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The paper develops Bayesian estimators for the parameters and reliability measures 

of Nakagami distribution. Some new priors are introduced for the shape parameter of 

Nakagami distribution keeping in view the range of the parameter. Monte Carlo 

simulation study is conducted to compute the Bayes estimates along with their 

expected loss functions and corresponding Highest posterior density (HPD) credible 

intervals. Real life data set is also given for illustration purpose.  
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1. Introduction 

The Nakagami distribution was suggested by Nakagami (1960) for modelling the 

fading of radio signals and can be measured as a flexible lifetime distribution. It has 

many applications in the general area of communications engineering and also has 

been applied effectively in numerous fields. Kim and Latchman (2009) analysed the 

multimedia (MPEG-2 frame) data traffic over networks using Nakagami distribution. 

The Nakagami distribution is also used in biomedical fields, such as to model the 

time to existence of tumours and the presence of lung cancer. It has the applications 

in medical field, predicting readings to model the ultrasounds mainly in Echo (heart 

efficiency test). Shankar et al. (2005) and Tsui et al. (2006) used this distribution to 

model ultrasound data in medical imaging studies. Recently, Carcole and Sato (2009) 

have presented the utility of the Nakagami distribution for the modelling high-

frequency seismogram envelopes. The distribution can be considered to model 

failure times of a variety of products (and electrical components) such as vacuum 

tubes, ball bearing and electrical insulation. This distribution is broadly applied in 

reliability theory and reliability engineering as well. Kumar et al. (2017) have 

discussed Nakagami distribution as a reliability model under progressive censoring. 

In Non-Bayesian set up three different estimators for the shape parameter of the 

Nakagami distribution have been compared by Abdi and Kaveh (2000) using Monte 

Carlo simulation study. 



 

KUMARI ET AL. 

 

3 

 

 

 Cheng and Beaulieu (2001) also derived maximum likelihood estimation of the 

shape parameter of the Nakagami distribution. Schwartz et al. (2013) have suggested 

improved maximum likelihood estimation of the parameter of Nakagami distribution 

and they have discussed some distributional properties also. 

Ahmed et al. (2016) have discussed classical and Bayesian approach in estimation of 

scale parameter of Nakagami distribution wherein the shape parameter is assumed to 

be fixed. However in the Bayesian set up, the estimation of both the shape and scale 

parameter of Nakagami distribution still awaits the attention of the researchers. 

Bayesian estimation of shape parameter is also as much significant as of scale 

parameter which is taken up in the present work. 

In the present work considering Nakagami distribution as a life time model, the 

Bayes estimators of both the shape and scale parameters are derived. Considering 

both shape and scale parameters to be unknown, Bayes estimators for the reliability 

function and hazard rate are also derived. Taking into consideration the specific 

nature of the range of shape parameter for Nakagami distribution, some new priors 

(both informative and non-informative) are introduced for the Bayesian estimation. 

Bayesian estimation is carried out for symmetric and asymmetric loss functions. 

Using simulation technique, highest posterior density (HPD) credible intervals for 

the Bayes estimates of the parameters, reliability function and hazard rate are also 

obtained. 

The scheme of the paper is as follows: after Introduction, an outline related to the 

model with distributional properties and likelihood function is provided. Some 

concepts related to priors, loss functions and HPD credible intervals used in the 

study are described in the next section on Bayesian Estimation. The posterior 

distributions and estimation procedure is also discussed in that Section. Bayesian 

estimators are derived using informative and non-informative priors under squared 

error loss function (SELF) and generalised entropy loss function (GELF) in the same 

section. Under section of Simulation Study, simulation is carried out to find the 

Bayes estimates under different configurations of sample sizes. Highest posterior 

density (HPD) Credible intervals along with the width of intervals are also provided 

in the same section. The next section deals with a real life example followed by the 

brief discussion of the results while conclusion is given in the last section. 

  

2. Model 

The cumulative distribution function (cdf) of Nakagami distribution with shape 

parameter α and scale parameter β is given by 

  

where  is the incomplete gamma function. 

The corresponding probability density function (pdf) is 
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where  is the complete gamma function. The plot of probability 

density function is shown in Figure 1 for different values of 𝛼 and 𝛽. 

 

Figure 1. Probability density of Nakagami distribution 

 

The reliability function of Nakagami distribution is given by 

 

and it is plotted in Figure 2 for different values of 𝛼 and 𝛽.  

The hazard rate of Nakagami distribution is given by 

 

and it is plotted in Figure 3 for different values of 𝛼 and 𝛽. 

If 𝛼 = 0.50, Nakagami distribution coincides with Half Normal distribution and if 𝛼 

= 1.0, Nakagami distribution is similar to Rayleigh distribution. If 𝑌 follows 

Gamma(𝑘, 𝛽) then √𝑌 follows Nakagami distribution with shape parameter 𝑘 and 

scale parameter 𝑘𝛽. Moreover, if 2𝛼 is integer value and 𝑍 follows the Chi-Square 

distribution with 2𝛼 degree of freedom then  follows Nakagami distribution 

with shape parameter 𝛼 and scale parameter 𝛽. 
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Figure 2. Reliability function of Nakagami distribution 

 

 

Figure 3. Hazard rate of Nakagami distribution 

 

2.1 Likelihood Function 

Let (𝑥1, 𝑥2, … , 𝑥𝑛) be a random sample follows Nakagami distribution with shape 

parameter 𝛼 and scale parameter 𝛽. The likelihood function is given by 

            (1) 

where 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛). 

2.2 Bayesian Estimation 

In this section, Bayes estimators for shape and scale parameters, reliability function 

and hazard rate are derived using both informative and non-informative priors. Two 

types of loss functions have been used, one is symmetric loss function (squared error 

loss function) and the other one is asymmetric loss function (generalised entropy loss 
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function). A brief outline of loss functions, priors and HPD credible intervals is 

given below: 

2.3 Squared Error Loss Function (SELF) 

The  squared  error  loss  function  is  a  symmetric  loss  function  and  it  is  defined  

as   𝐿(�̂�, 𝜉) 𝖺 (𝜉 −�̂�)2 where �̂� is the Bayes estimator of the unknown parameter 𝜉. The 

Bayes estimator of 𝜉 under SELF is  and expected loss function under SELF 

is 𝐸[𝐿(�̂�, 𝜉)] = E[(�̂�- �̂�2|x], where the expectation is taken with respect to the posterior 

density. 

