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The paper develops an algorithm to generate the critical values through Monte Carlo 

simulations which will be computationally efficient as opposed to the traditional 

simulation techniques used in the earlier panel unit root studies. The results from the 

simulation experiments are used to construct the response surface regressions in 

which the critical values depend on both cross-sectional and time units. The 

predictability of the response surface regressions is compared with reported IPS 

critical values. The usefulness of these results is illustrated through an empirical 

example of purchasing power parity test.  

 

Keywords: Panel unit root tests, response surface regressions, randomization, t-bar. 

 

  

1. Introduction 

The use of panel unit root tests has become very popular among applied 

econometricians since the development of panel unit root test procedures by Levin 

and Lin (1992, 1993).  One of the advantages of this procedure is that the power of 

the test increases with an increase in the number of panel series compared to the 

well-known low power of the standard ADF unit root test against near unit root 

alternatives.  Increasingly, recent empirical studies use the test procedure introduced 

by Im, Pesaran and Shin (2003) (hereafter, IPS) which can test the null hypothesis of 

non-stationarity in the presence of heterogeneity across the panel. Most of the 

empirical literature uses either the critical values reported by IPS which are close to 

their sample sizes or Monte Carlo experiments for their particular sample sizes.  On 

the other hand, other researchers use standardized t-bar test statistics to verify the 

panel unit root properties of the data.    

The inferences based on IPS critical values could be misleading when the sample 

size is approximated to the reported values. The current paper addresses this dearth 

by providing an extensive set of panel unit root test critical values. These critical 

values are very accurate in finite sample similar to those in MacKinnon (1991, 

1996). The critical values are very accurate numerically and are easy to use in 

practice. In this paper, we propose an algorithm to obtain the critical values for non-

standardized t-bar statistic. The critical values obtained from these experiments are 

summarized by means of response surface regressions in which the critical values 
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depend on the sample size (see MacKinnon (1991)). The predictability of the 

response surface regressions is evaluated by comparing the predicted critical values 

with reported IPS critical values. Both in-sample and out-of-sample predictability of 

the regressions are evaluated through the error metrics such as root mean squared 

error (RMSE), mean absolute error (MSE) and mean absolute percentage error 

(MAPE). Finally, the paper reports the critical values based on the estimated 

response surface regression for the IPS sample. 

 

2. IPS Panel Unit Root Test 

The heterogeneous panel data model proposed by IPS is given by 
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The null and alternative hypotheses are 0:,0: 10 = ii stiHH  . Each 

equation is estimated separately by OLS due to heterogeneity and the test statistics 

are obtained as (studentized) averages of the test statistics for each equation.  

The t-bar statistic proposed by IPS is defined as the average of the individual 
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IPS report the critical values for the t-bar statistics described by (2) for the various 

combinations of N and T.   

The standardized t-bar statistic proposed by IPS under the assumption that the cross-

sections are independent is given by  
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.        (3) 

The means )0|( =iiE   and the variances )0|var( =ii   are obtained by Monte 

Carlo simulations and are tabulated in IPS. IPS conjecture that the standardized t-bar 

statistic i  converges weakly to a standard normal distribution as N and →T .  

 

3. Simulation Experiments 

The underlying data generating process (DGP) considered by IPS is ititit yy += −1 , 

)1,0(~ Nit , Tt ,...,2,1= ; ,,...,2,1 Ni =  with 00 =iy . They estimate t-bar statistics 

based on (1). The critical values reported by IPS are computed via stochastic 
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simulation of 50,000 replications for the models with 1) a constant and 2) a constant 

and a trend. In this paper, we estimate the response surface function to approximate 

the lower-tail critical values of 1 percent, 5 percent and 10 percent for the models 

with 1) a constant and no trend and 2) a constant and a trend. The simulation 

technique introduced in this paper is different from the usual Monte Carlo 

experiments adopted by IPS. Instead of simulating the underlying DGP and re-

estimating the model (1) for the various combinations of N across the T, this paper 

randomizes the t-statistic across the replications obtained from a model with a single 

cross-section for a fixed sample size, T. We use M=100,000 replications for this 

purpose. On the other hand, the simulation experiment is conducted for the sample of 

N=1 with T observations only.  

