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In this paper Super population model based study of some imputation strategies have 

been proposed for estimating population mean under non -response, considering 

population is of dynamic nature, a more practical and relevant approach and hence it 

has been assumed that each unit of the study variable is following Polynomial 

regression model. Bias’s and MSE’s have been obtained under model-based 

approach; also, empirical comparisons of these strategies have been done with some 

special cases of PRMs, so as to observe their performance over varying non-response 

rates, Robustness of the estimators have been checked under misspecification of the 

models.  
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1. Introduction 

Non-response is a form of non-observation present in all kinds of surveys.Although 

non-response cannot be completely eliminated in practice, it could be overcome to a 

great extent by persuasion through developing special estimation techniques giving 

due consideration to the incomplete (or missing) data.Since a long time, various 

techniques for assessing and controlling non-sampling errors and especially non-

response errors have been developed by several authors. A good deal of discussion, 

classification and illustrations of various types of errors have been given by Deming 

(1944, 1950), Mahalanobis (1940, 1944, 1946), Moser (1958), Zarkovich (1966) and 

Dalenius (1977a, 1977b, 1977c).  

A deterministic model assumes that the population can be thought of comprising of 

two strata, namely, “response stratum” and “non-response stratum”. However, 

besides its popular use by several authors, the model was considered as most 

simplistic and unrealistic. Later on, survey statisticians relied heavily on the 

conditional distribution of the response indicator R given the complete data X∗ and 

accordingly defined a number of response models, such as, MAR, OAR, MCAR and 

NMAR (Rubin, 1976; Little and Rubin, 1987; Longford, 2005). 
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Imputation is one of the techniques of adjusting non-response which directly or 

indirectly assumes certain response models for its implementation. It is a technique 

of filling-in the missing (incomplete) values by some suitable known values in the 

sample or by some appropriate functions of these values in order to fill-up the 

“holes” in the incomplete data matrix, caused by missing values.Imputation is 

generally used to recreate a balanced design such that procedures used for analyzing 

complete data can be applied in many situations. 

1.1 The Super Population Concept in Survey Sampling 

In this type of approach, it is assumed that with each population unit is associated a 

random variable for which a stochastic structure is specified; the actual value 

associated with a population unit is treated as the outcome of this random variable. 

The Y-vector of population values is assumed to be generated from a distribution ξ , 
where ξ is known to be a member of class C={ξ}. The class C is then called a super 

population model.  

In the literature of model-based survey sampling, different kinds of super 

populations models were considered. For example, Brewer (1963a) and Royall 

(1970a, 1970b, 1971, 1976) adapted a linear model prediction theory to the finite 

population situation, while Cassel et al (1976, 1977) and Sarndal (1980b) proposed a 

generalized regression predictor that is asymptotically design unbiased (ADU). Isaki 

and Fuller (1982) proposed some ADU predictors involving several auxiliary 

variables. Wright (1983) examined a regression super population model and 

suggested a new class of predictors to link certain features of optimal design-

unbiased and model-unbiased predictors. 

1.2 Polynomial Regression Model (PRM) 

A particular form of super population model, namely, “Polynomial Regression 

Model (PRM)” propounded by Royall and Herson (1973a, 1973b), described as 

follows: 

Yk = δ0β0 + δ1β1xk + δ2β2xk
2 + ⋯ + δJβJxk

J + εk[v(xk)]
1

2⁄  

= ∑ δjβj

J

j=0
xk

j
+ εk[v(xk)]

1
2⁄ ; k = 1, 2, … , N 

= h(xk) + εk[v(xk)]
1

2⁄ ; k = 1, 2, … , N     (1) 

with Eξ[Yk] = h(xk) = ∑ δjβj
J
j=0 xk

j
; 

Var[Yk] = σ2v(xk); Cov(Yr, Yk) = 0, r ≠ k 
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where Yk is the random variable associated with the kth unit of the finite population 

of size N, xk is the value of the kth unit of the population on the known auxiliary 

variable X, typically referred to as their measures of size (xk > 0 𝑓𝑜𝑟 𝑘 =
1, 2, … , 𝑁), ϵk for k = 1, 2, … , N are independent random variables each having mean 

zero and variance σ2, δj (j = 0,1, … J) is zero or one according as the term is absent 

or present respectively in the model, v(xk)is a known function of x-values and 

βj (j = 0,1, … J)  are unknown model parameters. Royall and Herson (1973a) denoted 

this model as ξ[δ0δ1, … , δJ: v(x)]. For example, ξ[0,1: x] and ξ[1,1,0,1: 1] refer 

respectively to the models 

Yk = β1xk + εkxk
1

2⁄      (2) 

and 

Yk = β0 + β1xk + β3xk
3 + εk      (3) 

The importance of PRM can be understood due to the fact that the standard ratio 

estimator of population total becomes ξ–unbiased under the model ξ[0,1: x]for a 

given sample. 