2.4 Generalized Entropy Loss Function (GELF) 

SELF provides equal weights to over estimation and under estimation. However, in 

many situations over estimation is more serious than under estimations and vice 

versa. So, another valuable asymmetric loss function viz. GELF is used here to 

overcome this problem. GELF is a generalization of the entropy loss function 

defined by Calabria and Pulcini (1996). 

This asymmetric loss function is defined as    where 𝑏 ≠ 0. 

The constant 𝑏 decides the shape of the loss function. If 𝑏 > 0 then over estimation is 

more severe than under estimation and vice-versa. Bayes estimator of ξ under GELF 

is �̂�𝑔 = [E(𝜉−𝑏|𝑥)] (−1/𝑏) and expected loss function is , 

where the expectation is taken with respect to the posterior density. 

2.5 Informative Priors 

A new informative prior known as two parameter exponential distribution for the 

shape parameter 𝛼 is introduced. 

  

Here the location parameter of two parameter exponential prior is assumed to be 0.5 

keeping in view the range of the parameter 𝛼 (≥ 0.5) in the underlying Nakagami 

distribution. 

For the scale parameter 𝛽 the informative prior is taken as gamma prior 

 

Assuming independence of both these priors, the joint prior distribution of 𝛼 and 𝛽 is 

                             (2) 
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2.6 Non-informative Priors 

The non-informative prior distributions for the shape parameter 𝛼 and scale 

parameter 𝛽 are 

 

The joint prior distribution of 𝛼 and 𝛽 (assuming independence) is 

                                                                               (3) 

2.7 Highest posterior density (HPD) Credible Intervals 

Chen and Shao (1999) introduced the algorithm to find the HPD credible intervals. 

100(1 − γ)% HPD credible interval is that 100(1 − γ)% credible interval which is 

having smallest width among all possible 100(1 − γ)% credible intervals. 

Once the posterior sample is generated for 𝛼𝑗 (𝑗 = 1,2, … , (𝑁 − 𝑁0)), then 𝛼(1) ≤ 

𝛼(2) ≤ ⋯ ≤(𝑁−𝑁0) denotes the ordered values of α1, α2, … , α(N−N0) . The 100(1 − γ)% 

HPD interval for α is defined by (𝛼(𝑗), 𝛼(𝑗+[(1−𝛾)(𝑁−𝑁0)])), where j is chosen such that 

 

where [𝑥] denotes the greatest integer of 𝑥. 

2.8 Posterior distribution of 𝑎 and 𝖰 using informative priors 

The joint posterior distribution of 𝛼 and 𝛽 is 

                (4) 

The full conditional distributions of 𝛼 and 𝛽 from equation (4) are respectively 

                                       (5) 

                                               (6) 

2.9 Posterior distribution of 𝑎 and 𝖰 using non-informative priors 

The joint posterior distribution of 𝛼 and 𝛽 is 
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                                            (7) 

The full conditional distributions of 𝛼 and 𝛽 from equation (7) are respectively 

                                           (8) 

                                                                   (9) 

2.10 Estimation Procedure 

Since, the joint posterior distribution of 𝛼, 𝛽 in equations (4) and (7) cannot be 

obtained in an explicit form, the Markov Chain Monte Carlo (MCMC) technique is 

implemented to obtain the Bayes estimates and corresponding HPD credible 

intervals of 𝛼, 𝛽, (𝑥) and ℎ(𝑥). 

The full posterior conditional distributions of 𝛼 and 𝛽 in equations (5), (6), (8) and 

(9) are not in known form. Hence to generate the random samples from the 

population with the conditional posterior distributions given by (5), (6), (8) and (9), 

the Metropolis-Hasting (M-H) algorithm considering the normal distribution as 

proposal density is used. 

The M–H algorithm was established by Metropolis et al. (1953) and later extended 

by Hastings (1970). Gibbs sampler creates a sequence of samples from the full 

conditional probability distributions. Since the full posterior conditional distribution 

of each parameter depends on the other parameter, the Gibbs sampler is also adopted 

here. 

The MCMC technique of M-H algorithm using Gibbs sampler to generate samples 

from (5) and (6) is follows: 

(i) Start with the initial values (0), 𝛽 (0). 

(ii) Set 𝑘 = 1. 

(iii) Generate 𝛼(𝑘) from 𝜋1(𝛼(𝑘−1)|𝛽(𝑘−1), 𝑥) using M-H algorithm with Normal 

transition kernel (𝛼(𝑘−1), 𝑒1), where standard deviation 𝑒1 can be chosen on the basis 

of few trials. 

(iv) Similar way, Generate (𝑘) from 𝜋1(𝛽(𝑘−1)|𝛼(𝑘), 𝑥) using M-H algorithm with 

Normal transition kernel 𝑁(𝛽(𝑘−1), 𝑒2), where standard deviation 𝑒2 can be chosen on 

the basis of few trials. 

(v) Set 𝑘 = 𝑘 + 1. 

(vi) Repeat step (iii) to (v) 𝑁 times and obtain 𝛼1, 𝛼2, … , 𝛼𝑁 and 𝛽1, 𝛽2, … , 𝛽𝑁. 
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Then after burn-in and thinning the chain we get the samples 𝛼1, 𝛼2, … , 𝛼𝑠 and 𝛽1, 

𝛽2, … , 𝛽𝑠 from 

𝛼1, 𝛼2, … , 𝛼𝑁 and 𝛽1, 𝛽2, … , 𝛽𝑁, respectively where 𝑠 < 𝑁. Now, the Bayes 

estimators of 𝛼, 𝛽, (𝑥) and ℎ(𝑥) under SELF are 

 

The Bayes estimators of 𝛼, 𝛽, (𝑥) and ℎ(𝑥) under GELF are 

 

Same procedure is followed to generate the random samples from equations (8) and 

(9) as well to obtain the Bayes estimators of 𝛼, 𝛽, (𝑥) and ℎ(𝑥). 