3.1 Algorithm 

The underlying data generating process in the simulations is given by ttt yy += −1 , 

)1,0(~ Nt , t = 1, 2,…,T. In the first stage, the underlying DGP is generated and the 

ADF regression is fitted for the simulated data of size T over M replications. It 

should be noted that the underlying DGP is not generated for the panel of size N as in 

the traditional approaches. The t-statistic to test the null hypothesis of 0=  in (1) is 

computed for a single cross-section of size T over M replications.  

Let Mttt 11211 ,...,,  be the corresponding estimated t-statistic for the first cross-section 

over M replications. Secondly, the t-statistics over M replications for the remaining 

N-1 cross-sections can be obtained by simply randomizing the first M t- statistics 

obtained from the cross-section of size 1 (i.e., Mttt 11211 ,...,, ). That is, the t-statistics 

ijt , Ni ,...3,2= ; Mj ,...,2,1=  are constructed by ][1 kij tt = , where the replication 

index k is randomly drawn from a uniform distribution by a simple random sampling 

with replacement (i.e. ],1[~ MUk ). Here [k] refers to the integer part of the given 

argument k. The cumulative averages over the N cross-sections, 
=

n

i

mit
n 1

1
; 

Nn ,...,2,1= , constitute the t-bar statistics for the m-th replication. Finally, the 

critical values are obtained by extracting the 1st, 5th and 10th quintiles from the 

simulated numerical distribution. It is observed that during the simulations the 

proposed algorithm presents the same critical values as the traditional Monte Carlo 

simulation technique. The proposed simulation mechanism is tabulated in Appendix 

1. 

Using this algorithm, one can obtain the critical values for Nn ,...2,1=  for the fixed 

sample size T through cumulative averages. However, the traditional simulation 

approaches are able to provide the critical values for fixed N and T. For a fixed T, 

only M experiments need to be conducted using the proposed algorithm as opposed 

to the traditional approaches that require NM experiments to obtain the desired 

critical values.  The cost of computing the remaining (N-1)M relevant test statistics 

by randomization is significantly less than that of the traditional one. The 
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computational time for the traditional approaches increases significantly as T 

increases. It is expected the new algorithm will provide new insights for panel 

regression studies because it is computationally efficient. 

 

4. Response Surface Analysis 

In order to generalize the estimators of the critical values for any combination of 

cross-sectional unit N and the sample size T at a given level of significance, we use 

the response surface regression techniques proposed by MacKinnon (1991, 1996). 

Suppose that we are interested in ),( NTq
t

 , i.e.,    quantile of the distribution, 

where   = 1%, 5% and 10%. Response surfaces are estimated for two different 

tests: 1) t-bar statistic with a constant 2) t-bar statistic with a constant and a trend. In 

each case, three response surfaces are estimated based on the 1st, 5th and 10th 

quantiles. Hence, a total of six response surface regressions are estimated. We 

consider all combinations of N {1,2,…,100} and T {5,6,7,…,100}. The number 

of observations used in each response surface regression is 9600.  

In contrast to response surface regressions based on pure time series studies, in 

which the regression equation is a function of sample size T, we construct the 

response surfaces equation which is a function of T and N and the response surface 

equation for the t-bar test statistic: 
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(4) 

In the response surface equations, the regressors are chosen to minimize the root 

mean squared error of the regression. The regressors kT − ’s and kN − ’s capture the 

individual time and cross-sectional effects respectively. It is observed that for a fixed 

T, the critical value ),( TNq
t

 is an increasing function of N and vice versa. The 

regressors kN −  and kT −  do not explain such effects completely. In order to capture 

such monotonicity and to ensure the convergence of the response surface regressions 

for large N and T, we introduce 

k

N

N









+1
 and 

k

T

T









+1
as additional explanatory 

variables. It is found during the experiments that the response surface equation with 

these factors outperforms the models without these factors. Furthermore, the 
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response surface equation is improved by multiplying these factors by kN −  and kT − . 

These multiplicative terms then incorporate the effects from the interaction of N and 

T. It is also observed that the critical values are more sensitive to T when N is small 

than when it is large. These effects are also captured through the interaction of  kN −  

and kT −  with the factors 








+1N

N
 and 









+1T

T
. It is also observed that the inclusion 

of such interaction factors for the higher degree, for example

2

1









+T

T
, does not 

improve the results.  

