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Goodness-of-fit tests are used to assess model adequacy. There are a number of ways 

in which a fitted model can be inadequate (Xie et al. (2008)). For instance, the linear 

systematic component of the model may be incorrectly specified, a covariate may not 

be specified in the appropriate functional form, some important covariates may have 

been omitted from the model, or the link function may be misspecified. All these 

model misspecifications could affect consistency of the coefficient estimation and 

can lead to biased estimates of treatment effects (Gail et al. (1988); Hauck et al. 

(1991)).  
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1. Introduction 

Goodness-of-fit tests are used to assess model adequacy. There are a number of 

ways in which a fitted model can be inadequate (Xie et al. (2008)). For instance, 

the linear systematic component of the model may be incorrectly specified, a 

covariate may not be given in the appropriate functional form, some important 

covariates may have been omitted from the model, or the link function may be 

misspecified. All these model misspecifications could affect consistency of the 

coefficient estimation, and can lead to biased estimates of treatment effects (Gail et 

al. (1988); Hauck et al. (1991)). 

Many approaches have been developed for goodness-of-fit tests in logistic regression. 

These approaches can be generally summarized into the following categories: (1) 

Chi- square based tests. The chi-square statistic was introduced by Pearson (1900) 

and the theory and applications have been subsequently expanded by Fisher, Yates, 

and others (see Agresti (1990)). Later, several modified chi-square tests have been 

proposed, such as those by Hosmer and Lemeshow (1980), Tsiatis (1980), 

Pulkstenis and Robinson (2002), and Xie et al. (2008). Chi-square based goodness-

of-fit tests are the primary focus of this study and more details are provided in later 

sections. (2) Information matrix approaches. White (1982) proposes a test to detect 

model misspecification based on the information matrix. Newey (1985) proposes a 

calculation procedure to employ the “outer product of the gradient” (OPG) 

covariance matrix estimator of the information matrix test statistic. Orme (1988) 

proposes a simple calculation procedure for the information matrix test statistic for 

general models of binary data by employing the maximum likelihood covariance 
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matrix estimator rather than the OPG estimator. (3) Residual methods.  Copas 

(1989) conducts a study on the unweighted residual sum of squares, and propose a 

test based on scaled chi-square statistics. Hosmer et al. (1997) study the unweighted 

sum-of-squares (le Cessie- van Houwelingen-Copas-Hosmer) goodness-of-fit test 

and find this test to be superior to the other tests they examined. Copas (1983) 

introduces a nonparametric kernel method to examine the smoothed residuals. This 

approach has been extended by Azzalini et al. (1989), who propose a pseudo-

likelihood ratio statistic based on nonparametric kernel method on the residuals. 

Later, le Cessie and van Houwelingen (1991) further refine the approach of Azzalini 

et al. (1989) using an unbiased estimator for the test statistic. (4) R2. Mittlbock and 

Schemper (1996) study the properties of 12 different R2 measures and recommend a 

R2 coefficient based on the log-likelihood. (5) Other methods. Stukel (1988) 

incorporates two shape parameters to extend the formulation of the logistic model 

and improve the model fit. Hosmer et al. (1997) suggest that the Stukel test has 

higher power than other tests they examined for misspecified link functions and 

comparable power to other tests. Osius and Rojek (1992) derive asymptotic moments 

for a general class of goodness-of-fit statistics for multinomial models based on the 

weighted deviations of observed and expected frequencies and then conduct a 

standardized test statistic using the normal distribution. Qin and Zhang (1997) 

propose a Kolmogorov-Smirnov statistic to test the validity of the logistic link 

function. 

The chi-square based goodness-of-fit tests are most commonly used in logistic 

regression. Chi-square based goodness-of-fit tests depend on the number of covariate 

patterns of the predictors compared to the number of positive responses. The 

covariate pattern represents a single set of values for the predictors in a model 

(Hosmer and Lemeshow (2000)). When all predictors are categorical, the Pearson 

chi-square test and the deviance test can be applied. The Hosmer and Lemeshow 

(1980) test can be used when there are continuous predictors. When there are 

continuous and categorical predictors, the Pulkstenis and Robinson (2002) tests and 

the Xie et al. (2008) tests are applicable. 

However, it has been found that these chi-square based tests have similar deficiencies 

(Hosmer et al. (1997), Xie et al. (2008)). For instance, these tests are considered 

conservative as they can have low power to detect specific types of lack-of-fit, these 

methods are highly dependent on how the observations are grouped, there is 

uncertainty in the degrees of freedom for the tests, and the nature of the lack-of-fit can 

be difficult to identify. Hence, the purpose of this research is to explore these chi-

square based goodness-of-fit tests of Hosmer and Lemeshow (1980), Pulkstenis and 

Robinson (2002), and Xie et al. (2008). Specifically, the aims of this study are to (1) 

study the reasons that lead to low power in these tests, (2) propose new modifications 

of these testing procedures to improve goodness-of-fit assessment, (3) assess the size 

and power of the proposed test statistics through simulations, and (4) apply the 

proposed tests on a clinical trial dataset for illustration purposes. 
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2. Goodness-of-fit tests 