 

3. Simulation Study 

In this section, Monte Carlo simulation study is conducted for Bayes estimates of 𝛼, 

𝛽, (𝑥) and ℎ(𝑥) of Nakagami distribution as the estimators cannot be obtained in a 

simplified form theoretically. The Bayes estimates are derived for both informative 

as well as non-informative priors under SELF and GELF. This simulation study is 

based on 3,000 replications i.e. the procedure described in above section is replicated 
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3000 times. For GELF the value of 𝑏 is taken 0.5 (for over estimation) and −0.5 (for 

under estimation). 

For simulation, true value of the parameter 𝛽 is considered as 0.5 with corresponding 

informative hyper-parameters 𝛾 = 1, 𝜃 = 3. The true values of the parameter 𝛼 are   

considered   as   𝛼 = 0.75, 1.0, 1.5 with corresponding informative hyper-parameters 

𝜆 = 0.25, 0.5, 1.0, respectively. Three cases of reliability are considered as small, 

medium and large values. As reliability is the probability that a manufacturer will 

operate without failure for a given period of time under some given operating 

conditions. So, to estimate reliability this time "𝑡" has to be fixed and it can be 

interpreted as a specific value of the random variable X. For the Bayes estimates of 

(𝑡) and ℎ(𝑡), three different configuration of time 𝑡 have been considered as 𝑡 = 0.37, 

0.58, 0.80. The true values of (𝑡) and ℎ(𝑡) for different configurations are given in 

Table 1. 

 

Table 1. True values for 𝛼, 𝑡, (𝑡) and ℎ(𝑡) considered for simulation. 

𝛼 𝑡 𝑅(𝑡) ℎ(𝑡) 

 

0.75 

0.37 0.695480 1.575609 

0.58 0.4693646 2.167072 

0.80 0.2723344 2.781855 

1 0.37 0.7604842 1.480000 

0.58 0.5102778 2.320000 

0.80 0.2780373 3.200000 

1.5 0.37 0.8443419 1.260919 

0.58 0.5685965 2.528883 

0.80 0.2792676 3.939861 

 

Three different combinations of sample sizes are considered (small, medium and 

large viz. 20, 30 and 50). For simulation study MCMC technique of M-H algorithm 

using Gibbs sampler is used and described in estimation procedure earlier. For which 

a chain of 15,000 observations is generated using M-H algorithm with Gibbs 

sampler. From cumulative mean plots, the burn-in period is 5,000 i.e. first 5,000 

observations are discarded from 15,000 observations as burn–in period. The lag 

value is 20 from autocorrelation plot i.e. every 20th observation is considered from 

the remaining 10,000 observations. Trace plots, cumulative mean plots, 

autocorrelation plots and density plots are shown in next section for a real data set. 

The Bayes estimates, expected loss functions and HPD credible intervals with their 

length are provided for 𝛼 and 𝛽 using informative and non-informative priors under 

SELF and GELF in Tables [2-4]. The Bayes estimates, expected loss function and 

HPD credible intervals with their length using informative and non-informative 

priors under SELF and GELF for reliability function (𝑡) are provided in Tables [5-7]. 

The Bayes estimates, expected loss function and HPD credible intervals with their 

length are provided for hazard rate ℎ(𝑡) using informative and non-informative priors 

under SELF and GELF in Tables [8-10]. 
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Table 2. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for 𝛼 and 𝛽 under informative and non-

informative priors for 𝛼 = 0.75 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r 

 𝑛 SELF GELF HPD interval with length 

   𝑏 = −0.5 𝑏 = 0.5 

𝛼 20 0.745410 

(0.002106) 

0.745402 

(0.000473) 

0.745386 

(0.000475) 

(0.747454, 0.766859) 

0.019405 

30 0.753895 

(0.001517) 

0.753886 

(0.000334) 

0.753869 

(0.000331) 

(0.735416, 0.754550) 

0.019134 

50 0.751961 

(0.000385) 

0.751953 

(0.000085) 

0.751937 

(0.000083) 

(0.729910, 0.748635) 

0.018725 

𝛽 20 0.504615 

(0.002130) 

0.504590 

(0.001042) 

0.504542 

(0.001024) 

(0.492916, 0.520274) 

0.027358 

30 0.504052 

(0.001642) 

0.504025 

(0.000803) 

0.503972 

(0.000784) 

(0.481229, 0.508457) 

0.027228 

50 0.500743 

(0.000055) 

0.500720 

(0.000026) 

0.500673 

(0.000023) 

(0.487255, 0.512720) 

0.025465 

N
o

n
-I

n
fo

rm
at

iv
e 

P
ri

o
r 

𝛼 20 0.739749 

(0.010509) 

0.739741 

(0.002377) 

0.739725 

(0.002373) 

(0.743787, 0.763855) 

0.020068 

30 0.756525 

(0.004258) 

0.756517 

(0.000934) 

0.756500 

(0.000932) 

(0.742470, 0.761979) 

0.019509 

50 0.745088 

(0.002412) 

0.745080 

(0.000542) 

0.745064 

(0.000544) 

(0.735015, 0.754227) 

0.019212 

𝛽 20 0.506182 

(0.003822) 

0.506159 

(0.001870) 

0.506113 

(0.001849) 

(0.480130, 0.509629) 

0.029499 

30 0.494571 

(0.002947) 

0.494542 

(0.001508) 

0.494485 

(0.001535) 

(0.489414, 0.516692) 

0.027278 

50 0.494733 

(0.002774) 

0.494708 

(0.001418) 

0.494658 

(0.001440) 

