ˆ
jbξ ∗  values written in ascending order, 

/ 2l Bα= , rounded to the nearest integer, and 
u B l= − . So, to obtain an approximate 
1 α− confidence region for ξ, a simple strategy 
is to apply the Bonferroni inequality and 
compute an α/p confidence interval for jξ  using 
the method just described. 

Said another way, to test 0 0: j jH ξ ξ= , 

0 jξ  given, let jp∗  be the probability that ˆ
jξ
∗  is 

less than 0 jξ . From Liu and Singh (1997), for 

fixed j, jp∗  has, asymptotically, a uniform 

distribution. Although jp∗  is not known, it is 
readily estimated from the data with  
 

ˆ ∗ Α
= ,
Β

p                       (4) 

 
where A is the number of bootstrap samples with 

0
ˆ

jb jξ ξ∗ < . Then ˆ2 mp∗  is the estimated p-value, 
where  
 
             ˆ ˆ ˆmin∗ ∗ ∗= ( ,1− ).mp p p                       (5) 

 
So for fixed j, reject at the α level if ˆ2 .mp α∗ ≤  
To control the familywise error rate (the 
probability of at least one Type I error) via the 
Bonferroni inequality when testing all p 
hypotheses, reject if ˆ2 / .mp pα∗ ≤  
 

Methodology 
 

Simulations were used to check both the 
accuracy of the estimators considered, plus the 
actual probability coverage when using the 
method just discussed. Accuracy was measured 
using the sum of the squared standard errors 
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associated with the p estimators used to estimate 
the p parameters. For the OP estimator, again let 
ˆ

jξ  be the OP estimate of jξ , and let jX  be the 
usual sample mean corresponding to the jth 
marginal distribution. Then the accuracy of the 
OP estimator, relative to the sample mean, is 
measured by 2R , the sum of the squared 
standard errors of the estimators associated with 
ˆ ,  1, ,j j pξ = … , divided by the sum of the 

squared standard errors associated with the 
sample means, jX . When dealing with other 

estimators, the ˆ
jξ  were replaced with the 

relevant estimator. 
Observations were generated where the 

marginal distributions have a g-and-h 
distribution (Hoaglin, 1985) which includes 
normal distributions as a special case. When 
dealing with accuracy, the focus was on 

4p = (but when computing a confidence region, 
both 2p =  and 4 were considered). More 
precisely, observations 1, , ; 1, ,ijZ n j p= =… …  
were initially generated from a multivariate 
normal distribution having correlation ρ, then 
the marginal distributions were transformed to 
 

( ) 2exp 1
exp

2
ij ij

ij
g Z h Z

X
g

⎛ ⎞−
⎜ ⎟=
⎜ ⎟
⎝ ⎠

 

 
when both g and h were non-zero. When g was 
zero 

2

exp ,
2

ij
ij ij

h Z
X Z

⎛ ⎞
⎜ ⎟=
⎜ ⎟
⎝ ⎠

        

 
where g and h are parameters that determine the 
third and fourth moments. Here, 0ρ = and .7 are 
considered. The four (marginal) g-and-h 
distributions used here were the standard normal 
( 0)g h= = , a symmetric heavy-tailed  
distribution ( 0,  .5)g h= = , an asymmetric 
distribution with relatively light tails 
( .5,  0)g h= = , and an asymmetric distribution 
with heavy tails ( .5)g h= = . Also, when 
dealing with accuracy, simulations were run 
with 1h = . This latter case might be viewed as 

an extreme departure from normality, but it was 
considered anyway to see whether any of the 
estimators performs poorly when sampling from 
a sufficiently heavy-tailed distribution. 

Table 1 shows the theoretical skewness 
(κ1) and kurtosis (κ2) values for each 

distribution considered. When 0g > and 
1/h k> , ( )kE X  is not defined and the 

corresponding entry in Table 1 is left blank. 
Additional properties of the g-and-h distribution 
are summarized by Hoaglin (1985). 
 