1.3 Initiation of the problem 

Let a finite population of size N, denoted by Ω, consists of N1 respondent and N2 

non-respondent units (N = N1 + N2) and a random sample of size n, denoted by s, 

drawn from the population Ω, consists of n1respondents and n2non-respondents such 

that n = n1 + n2. Further, let Ω = s ⋃ s̅, where s and s̅be two disjoint sets of units, 

such that s represents the observed part of Ω in the form of sample drawn and s̅ 

represents the non-observed part of the population. Similarly, let s = s1 ⋃ s2(s1and 

s2being disjoint sets of units belonging to s), where s1 is the set of units for which 

the information are observed and s2 consists of missing data, that is, the units for 

which observations were not obtained. Let ∑pstands for the summation over the set 

(subset) p of units. 

Notations used: 

(i) Population Values 

Z: Study variable Y or auxiliary variable X, 

zk: the kth value of Z, 

Z̅ = N−1 ∑ zkΩ : the population mean of Z, 

SZ
2 = (N − 1)−1 ∑ (zk − Z̅)2

Ω : Population mean square of Z, 

CZ = SZ Z̅⁄ : Coefficient of variation of Z, 

ρYX: correlation coefficient in the population between Y and X. 

(ii) Sample Values 
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z̅s = n−1 ∑ zks ;z̅s̅ = (N − n)−1 ∑ zks̅ ; z̅si
= ni

−1 ∑ zksi
for (i = 1, 2) 

(iii) Higher order moments 

Further, let for the variable X and j=1, 2, 3, ... 

X̅(j) = N−1 ∑ xk
j

Ω ;x̅(j) = n−1 ∑ xk
j

s ;x̅s̅
(j)

= (N − n)−1 ∑ xk
j

s̅ ;  

x̅si
= ni

−1 ∑ xk
j

si

for (i = 1, 2) 

It has already been observed that 

X̅(1) = X̅; x̅(1) = x̅s;x̅si

(1) = x̅si
for (i=1, 2) andx̅s̅

(1)
= x̅s̅ 

Further, let y.k be the imputed value for the  kthunityk (k = 1,2, … , n);  

{Bξ(T), Mξ(T)} be the bias and MSE of the estimator T under the model ξ 

respectively. 

Imputation strategies considered 

The following imputation strategies have been considered: 

(1) Mean Method of Imputation 

Under this method of imputation, the study variate after imputation takes the form  

y.k = {
yk                       if k ∈ s1

y̅s1
                      if k ∈ s2

 
    (4) 

Since, the sample meany̅s =
1

n
{∑ yks1

+ ∑ yks2
} =

1

n
{n1y̅s1

+ n2y̅s1
} = y̅s1

, 

therefore, the point estimator for estimating the population meanY̅, under this scheme 

would bey̅M = y̅s1
 , which is the sample mean of the respondent group. 

(2) Ratio Method of Imputation 

In the ratio method of imputation, imputation is carried out with the aid of an 

auxiliary variable X, such that xk, the value of X for unit k is known and positive for 

every k ∈ s. Following the notation of Lee et al (1994, 1995) in the case of single 

value imputation, if the kth unit requires imputation, the value b̂xkis imputed, 

whereb̂ =
∑ yks1

∑ xks1

 . Then the data after imputation becomes 

y.k = {
yk                       if k ∈ s1

b̂xk                      if k ∈ s2
 

(5) 

Since the general point estimator of population mean takes the form 

y̅s = y̅s1

x̅s

x̅s1

 
(6) 
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Let us denote this point estimator byy̅RAT. Then, obviouslyy̅RAT = y̅s1

x̅s

x̅s1

 is a ratio 

estimator defined with the help of observed part of the sample and known sample 

mean for the variable X. 

(3) Compromised Method of Imputation 

Singh and Horn (2000) suggested a compromised imputation in which the data after 

imputation becomes 

y.k = {
α

n

n1
yk + (1 − α)b̂xk      if k ∈ s1

(1 − α)b̂xk                       if k ∈ s2

 
(7) 

Where α is a suitably chosen constant, such that the variance of the resultant 

estimator is minimum. 

It can be seen that the resultant point estimator for estimating population mean is 

given by 

y̅COMP = αy̅s1
+ (1 − α)y̅s1

x̅s

x̅s1

 
(8) 

 

2. Proposed Imputation Strategy (Exponential-Type Imputation 

Methods): 

Recently, Asghar et al (2014) generalized the Bahl and Tuteja (1991) exponential 

type estimator as follows: 

t = λsy
2exp [α (

X̅ − x̅s

X̅ + (a − 1)x̅s
)] 

(9) 

for estimating the finite population variance, where 0 < 𝜆 ≤ 1, −∞ < 𝛼 < ∞ and 

a > 0. Motivated by (9), the following imputation method has been proposed, for 

filling-in the missing data in order to estimate population meanY̅: 

y.k = {

λyk                                                                    if k ∈ s1

λ
y̅s1

n2
[n ψ(α, a, x̅s1

, X̅) − n1]                      if k ∈ s2
 

(10) 

where 

ψ(α, a, x̅s1
, X̅) = exp [α (

X̅ − x̅s1

X̅ + (a − 1)�̅�𝑠1

)] 
(11) 
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It is easy to observe that the corresponding point estimator for population mean then 

would be 

�̅�𝑒 = 𝜆�̅�𝑠1
𝜓(𝛼, 𝑎, �̅�𝑠1

, �̅�) (12) 

2.1 ξ-Bias and ξ-MSE of point estimators �̅�𝐌, �̅�𝐑𝐀𝐓, �̅�𝐂𝐎𝐌𝐏, �̅�𝐞 

Let us first consider the mean method of imputation and corresponding point 

estimator �̅�𝑀for population mean. We denote by [𝜉, �̅�𝑀]the imputation strategy under 

the model ξ, which is PRM here. 