(0.494805, 0.520971) 

0.026166 

 

Table 3. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for 𝛼 and 𝛽 under informative and non-

informative priors for 𝛼 = 1 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e
 P

ri
o

r 

 𝑛 SELF GELF HPD interval with length 

   𝑏 = −0.5 𝑏 = 0.5 

𝛼 20 0.994932 
(0.002568) 

0.994926 
(0.000324) 

0.994912 
(0.000325) 

(0.985149, 1.005016) 
0.019867 

30 0.995902 
(0.001679) 

0.995896 
(0.000212) 

0.995884 
(0.000213) 

(0.987626, 1.007095) 
0.019469 

50 0.998305 
(0.000287) 

0.998299 
(0.000036) 

0.998287 
(0.000037) 

(0.985634, 1.004057) 
0.18423 

𝛽 20 0.508216 
(0.006750) 

0.508190 
(0.003291) 

0.508140 
(0.003269) 

(0.494112, 0.521884) 
0.027772 

30 0.494887 
(0.002615) 

0.494863 
(0.001336) 

0.494815 
(0.001356) 

(0.479785, 0.506974) 
0.027189 

50 0.503142 
(0.000987) 

0.503118 
(0.000483) 

0.503070 
(0.000469) 

(0.489810, 0.516047) 
0.026237 N o n - I n f o r m a t i v e  P r i o r 

𝛼 20 0.992931 
(0.004997) 

0.992924 
(0.000631) 

0.992911 
(0.000632) 

(0.983251, 1.003616) 
0.020365 
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30 0.993085 
(0.004782) 

0.993078 
(0.000604) 

0.993065 
(0.000605) 

(0.982932, 1.003238) 
0.020306 

50 1.006250 
(0.003906) 

1.006244 
(0.000484) 

1.006232 
(0.000483) 

(0.998383, 1.017534) 
0.019151 

𝛽 20 0.511643 
(0.013556) 

0.511620 
(0.006573) 

0.511575 
(0.006572) 

(0.494146, 0.522068) 
0.027922 

30 0.508260 
(0.006822) 

0.508234 
(0.003326) 

0.508184 
(0.003304) 

(0.492631, 0.519776) 
0.027145 

50 0.506443 
(0.004152) 

0.506418 
(0.002029) 

0.506368 
(0.002006) 

(0.499313, 0.525314) 
0.026001 

 

It is clear from simulation study (Table 2-10) that as sample size increases the 

expected loss function decreases. The expected loss function using informative prior 

is less than the expected loss function using non-informative priors. The length of 

95% HPD credible intervals decreases as sample size increases for the Bayes 

estimates of 𝛼, 𝛽, (𝑡) and ℎ(𝑡) of Nakagami distribution. The length of 95% HPD 

credible intervals for the Bayes estimates of 𝛼, 𝛽, (𝑡) and ℎ(𝑡) using informative 

priors is smaller than using non-informative priors. 

3.1 Real Data Example 

A real data set from an accelerated life test of 59 conductors is considered here to 

illustrate the estimation procedure adopted in the previous sections. This data set 

given below originally reported by Schafft et al. (1987) and also mentioned in 

Lawless ((2003) p. 267). This data set represents the failure time (in hours) of 59 

conductors of 400-micrometer length. All 59 specimens ran to failure and tested 

under the same temperature and current density. 

6.545, 9.289, 7.543, 6.956, 6.492, 5.459, 8.120, 4.706, 8.687, 2.997, 8.591, 6.129, 

11.038, 5.381, 6.958, 4.288, 6.522, 4.137, 7.459, 7.495, 6.573, 6.538, 5.589, 6.087, 

5.807, 6.725, 8.532, 9.663, 6.369, 7.024, 8.336, 9.218, 7.945, 6.869, 6.352, 4.700, 

6.948, 9.254, 5.009, 7.489, 7.398, 6.033, 10.092, 7.496, 4.531, 7.974, 8.799, 7.683, 

7.224, 7.365, 6.923, 5.640, 5.434, 7.937, 6.515, 6.476, 6.071, 10.491, 5.923. 

 

Table 4. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for 𝛼 and 𝛽 under informative and non-

informative priors for 𝛼 = 1.5 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r  𝑛 SELF GELF HPD interval with length 

   𝑏 = −0.5 𝑏 = 0.5 

𝛼 20 1.496056 
(0.001556) 

1.496052 
(0.000087) 

1.496043 
(0.000087) 

(1.488404, 1.507393) 
0.018989 

30 1.502938 
(0.000863) 

1.502934 
(0.000048) 

1.502925 
(0.000047) 

(1.487241, 1.506033) 
0.018792 

50 1.497216 
(0.000775) 

1.499892 
(0.000019) 

1.499883 
(0.000024) 

(1.493551, 1.511886) 
0.018335 

𝛽 20 0.504231 
(0.001790) 

0.504209 
(0.000877) 

0.504164 
(0.000861) 

(0.505586, 0.533052) 
0.027466 
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30 0.503483 
0.001213 

0.503459 
(0.000594) 

0.503413 
(0.000579) 

(0.492054, 0.518206) 
0.026152 

50 0.503226 
(0.001040) 

0.503201 
(0.000509) 

0.503152 
(0.000494) 

(0.489498, 0.515600) 
0.026102 

N
o

n
-I

n
fo

rm
at

iv
e 

P
ri

o
r 

𝛼 20 1.504927 
(0.002427) 

1.504922 
(0.000134) 

1.504913 
(0.000134) 

(1.493124, 1.513679) 
0.020555 

30 1.503725 
(0.001388) 

1.503721 
(0.000077) 

1.503712 
(0.000076) 

(1.489696, 1.509590) 
0.019894 

50 1.499896 
(0.000001) 

1.497212 
(0.000043) 

1.497204 
(0.000044) 

(1.495534, 1.515134) 
0.01960 

𝛽 20 0.519458 
(0.037863) 

0.519433 
(0.018058) 

0.519382 
(0.018194) 