Table 1. Some properties of the g-and-h 
distribution. 
 

 
g 

 
h 

 
1κ  

 
2κ  

 
1κ̂  

 
2κ̂  

0.0 0.0 0.00 3.0 0.00 3.0 
0.0 0.5 0.00 — 0.00 11,896.2 
0.5 0.0 1.75 8.9 1.81 9.7 
0.5 0.5 — — 120.10 18,393.6 
 
 A possible objection to Table 1 when 
performing simulations is that the distribution of 
observations generated on a computer does not 
always have the theoretical skewness and 
kurtosis values shown. The reason is that 
computer observations come from a bounded 
interval, so the skewness and kurtosis of the 
distribution will be finite, even when in theory it 
should be infinite. Accordingly, Table 1 also 
reports the estimated skewness 1ˆ( )κ and kurtosis 

2ˆ( )κ values based on simulations with 10,000 
replications. 

Table 2 shows estimates of R based on 
5,000 replications, where the first three 
estimators are the Donoho-Gasko trimmed mean 
with 10%, 15% and 20% trimming, DGM is the 
Donoho-Gasko median, OP is the outlier-
projection estimator, and M is the usual median. 
Note that with 20% trimming, accuracy is 
relatively poor when sampling from a normal 
distribution ( 0)g h= = .  
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This is in sharp contrast with the 

univariate case where a 20% trimmed mean 
performs reasonably well (e.g., Rosenberger & 
Gasko, 1983; Wilcox, 1997). Under normality, 
with .7ρ = , the median performs rather poorly, 
but with sufficiently heavy-tailed distributions, 
the median performs well. So, if one is willing to 
sacrifice affine equivariance, applied situations 
might arise where the usual median has practical 
advantages. In general, however, the OP 
estimator seems best for general use. It was 
found to be the most accurate alternative to the 
mean under normality, and it remains 
competitive under fairly extreme kurtosis. 
 As for probability coverage, when using 
method OP, Table 3 contains α̂ , the estimated 
probability that the confidence region based on 
the Bonferroni method does not contain the 
population value when 20n =  for 2p =  and 4. 
For this portion of the study, 1,000 replications 
were used with 1,000B = . For asymmetric 
distributions, the actual value of the parameter 
was determined by taking the mean of 5,000 
estimates based on a sample size of 100n = . 
Bradley (1978) argues that when testing at the 
.05 level, at a minimum the actual probability of 
a Type I error should be between .025 and .075. 
This criterion is satisfied in all cases except 
when 2p = , ( , ) (.5,0)g h =  and 0ρ = , in which 
case ˆ .079α = . Increasing n to 30, the estimate 
equals .069. 
 

 
Table 3:  Estimated Type I Error Probabilities 
Using the OP Estimator, .05, 20nα = = . 
 

g h ρ  p α̂  
0.0 0.0 0.0 2 .071 
0.0 0.0 0.7 2 .071 
0.0 0.5 0.0 2 .040 
0.0 0.5 0.7 2 .040 
0.5 0.0 0.0 2 .079 
0.5 0.0 0.7 2 .040 
0.5 0.5 0.0 2 .056 
0.5 0.5 0.7 2 .047 
0.0 0.0 0.0 4 .065 
0.0 0.0 0.7 4 .069 
0.0 0.5 0.0 4 .040 
0.0 0.5 0.7 4 .036 
0.5 0.0 0.0 4 .063 
0.5 0.0 0.7 4 .061 
0.5 0.5 0.0 4 .044 
0.5 0.5 0.7 4 .040 

 
 

Conclusion 
 

A criticism of the OP estimator is that it is based 
on an outlier detection method that has a finite 
sample breakdown point of at most .25, because 
when using the interquartile range, the finite 
sample breakdown point is .25 for any 
projection. However, this would seem to suffice 
for many situations, and its efficiency is quite 
good compared to the mean even when sampling 