 

Table 1: Response Surface Regressions for the t-bar statistics: Constant but no 

Trend 

 1 percent 5 percent 10 percent 

 Coefficient S.E Coefficient S.E Coefficient S.E 

0  1733.20 38.43 1203.59 18.29 922.475 15.75 

1  3570.36 1120.00 -607.08 5.28 -711.909 29.42 

2  9914.04 4166.00 291.32 2.66 228.53 2.249 

3  -13483.40 3194.00 -72.85 0.71 -57.2637 0.59 

4  -626.47 69.05 -405.65 45.41 -335.719 15.07 

5  2597.66 819.90 1343.80 593.60 180.797 13.7 

6  -16488.00 2962.00 -9696.18 2146.00 -163.203 9.926 

7  -1829.31 14.91 -1295.45 10.80 -1013.18 9.25 

8  490.09 3.83 347.14 2.78 271.171 2.38 

9  -395.63 36.80 -256.90 16.43 -182.064 14.17 

10        

11  -4216.04 1120.00 136.067 41.42 380.094 29.12 

12  2276.60 1348.00 -1036.25 580.4 -217.614 22.61 

13  11370.00 3002.00 8903.58 2099 
  

14  -9649.61 4161.00 -101.755 32.97 -107.817 4.293 

15  10700.70 4082.00 783.968 462 -45.8504 21.12 

16  -17256.20 3727.00 -6610.15 1671 474.218 76.31 

17  13423.30 3190.00 36.8017 12.74 39.0583 1.935 

18  -13519.60 3101.00 -290.383 178.6 32.9965 16.24 

19  13244.20 2415.00 2390.17 645.7 -310.413 58.69 

20  -4427.81 1120.00 
  

236.467 29.07 
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21  -9502.65 4166.00 
  

  

22  13380.60 3194.00 
    

23  230.98 58.48 148.901 42.36 153.816 5.169 

24  -2207.43 819.40 -1090.07 593.6 
  

25  16159.30 2963.00 9477.73 2146 
  

R2 0.999541 0.999442 0.99929 

 

Table 2: Response Surface Regressions for the t-bar statistics: Constant and Trend 

 1 percent 5 percent 10 percent 

 Coefficient S.E Coefficient S.E Coefficient S.E 

0  395236.0 3409.0 155673.0 1855.0 105500.0 1475.0 

1  114570.0 1737.0 29797.9 945.1 10340.0 509.4 

2  -214057.0 6464.0 -67269.1 3517.0 -33584.3 1730.0 

3  124791.0 4956.0 39446.8 2696.0 21526.0 1349.0 

4  -287267.0 2460.0 -113168.0 1338.0 -76648.5 1064.0 

5  203071.0 1974.0 81189.0 1074.0 53570.5 780.6 

6  -211064.0 4636.0 -90158.2 2522.0 -54056.5 1578.0 

7  -1812.1 23.1 -1258.9 12.6 -971.6 10.0 

8  480.5 5.9 334.9 3.2 259.0 2.6 

9  -501959.0 4360.0 -197021.0 2372.0 -133329.0 1886.0 

10  108053.0 951.2 42270.4 517.5 28539.5 411.5 

11  -114010.0 1737.0 -29716.8 945.2 -10410.8 486.3 

12  88855.2 2091.0 19161.0 1138.0 4901.1 276.2 

13  43462.6 4658.0 35409.5 2534.0 24581.2 1238.0 

14  213289.0 6456.0 67004.0 3513.0 33487.7 1707.0 

15  -191164.0 6334.0 -57847.6 3446.0 -28594.9 1347.0 

16  61147.8 5782.0 5953.6 3146.0   

17  -124424.0 4950.0 -39303.4 2693.0 -21455.9 1339.0 

18  115172.0 4812.0 35556.6 2618.0 19396.7 1182.0 

19  -56571.8 3747.0 -13030.0 2038.0 -6641.3 503.9 

20  -115429.0 1737.0 -30392.4 945.1 -10797.8 509.7 

21  214475.0 6464.0 67557.1 3517.0 33805.5 1730.0 

22  -124898.0 4956.0 -39519.8 2696.0 -21581.8 1349.0 

23  1406.9 90.7 684.9 49.4 397.4 32.6 

24  -25011.1 1271.0 -10885.1 691.7 -5800.5 436.8 
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25  136655.0 4597.0 60508.7 2501.0 33786.1 1564.0 