(0.489164, 0.516761) 
0.027597 

30 0.485468 
(0.021119) 

0.485442 
(0.010967) 

0.485392 
(0.010936) 

(0.480083, 0.507023) 
0.02694 

50 0.493821 
(0.003818) 

0.493795 
(0.001953) 

0.493744 
(0.001978) 

(0.472079, 0.498640) 
0.026561 

 

The data set is shown to follow the Nakagami distribution as Kolmogorov-Smirnov 

(K-S) test statistic value is 0.062566 and the corresponding 𝑝-value is 0.9639. The 

empirical cdf and fitted cdf (𝑥) evaluated for α̂ = 4.8336   and �̂� = 51.2823  

(maximum  likelihood  estimates  of  𝛼   and 𝛽).  The expression for K-S test statistic 

𝐷𝑛 = 𝑆𝑢𝑝𝑥|𝐹(𝑥) − 𝐹(𝑥)| is used to compute the empirical cdf in which 𝐹𝑛(𝑥) 

represents the empirical cdf and 𝐹(𝑥) represents the distribution function for 

Nakagami distribution. In Figure 4, the plot of empirical cdf and fitted cdf does show 

that it follows Nakagami distribution. 

 

 

Figure 4: Empirical and fitted cdf of real data. 
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Using Akaike information criterion (AIC), Bayesian information criterion (BIC), 

quantile–quantile (Q–Q) plots and K–S test, Kumar et al. (2017) showed that this 

given data set best fit to Nakagami distribution for the estimated α̂ = 4.8336 and �̂�  = 

51.2823. 

As no prior information is available to this real data set, the estimation is done only 

for non- informative prior (Table 11) and the true value used for estimation are α = 

4.8336, 𝛽 = 51.2823, 𝑡 = 7, (𝑡) = 0.4786612 and ℎ(𝑡) = 0.5120702. 

 

Table 5. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for (𝑡) under informative and non-informative 

priors for 𝛼 = 0.75 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r 

b
 

𝑡 𝑛 SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 

0.8 20 0.274899 
(0.001642) 

0.274881 
(0.001081) 

0.274845 
(0.001054) 

(0.265783, 0.282296) 
0.016513 

30 0.274922 
(0.002130) 

0.274906 
(0.001103) 

0.274874 
(0.001079) 

(0.267934, 0.284421) 
0.016487 

50 0.272830 
(0.000055) 

0.272815 
(0.000039) 

0.272783 
(0.000034) 

(0.265181, 0.280650) 
0.015469 

0.58 20 0.474989 
(0.009698) 

0.474979 
(0.001764) 

0.475000 
(0.001784) 

(0.464350, 0.480189) 
0.015839 

30 0.472118 
(0.002333) 

0.472109 
(0.000424) 

0.465989 
(0.000651) 

(0.457677, 0.473148) 
0.015471 

50 0.465865 
(0.000208) 

0.467480 
(0.000202) 

0.467462 
(0.000206) 

(0.467271, 0.482081) 
0.01481 

0.37 20 0.700367 
(0.004447) 

0.700285 
(0.000592) 

0.700278 
(0.000592) 

(0.686122, 0.698706) 
0.012584 

30 0.697317 
(0.001391) 

0.697826 
(0.000142) 

0.697306 
(0.000086) 

(0.691485, 0.703256) 
0.011771 

50 0.697830 
(0.001124) 

0.697314 
(0.000087) 

0.693154 
(0.000140) 

(0.695227, 0.706761) 
0.011534 

N
o

n
-I

n
fo

rm
at

iv
e
 P

ri
o

r 

0.8 20 0.276286 
(0.003822) 

0.276270 
(0.002568) 

0.276240 
(0.002540) 

(0.259694, 0.277449) 
0.017755 

30 0.268657 
(0.002947) 

0.268637 
(0.002341) 

0.268598 
(0.002380) 

(0.260463, 0.277078) 
0.016615 

50 0.268939 
(0.002774) 

0.268923 
(0.001991) 

0.268889 
(0.002022) 

(0.269130, 0.285070) 
0.015940 

0.58 20 0.475027 
(0.011131) 

0.475018 
(0.001788) 

0.474960 
(0.001759) 

(0.466078, 0.482650) 
0.016572 

30 0.467489 
(0.002385) 

0.466008 
(0.000645) 

0.465838 
(0.000710) 

(0.457409, 0.473610) 
0.016201 

50 0.466018 
(0.001466) 

0.465856 
(0.000705) 

0.472091 
(0.000420) 

(0.458834, 0.474900) 
0.016066 

0.37 20 0.700289 
(0.009774) 

0.700363 
(0.000611) 

0.700356 
(0.000611) 

(0.694066, 0.706696) 
0.012630 

30 0.693165 
(0.003142) 

0.691702 
(0.000371) 

0.691695 
(0.000372) 

(0.686605, 0.699531) 
0.012926 
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50 0.691706 
(0.002311) 

0.693161 
(0.000139) 

0.697819 
(0.000141) 

(0.691367, 0.703137) 
0.011770 

 

For this real data set the cumulative mean plots, trace plots, autocorrelation plots and 

density plots are presented in Figure 5, 6, 7 and 8 respectively. Cumulative mean 

plots (Figure 5) showing the convergence of chain and trace plots (Figure 6) 

represent the randomness of the observations. The lag value is 20 and it can be seen 

by autocorrelation plots (Figure 7). Figure 9, shows that after burn-in and thinning 

the chain, the autocorrelation is zero. 

The results obtained in case of simulation do hold in case of real data as well and 

reported in Table 11. 