We have the following theorems: 

Theorem 1.: The ξ-bias, of the estimator�̅�𝑀under the model ξ, denoted by𝐵𝜉[�̅�𝑀], is 

given by 

𝐵𝜉[�̅�𝑀] = ∑ 𝛿𝑗𝛽𝑗

𝐽

𝑗=0
[{�̅�𝑠1

(𝑗) − �̅�(𝑗)}] 
(13) 

Proof: We have 

𝐵𝜉[�̅�𝑀] = 𝐸𝜉[�̅�𝑀 − �̅�], by definition 
 

Now using the ξ-model,  

Bξ[y̅M] = Eξ[y̅s1
− Y̅] 

= Eξ [
1

n1
∑ yk

s1

−
1

N
∑ yk

Ω

] 

= Eξ [
1

n1
∑ {∑ δjβjxk

j
+ ϵk(v(xk))

1
2⁄J

j=0
}

s1

−
1

N
∑ {∑ δjβjxk

j
+ ϵk(v(xk))

1
2⁄J

j=0
}

Ω

] 

= ∑ δjβj

1

n1
∑ xk

j

s1

− ∑ δjβj

1

N
∑ xk

j

Ω

J

j=0

J

j=0
 

since Eξ(ϵk) = 0. 

Now since 
1

n1
∑ xk

j
s1

= x̅s1

(j)and
1

N
∑ xk

j
Ω = X̅(j), 

we have 

Bξ[y̅M] = ∑ δjβj

J

j=0
[{x̅s1

(j) − X̅(j)}] 

Thus, the expression follows. 

Theorem 2.: The ξ-MSE of the estimator�̅�𝑀, denoted by 𝑀𝜉[�̅�𝑀] under the model ξ 

is given by 
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𝑀𝜉[�̅�𝑀] = [∑ 𝛿𝑗𝛽𝑗

𝐽

𝑗=0
{�̅�𝑠1

(𝑗) − �̅�(𝑗)}]

2

+ (
1

𝑛1
−

1

𝑁
)

2

𝜎2 ∑ 𝑣(𝑥𝑘)

𝑠1

 

+
𝜎2

𝑁2 [∑ 𝑣(𝑥𝑘)

𝑠2

+ ∑ 𝑣(𝑥𝑘)

𝑠̅

] 
(14) 

Proof: As per definition of MSE,𝑀𝜉[�̅�𝑀] = 𝐸𝜉[�̅�𝑀 − �̅�]2 = 𝐸𝜉 [
1

𝑛1
∑ 𝑦𝑘𝑠1

−

1

𝑁
∑ 𝑦𝑘𝛺 ]

2
 

= 𝐸𝜉 [
1

𝑛1
∑ {∑ 𝛿𝑗𝛽𝑗𝑥𝑘

𝑗
+ 𝜖𝑘(𝑣(𝑥𝑘))

1
2⁄

𝐽

𝑗=0
}

𝑠1

−
1

𝑁
∑ {∑ 𝛿𝑗𝛽𝑗𝑥𝑘

𝑗
+ 𝜖𝑘(𝑣(𝑥𝑘))

1
2⁄

𝐽

𝑗=0
}

𝛺

]

2

 

= 𝐸𝜉 [∑ 𝛿𝑗𝛽𝑗 {
1

𝑛1
∑ 𝑥𝑘

𝑗

𝑠1

−
1

𝑁
∑ 𝑥𝑘

𝑗

𝛺

}
𝐽

𝑗=0
+ (𝑣(𝑥𝑘))

1
2⁄ {

1

𝑛1
∑ 𝜀𝑘

𝑠1

−
1

𝑁
∑ 𝜀𝑘

𝛺

}]

2

 

Now realizing that 𝐸𝜉(𝜀𝑘
2) = 𝜎2 and 𝐸𝜉(𝜀𝑘, 𝜀𝑟) = 0; for 𝑟 ≠ 𝑘, expanding the term 

and taking ξ expectation for each term, we get the following expression. 

𝑀𝜉[�̅�𝑀] = ∑ 𝛿𝑗𝛽𝑗

𝐽

𝑗=0
[{�̅�𝑠1

(𝑗) − �̅�(𝑗)}]2 + (
1

𝑛1
−

1

𝑁
)

2

𝜎2 ∑ 𝑣(𝑥𝑘)

𝑠1

+
𝜎2

𝑁2
[∑ 𝑣(𝑥𝑘)

𝑠2

+ ∑ 𝑣(𝑥𝑘)

�̅�

] 

Remark1.: The expression 𝑀𝜉[�̅�𝑀] is a sum of two components, namely the term 

independent of variance function 𝜎2and the other dependent upon the variance𝜎2. 

The first component depends only upon the polynomial functionℎ(𝑥𝑘). 