Table 2. Values of R (Accuracy), 40n =  
 

g h ρ  .10γ = .15γ = .20γ = DGM OP M
0.0 0.0 0.0 0.73 0.62 0.50 0.45 0.92 0.81
0.0 0.5 0.0 5.99 5.92 5.40 4.11 6.25 8.48
0.0 1.0 0.0 4660.21 5764.79 5911.29 4643.16 5452.35 10820.14
0.0 0.0 0.7 0.80 0.71 0.61 0.48 0.95 0.44
0.0 0.5 0.7 4.74 4.76 4.50 3.20 4.64 5.44
0.0 1.0 0.7 1082.56 1300.44 1336.63 1005.24 1091.68 1760.98
0.5 0.0 0.0 0.79 0.69 0.54 0.49 0.99 0.99
0.5 0.5 0.0 13.01 12.78 11.82 8.91 14.95 20.66
0.5 1.0 0.0 1908.75 2413.39 2472.07 1852.97 2519.04 4887.50
0.5 0.0 0.7 0.94 0.86 0.69 0.53 1.05 0.99
0.5 0.5 0.7 17.79 18.05 17.22 11.34 17.42 20.66
0.5 1.0     0.7  3005.56 3652.36 3660.06 29996.40 4887.42    4887.40 

 
 



MULTIVARIATE LOCATION: ROBUST ESTIMATORS AND INFERENCE 
 

11 

from a very heavy-tailed distribution. If there are 
indications that more than 25% of the points are 
outliers, then one possibility is to use the 
variation of the OP estimator based on equation 
(3). The main point is that good efficiency is 
achieved under normality and a method for 
computing a confidence region was found that 
performs reasonably well in simulations. 

 
References 

 
Andrews, D. F., Bickel, P. J., Hampel, 

F. R., Huber, P. J., Rogers, W. H., & Tukey, J. 
W. (1972). Robust estimates of location: survey 
and advances. Princeton University Press, 
Princeton: NJ. 

Bradley, J. V. (1978). Robustness?  
British Journal of Mathematical and Statistical 
Psychology, 31, 144–152. 

Carling, K. (2000). Resistant outlier 
rules and the non-Gaussian case. Computational 
Statistics & Data Analysis, 33, 249–258. 

Davies, P. L. (1987). Asymptotic 
behavior of S-estimators of multivariate  location 
parameters and dispersion matrices. Annals of 
Statistics, 15, 1269–1292. 

Devlin, S. J., Gnanadesikan, R., & 
Kettenring, J. R. (1981). Robust estimation of 
dispersion matrices and principal components. 
Journal of the American Statistical Association, 
76, 354–362. 

Donoho, D. L., & Gasko, M. (1992). 
Breakdown properties of location estimates 
based on halfspace depth and projected 
outlyingness. Annals of Statistics, 20, 1803–
1827. 

Efron, B., & Tibshirani, R. J. (1993). An 
introduction to the bootstrap. New York: 
Chapman and Hall. 

Fung, W. K. (1993). Unmasking outliers 
and leverage points: A confirmation. Journal of 
the American Statistical Association, 88, 515-
519. 

Golberg, K. M., & Iglewicz, B. (1992) 
Bivariate extensions of the boxplot. 
Technometrics, 34, 307–320. 

Hampel, F. R., Ronchetti, E. M., 
Rousseeuw, P. J. & Stahel, W. A. (1986). 
Robust statistics. New York: Wiley. 

 

Hoaglin, D. C. (1985). Summarizing 
shape numerically: The g-and-h  distributions. In 
D. Hoaglin, F. Mosteller and J. Tukey (Eds.) 
Exploring data tables, trends, and shapes. (p. 
461–515). New York: Wiley. 

Liu, R. Y., & Singh, K. (1997). Notions 
of limiting P values based on data depth and 
bootstrap. Journal of the American Statistical 
Association, 92, 266-277. 

Liu, R. Y., Parelius, J. M., & Singh, K. 
(1999).  Multivariate analysis by data depth: 
Descriptive statistics, graphics and inference. 
Annals of Statistics, 27, 783–858. 

Masse, J. C., & Plante, J. F. (2003). A 
Monte Carlo study of the accuracy and 
robustness of ten bivariate location estimators. 
Computational Statistics & Data Analysis, 42, 
1–26. 

Peña, D., & Prieto, F. J. (2001). 
Multivariate outlier detection and robust 
covariance matrix estimation. Technometrics, 
43, 286–299. 

Poon, W. Y., Lew, S. F., & Poon, Y. S. 
(2000). A local influence approach to identifying 
multiple outliers. British Journal of 
Mathematical and Statistical Psychology, 53, 
255–273. 

Raine, A., Buchsbaum, M., & LaCasse, 
L. (1997). Brain abnormalities in murderers 
indicated by positron emission tomography. 
Biological Psychiatry, 42, 495–508. 