 

Table 6. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for (𝑡) under informative and non-informative 

priors for 𝛼 = 1 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r 

𝑡 𝑛 SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 

0.8 20 0.283741 
(0.006750) 

0.283719 
(0.005098) 

0.283675 
(0.005053) 

(0.273807, 0.293427) 
0.019620 

30 0.274314 
(0.002615) 

0.274292 
(0.002305) 

0.274248 
(0.002349) 

(0.263886, 0.283410) 
0.019524 

50 0.280220 
(0.000987) 

0.280198 
(0.000748) 

0.280155 
(0.000720) 

(0.270748, 0.289205) 
0.018457 

0.58 20 0.515072 
(0.006750) 

0.515061 
(0.001086) 

0.515037 
(0.001079) 

(0.503401, 0.524368) 
0.020967 

30 0.512582 
(0.002805) 

0.506107 
(0.000843) 

0.506084 
(0.000850) 

(0.498143, 0.519024) 
0.020881 

50 0.506119 
(0.002615) 

0.512571 
(0.000251) 

0.512548 
(0.000247) 

(0.504142, 0.517497) 
0.013355 

0.37 20 0.762701 
(0.006750) 

0.762697 
(0.000106) 

0.762691 
(0.000105) 

(0.753600, 0.765507) 
0.011907 

30 0.759714 
(0.000996) 

0.761881 
(0.000042) 

0.761875 
(0.000042) 

(0.756762, 0.768637) 
0.011875 

50 0.761884 
(0.000109) 

0.759711 
(0.000013) 

0.759704 
(0.000013) 

(0.756522, 0.767545) 
0.011023 

N
o

n
-I

n
fo

rm
at

iv
e
 

P
ri

o
r 

0.8 20 0.283772 
(0.006822) 

0.283750 
(0.005153) 

0.283705 
(0.005107) 

(0.273807, 0.293469) 
0.019662 

30 0.282468 
(0.004152) 

0.282445 
(0.003085) 

0.282401 
(0.003039) 

(0.263886, 0.283410) 
0.019524 

50 0.274314 
(0.002615) 

0.274292 
(0.002305) 

0.274248 
(0.002349) 

(0.272712, 0.291876) 
0.019164 

0.58 20 0.515101 
(0.006822) 

0.515090 
(0.001099) 

0.515066 
(0.001092) 

(0.498401, 0.518258) 
0.019857 

30 0.513612 
(0.004152) 

0.506107 
(0.000843) 

0.506084 
(0.000850) 

(0.500213, 0.519084) 
0.018871 

50 0.506119 
(0.002615) 

0.513601 
(0.000526) 

0.513578 
(0.000520) 

(0.504801, 0.523509) 
0.018708 
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0.37 20 0.762718 
(0.006822) 

0.757391 
(0.000208) 

0.757385 
(0.000208) 

(0.750502, 0.763807) 
0.013305 

30 0.761572 
(0.004152) 

0.762715 
(0.000107) 

0.762708 
(0.000107) 

(0.755290, 0.767475) 
0.012185 

50 0.757394 
(0.002615) 

0.761568 
(0.000025) 

0.761562 
(0.000025) 

(0.756762, 0.768852) 
0.01209 

 

Table 7. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for (𝑡) under informative and non-informative 

priors for 𝛼 = 1.5 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r 

𝑡 𝑛 SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 

0.8 20 0.282948 
(0.001790) 

0.282917 
(0.002103) 

0.282855 
(0.002041) 

(0.261583, 0.285406) 
0.023823 

30 0.282316 
(0.001213) 

0.282284 
(0.001440) 

0.282219 
(0.001384) 

(0.272219, 0.295124) 
0.022905 

50 0.282087 
(0.001040) 

0.282053 
(0.001229) 

0.281986 
(0.001175) 

(0.270053, 0.292873) 
0.022820 

0.58 20 0.560622 
(0.010685) 

0.577121 
(0.002761) 

0.577092 
(0.002756) 

(0.545041, 0.567610) 
0.022569 

30 0.506119 
(0.002615) 

0.506107 
(0.000843) 

0.506084 
(0.000850) 

(0.557989, 0.579841) 
0.021852 

50 0.572903 
(0.003050) 

0.568566 
(0.000000) 

0.568535 
(0.000000) 

(0.495401, 0.514358) 
0.018957 

0.37 20 0.840923 
(0.005746) 

0.840921 
(0.000206) 

0.840916 
(0.000206) 

(0.836927, 0.847657) 
0.010730 

30 0.842577 
(0.001903) 

0.842574 
(0.000055) 

0.842570 
(0.000055) 

(0.835896, 0.846065) 
0.010169 

50 0.843893 
(0.000018) 

0.843891 
(0.000004) 

0.843886 
(0.000004) 

(0.839309, 0.849847) 
0.010538 

N
o

n
-I

n
fo

rm
at

iv
e
 P

ri
o

r 

0.8 20 0.296174 
(0.037863) 

0.296140 
(0.042600) 

0.296074 
(0.043106) 

(0.269682, 0.293869) 
0.024187 

30 0.266347 
(0.021119) 

0.266310 
(0.028438) 

0.266237 
(0.028317) 

(0.254324, 0.278075) 
0.023751 

50 0.273759 
(0.003818) 

0.273723 
(0.005044) 

0.273650 
(0.005144) 

(0.284265, 0.307915) 
0.02365 

0.58 20 0.556208 
(0.019015) 

0.556193 
(0.006103) 

0.556164 
(0.006087) 

(0.548320, 0.572256) 
0.023936 

30 0.577135 
(0.008058) 

0.560606 
(0.002510) 

0.560574 
(0.002518) 

(0.561598, 0.584774) 
0.023176 

50 0.568581 
(0.000012) 

0.572887 
(0.000706) 

0.572857 
(0.000697) 

(0.565072, 0.587941) 
0.022869 

0.37 20 0.838460 
(0.024803) 

0.838458 
(0.000612) 

0.838452 
(0.000612) 

(0.831499, 0.843636) 
0.012137 

30 0.839474 
(0.010181) 

0.839472 
(0.000419) 

0.839467 
(0.000419) 

(0.833607, 0.844518) 
0.010911 

50 0.845019 
(0.000029) 

0.845017 
(0.000008) 

0.845012 
(0.000008) 