The expressions of ξ-MSE of other imputation strategies, namely, 
[𝜉, �̅�𝑅𝐴𝑇], [𝜉, �̅�𝐶𝑂𝑀𝑃] and [𝜉, �̅�𝑒] can be obtained in similar manner 

Theorem 3.: The ξ-bias and ξ-MSE of the strategy [𝜉, �̅�𝑅𝐴𝑇] are given by 

𝐵𝜉[�̅�𝑅𝐴𝑇] = ∑ 𝛿𝑗𝛽𝑗

𝐽

𝑗=0
[𝜑(𝑥)�̅�𝑠1

(𝑗) − �̅�(𝑗)] 
(15) 
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where 𝜑(𝑥) =
�̅�𝑠

�̅�𝑠1

 

𝑀𝜉[�̅�𝑅𝐴𝑇] = [𝐵𝜉[�̅�𝑅𝐴𝑇]]2 + (
𝜑(𝑥)

𝑛1
−

1

𝑁
)

2

𝜎2 ∑ 𝑣(𝑥𝑘)

𝑠1

 

+
𝜎2

𝑁2 [∑ 𝑣(𝑥𝑘)

𝑠2

+ ∑ 𝑣(𝑥𝑘)

𝑠̅

] 
(16) 

Theorem 4.: The expressions of bias and MSE of the strategy [𝜉, �̅�𝐶𝑂𝑀𝑃] are 

𝐵𝜉[�̅�𝐶𝑂𝑀𝑃] = ∑ 𝛿𝑗𝛽𝑗

𝐽

𝑗=0
[�̅�𝑠1

(𝑗){𝛼 + (1 − 𝛼)𝜑(𝑥)} − �̅�(𝑗)] (17) 

𝑀𝜉[�̅�𝐶𝑂𝑀𝑃] = [𝐵𝜉[�̅�𝐶𝑂𝑀𝑃]]
2

+ (
𝛼

𝑛1
+

(1 − 𝛼)𝜑(𝑥)

𝑛1
−

1

𝑁
)

2

𝜎2 ∑ 𝑣(𝑥𝑘)

𝑠1

+ 

𝜎2

𝑁2 [∑ 𝑣(𝑥𝑘)

𝑠2

+ ∑ 𝑣(𝑥𝑘)

𝑠̅

] (18) 

Remark 2.: Using the expression (18), the optimum value of the parameter α can be 

obtained as 

𝛼0 =

[
∑ 𝛿𝑗𝛽𝑗

𝐽
𝑗=0 �̅�𝑠1

(𝑗){∑ 𝛿𝑗𝛽𝑗
𝐽
𝑗=0 �̅�(𝑗) − ∑ 𝛿𝑗𝛽𝑗

𝐽
𝑗=0 𝜑(𝑥)�̅�𝑠1

(𝑗)} −

1

𝑛1
(

𝜑(𝑥)

𝑛1
−

1

𝑁
) 𝜎2 ∑ 𝑣(𝑥𝑘)𝑠1

]

[{1 − 𝜑(𝑥)} {
𝜎2

𝑛1
2

∑ 𝑣(𝑥𝑘)𝑠1
+ (∑ 𝛿𝑗𝛽𝑗

𝐽
𝑗=0 �̅�𝑠1

(𝑗))2}]
 

(19) 

Theorem 5.: The expressions of ξ-bias and ξ-MSE of the strategy[𝜉, �̅�𝑒]are given by 

𝐵𝜉[�̅�𝑒] = ∑ 𝛿𝑗𝛽𝑗

𝐽

𝑗=0
[𝜆𝜓(𝛼, 𝑎, �̅�𝑠1

, �̅�)�̅�𝑠1

(𝑗) − �̅�(𝑗)] (20) 

𝑀𝜉[�̅�𝑒] = [𝐵𝜉{�̅�𝑒}]2 + (
𝜆𝜓(𝛼, 𝑎, �̅�𝑠1

, �̅�)

𝑛1
−

1

𝑁
)

2

𝜎2 ∑ 𝑣(𝑥𝑘)

𝑠1

 

                  +
𝜎2

𝑁2 [∑ 𝑣(𝑥𝑘)

𝑠2

+ ∑ 𝑣(𝑥𝑘)

𝑠̅

] (21) 

Remark 3.: The optimum values of the parameter λ, involved in 𝑀𝜉[�̅�𝑒]can be obtained 

respectively as 
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𝜆 =

[
∑ 𝛿𝑗𝛽𝑗

𝐽
𝑗=0 �̅�𝑠1

(𝑗){∑ 𝛿𝑗𝛽𝑗
𝐽
𝑗=0 �̅�(𝑗)} +

1

𝑁𝑛1
𝜎2 ∑ 𝑣(𝑥𝑘)𝑠1

]

[{𝜓(𝛼, 𝑎, �̅�𝑠1
, �̅�)} {

𝜎2

𝑛1
2

∑ 𝑣(𝑥𝑘)𝑠1
+ (∑ 𝛿𝑗𝛽𝑗

𝐽
𝑗=0 �̅�𝑠1

(𝑗))2}]
 

(22) 