R2 0.999399 0.999421 0.999303 

 

The performance of the response surface regressions are evaluated by both within-

sample and out-of-sample predictability of the critical values. The response surface 

regressions are chosen to minimize the root mean squared error (RMSE) of the 

regressions. For the out-of-sample predictions, we conduct Monte Carlo experiments 

for the combinations of },...,3,2,1{ NN   and T{200, 300, 400, 500}. This 

constitutes 400 samples for each case.  This helps to evaluate the accuracy of the 

response surfaces for large T. Three measurements - root mean squared errors 

(RMSE), mean absolute errors (MAE), mean absolute percentage errors (MAPE) are 

used to evaluate the performance of the estimated response surface regressions for t-

bar test statistics. The results are reported in Table 3. The predictability of the 

estimated response surface equation is also compared with reported critical values 

from the IPS study. It is also observed for the models with a constant and a trend that 

the reported critical values for T=5 in the IPS paper for 50,000 replications are quite 

different from the critical values generated (by Monte Carlo simulation) in this paper 

based on 100,000 replications. These discrepancies could be due to the significant 

difference in the number of replications. It is necessary to have a large number of 

replications for the case of T=5 because individual Dickey Fuller regression suffer 

from a lack of degrees of freedom for the models with the constant and the trend 

because three parameters with a sample of 5 are estimated.  We have also verified 

the accuracy of our critical values by adopting 200,000 replications and the critical 

values are same as for 100,000 replications. The error-metrics for the IPS sample by 

excluding T=5 are also reported in Table 3. The estimated response surface 

regressions are portrayed in appendix 2. The variables included in the response 

surface function could suffer from collinearity problem. In the presence of 

collinearity, the estimates are still unbiased (though it is inefficient). The critical 

values based on the estimated response surface function will not be affected by the 

collinearity.  

 

Table 3: Predictability of Response Surface Regressions: t-bar test statistic 

  Constant but no trend Constant and trend 

  1% 5% 10% 1% 5% 10% 

Within 

Sample 

RMSE 0.006 0.004 0.004 0.009 0.005 0.004 

MAE 0.004 0.003 0.003 0.006 0.004 0.003 

MAPE 0.24% 0.19% 0.17% 0.22% 0.15% 0.13% 

Out 

sample 

RMSE 0.005 0.004 0.003 0.02 0.01 0.008 

MAE 0.004 0.003 0.003 0.02 0.01 0.009 

MAPE 0.22% 0.18% 0.17% 0.97% 0.44% 0.34% 

IPS 

Reported 

values 

RMSE 0.01 0.006 0.005 0.07 0.01 0.009 

MAE 0.006 0.004 0.004 0.02 0.007 0.005 

MAPE 0.31% 0.24% 0.24% 0.63% 0.26% 0.20% 

IPS* RMSE    0.008 0.004 0.004 
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Reported 

values 

MAE    0.006 0.003 0.003 

MAPE    0.23% 0.15% 0.15% 

* Comparison with IPS critical values by excluding T=5 case 

 

It is observed from table 3 that the response surface regressions provide smooth and 

accurate critical values at 3 decimal places and the average predictive error of these 

regressions are less than half a percent in most of the cases. The performance of the 

response surface regression for the 10 percent critical values is notably better than 

that of the response surface regressions for the 5 percent and 1 percent critical 

values. The performance of the models for the 5 percent critical value is superior to 

the models with the 1 percent critical values.  In general, the estimated models 

reported in Tables 1 and 2 outperform the other competitive models based on three 

criteria: RMSE, MAE and MAPE.  For the sake of brevity, the response surface 

regression results for the other competitive models are not reported.   

 

5. Empirical Example 

5.1 Purchasing Power Parity Hypothesis (PPP) 

The Purchasing Power Parity (PPP) hypothesis has raised a lot of interest in both 

theoretical and applied economic analysis. Traditional univariate approaches 

examine the validity of PPP through unit root tests or using cointegrations. The 

univariate approaches are severely affected by weak power of unit root tests and 

often lend support towards non-stationary null hypothesis.  The univariate analysis of 

the PPP has found a natural extension into the panel data framework. The 

combination of the cross-section and time series information increases the power of 

the statistical inference which, in turn, allows practitioners to deal with time series 

corresponding to a homogeneous exchange rate regime. 