Rocke, D. M. (1996). Robustness 
properties of S-estimators of multivariate 
location and shape in high dimension. Annals of 
Statistics, 24, 1327–1345. 

Rocke, D. M., & Woodruff, D. L. 
(1996). Identification of outliers in multivariate 
data. Journal of the American Statistical 
Association, 91, 1047–1061. 

Romanazzi, M. (1997). A schematic plot 
for bivariate data. Student, 2, 149–158. 

Rosenberger, J. L., & Gasko, M. (1983). 
Comparing location estimators: Trimmed means, 
medians, and trimean. In D. Hoaglin, F. 
Mosteller and J. Tukey (Eds.) Understanding 
robust and exploratory data analysis. p. 297–
336. New York: Wiley. 

Rousseeuw, P. J., & Leroy, A. M. 
(1987). Robust regression & outlier detection. 
New York: Wiley. 



WILCOX & KESELMAN 12

Rousseeuw, P. J., & Ruts, I. (1996). AS 
307: Bivariate location depth. Applied Statistics, 
45, 516–526. 

Rousseeuw, P. J., & Ruts, I., & Tukey, 
J. W. (1999). The bagplot: A bivariate boxplot. 
American Statistician, 53, 382–387. 

Rousseeuw, P. J., & Struyf, A. (1998). 
Computing location depth and regression depth 
in higher dimensions. Statistics and Computing, 
8, 193-203. 

Rousseeuw, P. J., & van Driesen, K. 
(1999). A fast algorithm for the minimum 
covariance determinant estimator. 
Technometrics, 41, 212–223. 
 Rousseeuw, P. J., & van Zomeren, B. C.  
(1990). Unmasking multivariate outliers and 
leverage points (with discussion). Journal of the 
American Statistical Association, 85, 633-639. 
 Staudte, R. G., & Sheather, S. J. (1990). 
Robust estimation and testing.  New York: 
Wiley. 

Tukey, J. W. (1960). A survey of 
sampling from contaminated normal 
distributions. In I. Olkin, S. Ghurye, W. 
Hoeffding, W. Madow &  H. Mann  (Eds.), 
Contributions to probability and statistics. 
Stanford, CA: Stanford University Press. 

Tukey, J. W. (1974). T6: Order 
statistics. Mimeographed notes for Statistics 
411, Princeton University. 

Tukey, J. W. (1975). Mathematics and 
the picturing of data. Proceedings of the 
International Congress of Mathematicians, 2, 
523–531. 

Tyler, D. E. (1991). Some issues in the 
robust estimation of multivariate location and 
scatter. In W. Stahel & S Weisberg (Eds.), 
Directions in robust statistics and diagnostics, 
Part II, p. 327–336. New York: Springer–
Verlag. 

 
 
 
 
 
 
 
 
 
 
 

Viljoen, H., & Venter, J. H. (2002). 
Identifying multivariate discordant observations: 
a computer-intensive approach. Computational 
Statistics & Data Analysis, 40, 159–172. 

Wilcox, R. R. (1997). Introduction to 
robust estimation and hypothesis testing. San 
Diego, CA: Academic Press. 

Wilcox, R. R. (2003). Appling 
contemporary statistical methods. San Diego, 
CA: Academic Press. 

Wilcox, R. R. (in press). Two-sample, 
bivariate hypothesis testing based on Tukey’s 
depth. Multivariate Behavioral Research. 

Zani, S., Riani, M., & Corbellini, A. 
(1998). Robust bivariate boxplots and multiple 
outlier detection. Computational Statistics & 
Data Analysis, 28, 257–270. 

 
Appendix 

 
Following Liu and Singh (1993), Tukey’s depth 
is defined as follows. Let F be a p-variate 
distribution. Tukey’s depth at the point x is 

 
( ; )TD x F =

inf { ( ) :  is a closed space containing }.H P H H x  
 
The sample version is obtained by replacing F 
with the usual empirical distribution. More 
precisely, the sample version of ( ; )TD x F is the 
smallest proportion of iX contained in any 
closed halfplane with boundary line through .x  
For 1p = , ( ; ) min{ ( ),1 ( )}.TD x F F x F x−= −  
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