2.2 Some specific cases of PRM and corresponding Bias and MSE of strategies  

Due to involvement of a large number of super population parameters in the model, 

practically it is not possible to study the nature and salient characteristics of the 

estimators with such a generalized model. It is, therefore, sometimes necessary to 

consider in practice some simplified versions of PRM which might involve lesser 

number of parameters. With this view, as an example one may consider the 

following simple PRMs: 

Model I: 𝜉[0,1: 𝑥𝑔] → 𝑌𝑘 = 𝛽1𝑥𝑘 + 𝜖𝑘𝑥𝑘

𝑔
2⁄
 (23) 

Model II: 𝜉[1,1: 𝑥𝑔] → 𝑌𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝜖𝑘𝑥𝑘

𝑔
2⁄
 (24) 

Model III: 𝜉[1,1,1: 𝑥𝑔] → 𝑌𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝛽2𝑥𝑘
2 + 𝜖𝑘𝑥𝑘

𝑔
2⁄
 (25) 

Model IV: 𝜉[1,1: 𝑥2] → 𝑌𝑘 = 𝛽0 + 𝛽1𝑥𝑘 + 𝜖𝑘𝑥𝑘
2 (26) 

Model V: 𝜉[0,1: 𝑥2] → 𝑌𝑘 = 𝛽1𝑥𝑘 + 𝜖𝑘𝑥𝑘
2 (27) 

where the constant g is usually unknown in practice. However, Cochran (1953) and 

Brewer (1963b) have shown that majority of the situations occurring in practice 

might be covered by assuming that 0 ≤ 𝑔 ≤ 2 (or perhaps even the narrower 

interval1 ≤ 𝑔 ≤ 2). The ξ-bias and ξ-MSE expressions of the suggested estimators 

under model I for specific value of g=0 has been given: 

2.3 Bias and MSE of model I: 𝝃[𝟎, 𝟏: 𝒙𝒈] with g=0 

𝐵𝜉[�̅�𝑀] = [𝛽1{�̅�𝑠1
− �̅�}] (28) 

𝑀𝜉[�̅�𝑀] = [𝛽1{�̅�𝑠1
− �̅�}]2 + (

1

𝑛1
−

1

𝑁
)

2

𝜎2𝑛1 +
𝜎2

𝑁2
[𝑁 − 𝑛1] (29) 

𝐵𝜉[�̅�𝑅𝐴𝑇] = [𝛽1{𝜑(𝑥)�̅�𝑠1
− �̅�}] (30) 

𝑀𝜉[�̅�𝑅𝐴𝑇] = [𝛽1{𝜑(𝑥)�̅�𝑠1
− �̅�}]2 + (

𝜑(𝑥)

𝑛1
−

1

𝑁
)

2

𝜎2𝑛1 +
𝜎2

𝑁2
[𝑁 − 𝑛1] (31) 

𝐵𝜉[�̅�𝐶𝑂𝑀𝑃] = [𝛽1{𝛼�̅�𝑠1
+ (1 − 𝛼)𝜑(𝑥)�̅�𝑠1

− �̅�}] (32) 

𝑀𝜉[�̅�𝐶𝑂𝑀𝑃] = [𝐵𝜉[�̅�𝐶𝑂𝑀𝑃]]
2

+ (
𝛼

𝑛1
+

(1 − 𝛼)𝜑(𝑥)

𝑛1
−

1

𝑁
)

2

𝜎2𝑛1 
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                         +
𝜎2

𝑁2
[𝑁 − 𝑛1] 

with 

(33) 

𝛼0 =
𝛽1�̅�𝑠1

{𝛽1�̅� − 𝛽1�̅�𝑠1
} −

1

𝑛1
(

𝜑(𝑥)

𝑛1
−

1

𝑁
)

2
𝜎2𝑛1

{1 − 𝜑(𝑥)} {
𝑛1𝜎2

𝑛2 + (𝛽1�̅�𝑠1
)2}

 (34) 

𝐵𝜉[�̅�𝑒] = [𝛽1{𝜆𝜓(𝛼, 𝑎, �̅�𝑠1
, �̅�)�̅�𝑠1

− �̅�}] (35) 

𝑀𝜉[�̅�𝑒] = [𝐵𝜉[�̅�𝑒]]
2

+ (
𝜆𝜓(𝛼, 𝑎, �̅�𝑠1

, �̅�)

𝑛1
−

1

𝑁
)

2

𝜎2𝑛1 +
𝜎2

𝑁2
[𝑁 − 𝑛1] (36) 

with 

𝜆 =
𝛽1�̅�𝑠1

{𝛽1�̅�} +
1

𝑁𝑛1
𝜎2𝑛1

𝜓(𝛼, 𝑎, �̅�𝑠1
, �̅�) {

𝜎2

𝑛1
+ (𝛽1�̅�𝑠1

)2}
   (37) 

2.4 Description of the Data: 

For the analysis of the results empirically,a real population from Kish (1967) have 

been. The data has been presented in the Appendix E of Kish (1967). Let X be the 

number of dwellings, whereas Y be the dwelling occupied by renters.In order to 

generate a finite population for analysis purpose, we have considered only 90 pairs 

of values (𝑥𝑘,𝑦𝑘) from 𝑖 =  232 𝑡𝑜 449 excluding 𝑖 =  375, 377 and 384 for which 

𝑦𝑘 values were zero. Accordingly, following population values have been obtained: 