(0.838313, 0.848872) 
0.010559 
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Table 8. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for ℎ(𝑡) under informative and non-informative 

priors for 𝛼 = 0.75 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e
 P

ri
o

r 

𝑡 𝑛 SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 

0.8 20 2.762898 
(0.035934) 

2.762787 
(0.000592) 

2.762565 
(0.000605) 

(2.697202, 2.842262) 
0.14506 

30 2.768967 
(0.016609) 

2.768836 
(0.000275) 

2.768575 
(0.000286) 

(2.719489, 2.858689) 
0.1392 

50 2.782031 
(0.000003) 

2.781918 
(0.000026) 

2.781691 
(0.000028) 

(2.677935, 2.811252) 
0.133317 

0.58 20 2.130575 
(0.133201) 

2.130490 
(0.003633) 

2.130319 
(0.003647) 

(2.108044, 2.211809) 
0.103765 

30 2.149123 
(0.032215) 

2.149045 
(0.000873) 

2.148890 
(0.000886) 

(2.099348, 2.197855) 
0.098507 

50 2.163020 
(0.001642) 

2.162942 
(0.000045) 

2.162787 
(0.000049) 

(2.079878, 2.174016) 
0.094138 

0.37 20 1.555917 
(0.038780) 

1.555869 
(0.001991) 

1.555773 
(0.002002) 

(1.514563, 1.588358) 
0.073795 

30 1.565670 
(0.009878) 

1.565616 
(0.000507) 

1.565508 
(0.000516) 

(1.531029, 1.601425) 
0.070396 

50 1.565909 
(0.009409) 

1.565857 
(0.000482) 

1.565752 
(0.000492) 

(1.522287, 1.587522) 
0.065235 

N
o

n
-I

n
fo

rm
at

iv
e 

P
ri

o
r 

0.8 20 2.751339 
(0.093118) 

2.751226 
(0.001535) 

2.750997 
(0.001552) 

(2.714441, 2.863644) 
0.149203 

30 2.800243 
(0.033813) 

2.800120 
(0.000535 

2.799875 
(0.000522) 

(2.726977, 2.87079) 
0.143813 

50 2.791509 
(0.009320) 

2.791370 
(0.000146) 

2.791093 
(0.000137) 

(2.696656, 2.835517) 
0.138861 

0.58 20 2.126676 
(0.163179) 

2.126602 
(0.004456) 

2.126454 
(0.004461) 

(2.079701, 2.184385) 
0.104684 

30 2.190189 
(0.053442) 

2.190110 
(0.001395) 

2.189950 
(0.001381) 

(2.125141, 2.229171) 
0.10403 

50 2.178032 
(0.012012) 

2.177949 
(0.000313) 

2.177784 
(0.000304) 

(2.140581, 2.238783) 
0.098202 

0.37 20 1.549242 
(0.069522) 

1.549189 
(0.003585) 

1.549083 
(0.003593) 

(1.550736, 1.630686) 
0.07995 

30 1.590780 
(0.023015) 

1.590721 
(0.001137) 

1.590603 
(0.001123) 

(1.553809, 1.626527) 
0.072718 

50 1.590517 
(0.022224) 

1.590461 
(0.001099) 

1.590349 
(0.001085) 

(1.530875, 1.599531) 
0.068656 
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Figure 5: cumulative mean plots for 𝛼 and 𝛽. 

 

 

Table 9. Bayes estimates, expected loss (within brackets) and HPD credible intervals 

(within brackets) with their length for ℎ(𝑡) under informative and non-informative 

priors for 𝛼 = 1 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r 

𝑡 𝑛 SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 
0.8 20 3.141026 

(0.347799) 
3.140867 

(0.004362) 
3.140551 

(0.004382) 
(3.138952, 3.316365) 

0.177413 

30 3.227036 
(0.073094) 

3.226875 
(0.000873) 

3.226554 
(0.000855) 

(3.058582, 3.230635) 
0.172053 

50 3.177937 
(0.048678) 

3.177783 
(0.000607) 

3.177475 
(0.000623) 

(3.086457, 3.252555) 
0.166098 

0.58 20 2.280376 
(0.157005) 

2.280264 
(0.003742) 

2.280039 
(0.003763) 

(2.275061, 2.403857) 
0.128796 

30 2.291658 
(0.080327) 

2.291545 
(0.001908) 

2.291319 
(0.001930) 

(2.228777, 2.352056) 
0.123279 

50 2.342170 
(0.049149) 

2.342056 
(0.001117) 

2.341830 
(0.001098) 

(2.221892, 2.344517) 
0.122625 

0.37 20 1.458509 
(0.046185) 

1.458436 
(0.002699) 

1.458290 
(0.002723) 

(1.448085, 1.529703) 
0.081618 

30 1.488586 
(0.007373) 

1.488511 
(0.000411) 

1.488360 
(0.000397) 

(1.416286, 1.497232) 
0.080946 

50 1.479817 
(0.000003) 

1.479746 
(0.000002) 

1.479603 
(0.000001) 

(1.436032, 1.513307) 
0.077275 

N
o

n
-I

n
fo

rm
at

iv
e 

P
ri

o
r 

0.8 20 3.140757 
(0.350968) 

3.140598 
(0.004402) 

3.140280 
(0.004422) 

(3.138952, 3.316365) 
0.177413 

30 3.149112 
(0.258955) 

3.148955 
(0.003241) 

3.148639 
(0.003264) 

(3.058582, 3.230635) 
0.172053 

50 3.227036 
(0.073094) 

3.226875 
(0.000873) 

3.226554 
(0.000855) 

(3.058925, 3.229721) 
0.170796 

0.58 20 2.280182 
(0.158549) 

2.280068 
(0.003779) 

2.279842 
(0.003800) 

(2.275061, 2.403857) 
0.128796 

30 2.287389 
(0.106349) 

2.287276 
(0.002528) 

2.287052 
(0.002551) 

(2.220464, 2.344517) 
0.124053 

50 2.342170 
(0.049149) 

2.342056 
(0.001117) 

2.341830 
(0.001098) 

(2.223004, 2.346756) 
0.123752 
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0.37 20 1.458385 
(0.046720) 

1.458311 
(0.002731) 

1.458164 
(0.002755) 

(1.441063, 1.523859) 
0.082796 

30 1.497257 
(0.029781) 

1.497185 
(0.001663) 

1.497041 
(0.001641) 

(1.426286, 1.507232) 
0.080946 

50 1.464375 
(0.024413) 

1.464302 
(0.001424) 

1.464156 
(0.001446) 

(1.424396, 1.504227) 
0.079831 

 

 

Figure 6: Trace plots for 𝛼 and 𝛽. 