We consider the sample of 58 countries to examine the PPP hypothesis for the period 

from 1970M1 to 2016M12. To examine the validity of law of one price against US, 

we construct *ln( ) ln( ) ln( )t t t te p p er= − − , where *

tp  and tp denote domestic and 

U.S. prices which are observed through consumer price index and 
ter represents 

nominal exchange rate against U.S. dollar. If te is stationary, then purchasing power 

parity holds. The IPS panel unit root is conducted by estimating the heterogenous 

panel regression model: 

1

1

,
ip

it i i it k it k it

k

e e e   − −

=

 = + + +  i=1,2…,58 and t=1,2…,564. 

The results for the individual ADF with inclusion of constant is reported in Appendix 

table 2. The optimal lag length for the ADF regression are justified through Schwarz 

criteria (SC). The t-bar statistic proposed by IPS is defined as the average of the 
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individual Augmented Dickey-Fuller   statistics: 
1

1 N

i

i

t
N


=

=  . The test statistics of  

2.28t = −  is obtained by averaging the ADF test statistics reported appendix table 2. 

The critical values are obtained by substituting N=58 and T=564 in the response 

surface function reported in Table 1. The critical values are -1.78, -1.71 and -1.67 at 

the 1%, 5% and 10% levels of significance respectively. The results show that the 

law of one price hold for the panel of 58 countries at the 1% level of significance. 

5.2 Catching-Up Hypothesis (Income Convergence) 

Chapsa, Tabakis and Athanasenas (2018) examined the issue of income convergence 

for Portugal, Italy, Ireland, Greece, and Spain (PIIGS), toward France for the period 

from 1950 to 2009. The post 2019 data is excluded in the analysis to avoid the 

problem associated with global financial crisis (GFC). In this section, we 

reinvestigate the same using the critical values obtained from the response surface 

function. If the income convergence hypothesis holds, then the relative per capita 

GDP for each country against France should be constant over the period of time. To 

examine this hypothesis, the relative per capita GDP is computed as 

,ln( / )R

it it France tGDP GDP GDP= , where R

itGDP ,  itGDP   and 
,France tGDP  represent the 

relative per capita GDP for country i at time t, per capita GDP for country i and per 

capita GDP of France at time t, respectively.  The IPS test statistics is 0.2392t = − . 

The critical values are obtained by substituting N=5 and T=60 in the response 

surface function reported in Table 1. The critical values are -2.55, -2.23 and -2.00 at 

the 1%, 5% and 10% levels of significance respectively. The results show that the 

income convergence with France holds for the panel of 5 countries at the 1% level of 

significance. 

  

6. Conclusion 

The response surface regressions for the IPS critical values are useful for applied 

econometricians testing unit roots in heterogeneous panels. The proposed algorithm 

to generate the critical values provides a new dimension to panel studies because it is 

computationally efficient and powerful.  The response surface regressions were 

developed based on the critical values obtained from simulation experiments and are 

functions of the number of cross-sections and sample sizes. The critical values for 

the panel unit roots of any combination of cross sections and sample sizes can be 

calculated in a spreadsheet by substituting the panel dimensions in the response 

surface regressions without conducting an extensive simulation. The usefulness of 

these results is illustrated through an empirical example of purchasing power parity 

and income convergence hypothesis tests. The limitation of this study is the critical 

values through response surface analysis are computed at the 1%, 5% and 10% levels 

of significance. A possible extension could be to fit a response surface function for 

the p-values.   
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Appendix 1: Simulation Mechanism for Panel Unit Root Test 
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Simulation Note: 

(1) T is fixed. 

(2) Column 2 (for cross-section 1) is obtained by stochastic simulation of M 

replications based on equation (1). 

(3) Values in Columns 3 through N+1  (i.e., cross-sections 2 through N)are obtained 

by randomly drawing the values from column 2 with replacement. 
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Brundi -0.36 Nigeria -1.89 

Cameroon -3.18 Norway -2.83 

Canada -2.06 Pakistan -2.29 
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t-bar Statistic -2.281 

 