𝑁 = 90, �̅� = 41.4556, �̅� = 30.511, 𝑆𝑌
2 = 598.237,𝑆𝑋

2 = 747.854, 𝜌𝑋𝑌 = 0.982 

2.5 Selection of Samples 

From the population, a random sample of size 20 (that is, 𝑛 = 20) was selected. The 

sample of size 20 was then sampled again in order to get samples 𝑠1𝑎𝑛𝑑𝑠2with 10%,
20%, 𝑎𝑛𝑑 30% non-response rates in the sample 𝑠that is, with (i) 𝑛1 = 18 𝑎𝑛𝑑𝑛2 =
2 (ii) 𝑛1 = 16 𝑎𝑛𝑑𝑛2 = 4  and (iii)𝑛1 = 14 𝑎𝑛𝑑𝑛2 = 6. These samples are referred 

as sample-I, sample-II, sample-III respectively. The configuration of these samples 

in respect to 𝑋- values are as follows: 

𝑠: 67, 61, 21, 14, 23, 45, 43, 30, 45, 5, 18, 89, 25, 61, 37, 89, 48, 20, 26, 24 

Sample-I (𝑛1 = 18 𝑎𝑛𝑑𝑛2 = 2) 

𝑠1 =67, 61, 21, 14, 23, 43, 30, 45, 5, 89, 25, 61, 37, 89, 48, 20, 26, 24 

𝑠2 = 45, 18 

Sample-II (𝑛1 = 16 𝑎𝑛𝑑𝑛2 = 4) 

𝑠1 =61, 21, 14, 23, 45, 43, 30, 18, 89, 25, 61, 37, 89, 48, 26, 24 
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𝑠2 = 67, 45, 5, 20 

Sample-III(𝑛1 = 14 𝑎𝑛𝑑𝑛2 = 6) 

𝑠1 =61, 45, 48, 89, 67, 37, 43, 14, 26, 20, 61, 21, 18, 30 

𝑠2 = 23, 45, 5, 89, 25, 24 

Empirical comparison of different imputation strategies  

In addition to the configuration of the samples given, the following results under 

each sample plan have been obtained: 

Sample I:∑ 𝑥𝑘
2

𝑠1
= 39688, ∑ 𝑥𝑘

2
𝑠2

= 2349, ∑ 𝑥𝑘
2

�̅� = 179196  

Sample II:  ∑ 𝑥𝑘
2

𝑠1
= 35098, ∑ 𝑥𝑘

2
𝑠2

= 6939, ∑ 𝑥𝑘
2

�̅� = 179196  

Sample III:  ∑ 𝑥𝑘
2

𝑠1
= 30336, ∑ 𝑥𝑘

2
𝑠2

= 11701, ∑ 𝑥𝑘
2

�̅� = 179196  

From Singh (2016), for the same data, we have𝛽0 = 0.8787, 𝛽1 = −4.9157 and 

𝜎2 = 0.7998. The comparison of suggested imputation strategies, namely, 

[𝜉, �̅�𝑀], [𝜉, �̅�𝑅𝐴𝑇], [𝜉, �̅�𝐶𝑂𝑀𝑃] and [𝜉, �̅�𝑒]has been made under model I and model II, 

for 𝑔 = 0,1 𝑎𝑛𝑑 2 for all the four samples, that is, when the non-response rates in the 

sample are 10%, 20% 𝑎𝑛𝑑 30%. Tables 1, 2 and 3 depict the absolute values of ξ-

MSEs and PREs of the estimators with respect to the strategy [𝜉, �̅�𝑀]for different 

non-response rates. 

Table 1. Absolute Value of MSE and PRE (in parentheses) of Different Strategies 

ξ-MSEs 

 of Estimators 

(Non-Response Rate 10 %) 

Model I Model II 

g g 

0 1 2 0 1 2 

�̅�𝑴 24.740 

(100.00) 

26.151 

(100.00) 

105.331 

(100.00) 

24.740 

(100.00) 

26.151 

(100.00) 

105.331 

(100.00) 

�̅�𝑹𝑨𝑻 
87.777 

(28.185) 

89.127 

(29.341) 

164.952 

(63.855) 

87.414 

(28.302) 

88.764 

(29.461) 

164.588 

(63.997) 

�̅�𝑪𝑶𝑴𝑷 
3.735*10-2 

(662.35*102) 

1.520 

(1720.460) 

84.576 

(124.540) 

3.735*10-2 

(662.35*102) 

1.520 

(1720.460) 

84.594 

(124.514) 

𝜶𝒐 2.130 2.130 2.121 2.135 2.135 2.126 

�̅�𝒆 3.735*10-2 

(662.35*102) 

1.520 

(1720.460) 

84.442 

(124.738) 

3.735*10-2 

(662.35*102) 

1.520 

(1720.460) 

84.459 

(124.713) 

𝝀 1.000 1.000 0.998 1.000 1.000 0.998 

 