 

 

Table 10. Bayes estimates, expected loss (within brackets) and HPD credible 

intervals (within brackets) with their length for ℎ(𝑡) under informative and non-

informative priors for 𝛼 = 1.5 and 𝛽 = 0.5. 

In
fo

rm
at

iv
e 

P
ri

o
r 

𝑡 𝑛 SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 

0.8 20 3.903841 
(0.129749) 

3.903590 
(0.001071) 

3.903089 
(0.001097) 

(3.774306, 4.025139) 
0.250833 

30 3.906516 
(0.111188) 

3.906275 
(0.000918) 

3.905792 
(0.000942) 

(3.798757, 4.037638) 
0.238881 

50 3.907751 
(0.103109) 

3.907497 
(0.000852) 

3.906991 
(0.000876) 

(3.802842, 4.037486) 
0.234644 

0.58 20 2.598192 
0.480374 

2.598001 
(0.009048) 

2.597619 
(0.009030) 

(2.529876, 2.703465) 
0.173589 

30 2.342170 
(0.049149) 

2.342056 
(0.001117) 

2.341830 
(0.001098) 

(2.455191, 2.617218) 
0.162027 

50 2.532789 
(0.001526) 

2.532603 
(0.000027) 

2.532231 
0.000022 

(2.275061, 2.403857) 
0.128796 

0.37 20 1.288170 
(0.074260) 

1.288067 
(0.005652) 

1.287862 
(0.005607) 

(1.231416, 1.323158) 
0.091742 

30 1.275943 
(0.022572) 

1.275834 
(0.001725) 

1.275616 
(0.001682) 

(1.218963, 1.305592) 
0.086629 

50 1.263533 
(0.000683) 

1.263431 
(0.000049) 

1.263226 
(0.000042) 

(1.245201, 1.330900) 
0.085699 

N
o

n
-I

n
fo

rm
at

iv
e 

P
ri

o
r 

0.8 20 3.776742 
(2.660802) 

3.776485 
(0.022580) 

3.775971 
(0.022406) 

(3.948129, 4.208666) 
0.260537 

30 4.077191 
(1.885938) 

4.076905 
(0.014531) 

4.076334 
(0.014577) 

(3.880810, 4.137264) 
0.256454 

50 4.003167 
(0.400760) 

4.002885 
(0.003140) 

4.002319 
(0.003100) 

(3.661368, 3.897844) 
0.236476 

0.58 20 2.615141 
(0.744037) 

2.614959 
(0.013926) 

2.614597 
(0.013965) 

(2.504134, 2.684621) 
0.180487 
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30 2.478641 
(0.252428) 

2.478464 
(0.005087) 

2.478110 
(0.005124) 

(2.415732, 2.583783) 
0.168051 

50 2.495102 
(0.114114) 

2.494915 
(0.002291) 

2.494539 
(0.002332) 

(2.391270, 2.558057) 
0.166787 

0.37 20 1.313822 
(0.279867) 

1.313698 
(0.020874) 

1.313450 
(0.020967) 

(1.269096, 1.368335) 
0.099239 

30 1.298327 
(0.139930) 

1.298222 
(0.010573) 

1.298012 
(0.010558) 

(1.252080, 1.344702) 
0.092622 

50 1.257699 
(0.001037) 

1.257601 
(0.000087) 

1.257405 
(0.000097) 

(1.222596, 1.312749) 
0.090153 

 

 

Figure 7: Autocorrelation plot of 𝛼 and 𝛽. 

 

 

 

 

Figure 8: Density plots for 𝛼 and 𝛽. 

 

 

 

Figure 9: Autocorrelation plot of 𝛼 and 𝛽 after burn-in and thinning the chain. 
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Table 11. Bayes estimates, expected loss (within brackets) and HPD credible 

intervals (within brackets) with their length for 𝛼, 𝛽, (𝑡) and ℎ(𝑡) under non-

informative priors with 𝑛 = 59, 𝑡 = 7 for real data. 

SELF GELF HPD interval with length 

𝑏 = −0.5 𝑏 = 0.5 

𝛼 4.8150 4.8206 4.8210 (4.809856, 4.839542) 
 (0.000346) (0.000091) (0.000085) 0.029686 

𝛽 51.1856 51.29365 51.291021 (51.165941, 51.452761) 
 (0.009351) 0.000061 0.000036 0.28682 

𝑅(𝑡) 0.471462 0.476985 0.472672 (0.4688564, 0.4791064) 
 (0.000052) (0.000015) (0.000019) 0.01025 

ℎ(𝑡) 0.48569 0.495762 0.495961 (0.4493872, 0.514623) 
 (0.000695) (0.000132) (0.000128) 0.0652358 

 

4. Conclusion 

As sample size increases the expected loss function decreases as can be seen by 

simulation study (Table 2-10). The expected loss function using informative prior is 

less than the expected loss function using non-informative priors. The length of 95% 

HPD credible intervals decreases as sample size increases for the Bayes estimates of 

𝛼, 𝛽, (𝑡) and ℎ(𝑡) of Nakagami distribution. The length of 95% HPD credible 

intervals for the Bayes estimates of 𝛼, 𝛽, (𝑡) and ℎ(𝑡) using informative priors is 

smaller than using non-informative priors. A real life example is also considered and 

fitting of the data to the Nakagami distribution is given as well. 
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