Table 2. Absolute Value of MSE and PRE (in parentheses) of Different Strategies 

ξ-MSEs of 

Estimators 

(Non-Response Rate 20 %) 

Model I Model II 

g g 

0 1 2 0 1 2 

�̅�𝑴 8.185 

(100.0) 

9.829 

(100.00) 

100.655 

(100.0) 

8.185 

(100.00) 

9.829 

(100.00) 

100.655 

(100.00) 

�̅�𝑹𝑨𝑻 
87.782 89.322 174.523 87.249 88.789 173.990 
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(9.324) (11.004) (57.674) (9.381) (11.070) (57.851) 

�̅�𝑪𝑶𝑴𝑷 
4.228*10-2 

(193.590*102) 

1.733 

(567.166) 

95.053 

(105.893) 

4.228*10-2 

(193.590*102) 

1.733 

(567.167) 

95.064 

(105.881) 

𝜶𝒐 1.438 1.438 1.431 1.440 1.440 1.433 

�̅�𝒆 4.228*10-2 

(193.590*102) 

1.733 

(567.166) 

94.886 

(106.080) 

4.228*10-2 

(193.590*102) 

1.733 

(567.166) 

94.896 

(106.069) 

𝝀 1.000 

 

1.000 0.998 1.000 1.000 0.998 

 

Table 3. Absolute Value of MSE and PRE (in parentheses) of Different Strategies 

ξ-MSEs of 

Estimators 

(Non-Response Rate 30 %) 

Model I Model II 

g g 

0 1 2 0 1 2 

�̅�𝑴 6.584*10-2 

(100.00) 

2.016 

(100.00) 

107.140 

(100.00) 

6.584*10-2 

(100.00) 

2.016 

(100.00) 

107.140 

(100.00) 

�̅�𝑹𝑨𝑻 
87.787 

(0.075) 

89.566 

(2.251) 

185.640 

(57.983) 

87.042 

(0.076) 

88.821 

(2.269) 

184.895 

(57.946) 

�̅�𝑪𝑶𝑴𝑷 
4.830*10-2 

(136.315) 

2.001 

(100.750) 

107.204 

(99.940) 

4.831*10-2 

(136.315) 

2.001 

(100.750) 

107.204 

(136.315) 

𝜶𝒐 1.014 1.014 1.008 1.014 1.014 1.008 

�̅�𝒆 4.830*10-2 

(136.315) 

2.00 

(100.750) 

106.995 

(100.136) 

4.830*10-2 

(136.315) 

2.001 

(100.750) 

106.993 

(100.139) 

𝝀 0.999 0.999 0.997 1.000 0.999 0.997 

 

3. Interpretation of Results from the Tables 

(i) Since the ξ-MSE of all the estimators is function of sample values only and 

does not involve any of the finite population parameters which is contrary to the 

design-based approach and configuration of samples changes over non-response 

rates, the results can be assumed to be more realistic as these do not involve values 

of the unknown population parameters. This point makes model-based approach 

more practical. 

(ii) For a fixed model, ξ-MSE of estimators has increasing trend with variation of 

the constant g where 0 ≤ 𝑔 ≤ 2. The trend is similar in both the models considered. 

(iii) Amongst all the strategies, [𝜉, �̅�𝑅𝐴𝑇] seems to be the most inferior 

irrespective of values of g whether it is model I or model II. 

(iv) Both the Strategies [𝜉, �̅�𝐶𝑂𝑀𝑃]and[𝜉, �̅�𝑒]under respective optimality 

conditions are almost equally efficient than other strategies. This result is uniformly 

true under both the models with a particular choice of g. 

(v) The minimum ξ-MSE of the estimator �̅�𝑒is independent of the values of the 

parameters𝛼 and a. It is affected only with the value of the parameter λ. 

(vi) As expected, the percent relative efficiency of the strategies as compared 

with the strategy[𝜉, �̅�𝑀] has a decreasing trend with increasing non-response rate. 

(vii) The smallest ξ-MSE (or maximum efficiency) of all the strategies, 

except [𝜉, �̅�𝑅𝐴𝑇] is obtained for the models 𝜉[0,1: 1] and 𝜉[1,1: 1]which is indicative 



 

A SUPER POPULATION MODEL APPROACH TO IMPUTATION FOR 

ESTIMATING POPULATION MEAN 

 

14 

 

that most of the strategies might be most effective when 𝑣(𝑥𝑘) = 𝑥𝑘
0 = 1, than when 

g = 1 or 2. 

      Recapitulating what have been discussed above, it can, therefore, be concluded 

that the proposed imputation strategy [𝜉, �̅�𝑒]is uniformly better than other existing 

imputation strategies when compared under super population model approach. 

Further, it is as good as the compromised method of imputation under optimality 

conditions. 

 

4. Robustness criteria of strategies  

4.1 Misspecification of Models 

Now it is well established that in making inferences to a finite population, whose 

form is motivated by a super population model, the model selected comes at the first 

place and hence, the results might be either equivalent or superior to the probability 

sampling approach if, in fact the model describes accurately the population being 

sampled. If the model is not fully realistic, the model-dependent approach may result 

in misleading inferences. Thus, the correct specification of the model is an important 

step in such an approach. 

It is evident that PRM is comprised of two components namely, (i) polynomial 

regression𝐸𝜉(𝑌𝑘) and (ii) variance function𝜎2𝑣(𝑥𝑘). It is, therefore, obvious that 

while choosing a particular PRM, there might be two types of misspecifications in 

regression models, namely, 

(i) misspecification in selecting an appropriate variance function𝑣(𝑥𝑘), and 

(ii) misspecification in choosing the appropriate polynomial regressionℎ(𝑥𝑘) =

∑ 𝛿𝑗𝛽𝑗𝑥𝑘
𝑗𝐽

𝑗=0 . 

It is, therefore, desirable to investigate the effect of both of these types of 

misspecification in the model on the efficiency of any estimator. 

4.2 Robust Estimators 

From the expressions of ξ-MSE of the estimators, it is clear that it is affected by the 

deviation of polynomial regression ℎ(𝑥𝑘) and the function𝑣(𝑥𝑘), while the ξ-bias is 

affected only by the function ℎ(𝑥𝑘) and is totally independent of the function𝑣(𝑥𝑘). 

So, it is desirable to observe the effect of misspecification of both the functions on 

the variance of ξ-MSE. 

Royall and Herson (1973a,1973b), therefore, considered an estimator “robust”, if 

there is nominal change in the amount of ξ-MSE due to the deviation 

(misspecification) of the model, or, in other words, if the optimality of the estimator 

vitiates slightly under the misspecification of the model.  

4.3 Examining Robustness of the Suggested Strategies 

As we have obtained the ξ-MSE of a number of imputation strategies under model I 

and II with𝑔 = 0,1 𝑎𝑛𝑑 2, it can be stated that for fixed g-value, the models change 
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only in respect of polynomial functionℎ(𝑥𝑘), while for a given model; change in the 

value of g produces a change in the function𝑣(𝑥𝑘) only. So a comparison of 

strategies under these changes of the two functions would reveal the facts about the 

robustness property of the considered Strategies. 

For the purpose, we have considered the absolute differences (A.D.) of ξ-MSE of 

two strategies, defined as 

𝐴. 𝐷. [𝑇] = |𝑀𝜉{𝑇}𝐼 − 𝑀𝜉{𝑇}𝐼𝐼| (38) 

where 𝑀𝜉{𝑇}𝐼 and 𝑀𝜉{𝑇}𝐼𝐼 stand for the ξ-MSE of the estimator 𝑇 under Models I 

and II respectively. 

Table.4 shows the A.D. values of the strategies under different non-response rates 

and g-values 

Table 4. Absolute Difference of the Strategies 

Strategy g Non-response rates (%) 

10 15 20 30 

[𝝃, �̅�𝑴] 
 

0 

 

0.00 0.00 0.00 0.00 

1 0.00 0.00 0.00 0.00 

2 0.00 0.00 0.00 0.00 

[𝝃, �̅�𝑹𝑨𝑻] 
 

0 

 

0.363 0.467 0.533 0.745 

1 

 

0.363 0.467 0.533 0.745 

2 0.364 0.467 0.533 0.745 

[𝝃, �̅�𝑪𝑶𝑴𝑷] 
 

0 

 

0.00 0.00 0.0001 0.00 

1 0.00 0.00 0.00 0.00 

2 0.018 0.014 0.011 0.00 

[𝝃, �̅�𝒆] 
 

0 

 

0.00 0.00 0.00 0.00 

1 0.00 0.00 0.00 0.00 

2 0.017 0.001 0.001 0.002 

Remark4.: The figures in the Table 4 reveal the fact that except the strategy  
[𝜉, �̅�𝑅𝐴𝑇] all other strategies are fairly robust against the misspecification of the 

model under all the non-response rates, even if the rate is tripled. Thus, it concludes 

that the suggested family of estimators�̅�𝑒 may be considered to be robust under the 

misspecification of the model.  

Royall and Herson (1973a, 1973b) pointed out that by selecting a “balanced 

sample”, the problem of misspecification could be resolved. The condition for a 
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balanced sample 𝑠is�̅�𝑠
(𝑗)

= �̅�(𝑗)𝑓𝑜𝑟𝑗 = 1,2, … , 𝐽. If a sample is exactly balance or 

approximately balance, then the estimator would be robust. In this case, we observe 

that �̅� = 41.4556,  whereas�̅�𝑠 = 39.6, thus,�̅�𝑠 ≈ �̅�, that is our sample is 

approximately balanced. Perhaps this might be reason that the strategies considered 

are almost robust. 

 

5. Conclusion 

The paper discussed the behavior of some of the existing imputation methods and 

one newly proposed imputation method, namely, exponential type imputation 

method for the estimation of population mean under model-based approach. Some of 

the specific cases of PRM are considered for comparing the performance of these 

imputation strategies and it is observed that the strategy[𝜉, �̅�𝑒] performs better than 

other strategies, irrespective of the rate of non-response in the population and in the 

sample. This implies that the suggested strategy may be looked upon as an 

advancement over other imputation strategies which already exist in the literature. 

Moreover, almost all the imputation methods were observed to be robust enough 

guarantying that these are least affected by the model misspecifications. 
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