Consider a 𝑁 × 1 vector of binary responses 𝐘 = (Y1, Y2, … , Y𝑁)′, where Y𝑖 is 

coded as 1 or 0 for 𝑖 = 1, 2, … , 𝑁. For convenience, the coding of 1 is referred to as 

a positive outcome, and 0 is referred to as a negative outcome. Assume the responses 

𝐘 are independent from the Bernoulli distribution with true probabilities of positive 

outcome  �̇� = (�̇�1, �̇�2, … , �̇�𝑁)′. The true probabilities (�̇�) are unknown in practice, 

but can be assessed using a logistic regression model. The observed  𝑝 × 1  vector of 

regressors for observation 𝑖 is denoted 𝒙𝑖 = (1, 𝑥1𝑖, 𝑥2𝑖, … , 𝑥𝑘𝑖)′ with 𝑝 = 𝑘 + 1 and 

a corresponding  𝑝 × 1 vector of regression coefficients  𝜷 = (𝛽1, 𝛽2, … , 𝛽𝑘)′. The 

model-based probability of a positive outcome (𝜋𝑖) is allowed to depend upon the 

vector of regressors (𝒙𝑖) and regression coefficients (𝜷) with a link function. Using 

a logit link function, the logistic regression model is defined as 

logit(𝜋(𝒙𝑖, 𝜷)) = log {
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
} = 𝒙𝑖

′𝜷  .                                                              (1) 

The estimated probability of a positive outcome can be obtained using the 

maximum likelihood estimator (MLE). The MLE (�̂�) is the value of 𝜷 which 

maximizes the likelihood function   

L = L(𝜷|𝒚) = ∏ 𝜋𝑖(𝒙𝑖, 𝜷)𝑦𝑖𝑛
𝑖=1 (1 − 𝜋𝑖(𝒙𝑖, 𝜷))

1−𝑦𝑖
  .                    (2) 

The resulting estimator of the probability of a positive outcome is Π̂𝑖 = 𝜋(𝒙𝑖, �̂�). 

The estimates �̂� and �̂�𝑖 = 𝜋(𝒙𝑖, �̂�) can be obtained from the observed data 𝒚.  

Goodness-of-fit (GOF) of a model refers to how well an assumed model 

approximates the true data generating process. Thus, a good fitting model should 

produce predicted values that are close to the observed values from the process 

(Hosmer et al. (2013), p. 154). In logistic regression models, goodness-of-fit is 

generally thought of within the context of comparing an observed binomial count for 

a particular grouping to the model expected count for the same grouping. Suppose 

there are 𝑔 groups denoted as rows in the table. The rows are indexed by 𝑔 with 𝑛𝑔 

independent Bernoulli trials per group. Let O𝑔,1 = ∑ Y𝑖
𝑛𝑔

𝑖=1
 denote the observed 

number of presences in group 𝑔 and let O𝑔,0 = 𝑛𝑔 − O𝑔,1 denote the observed 

number of absences in group 𝑔. The responses Y𝑖 are assumed to be generated from a 

true unknown model with corresponding probability �̇�𝑖. Thus, �̇�𝑔,1 = E[O𝑔,1] =

∑ �̇�𝑖
𝑛𝑔

𝑖=1
 and �̇�𝑔,0 = E[O𝑔,0] = 𝑛𝑔 − �̇�𝑔,1 are the true expected counts for positives and 

negatives, respectively, based upon that true model. When a model is assumed as in 

(1), the associated unknown model-based probabilities are 𝜋𝑖. The model-based 

expected counts for positive and negative outcomes are 𝑒𝑔,1 = ∑ 𝜋𝑖
𝑛𝑔

𝑖=1
 and 𝑒𝑔,0 =

𝑛𝑔 − 𝑒𝑔,1, respectively. The MLE of the model-based expected counts are Ê𝑔,1 =

∑ Π̂𝑖
𝑛𝑔

𝑖=1
 and Ê𝑔,0 = 𝑛𝑔 − Ê𝑔,1.  

Formally, a test of goodness-of-fit consists of the hypotheses (Agresti, 1990, pp. 42-

43) 
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H0: 𝑒𝑔,1 = �̇�𝑔,1 and 𝑒𝑔,0 = �̇�𝑔,0 for all 𝑔 ,  

H1: 𝑒𝑔,1 ≠ �̇�𝑔,1 or 𝑒𝑔,0 ≠ �̇�𝑔,0 for some 𝑔 .                             (3) 

The null hypothesis in (3) indicates that the model-based expected counts are the 

same as the expected counts from the true unknown model. A model “fits” when H0 

holds and does not “fit” when H1 holds. The quantities in (3) must be estimated to 

carry out the goodness-of-fit test. The observed counts  O𝑔,1 and O𝑔,0 are used in place 

of  �̇�𝑔,1 and  �̇�𝑔,0, respectively. The estimated expected counts Ê𝑔,1 and Ê𝑔,0 are used 

in place of the model-based expected counts 𝑒𝑔,1 and 𝑒𝑔,0, respectively. The layout 

of these quantities is shown in Table 1. A test statistic is needed to measure the 

closeness within the combinations (O𝑔,1, Ê𝑔,1) and (O𝑔,0, Ê𝑔,0) for 𝑔 = 1, … 𝐺.   

Many goodness of fit statistics are based upon the Pearson chi-square statistic. 

Differences among these statistics amounts to selection of the groups in Table 1. The 

Pearson Chi-Square statistic can be expressed as (Hosmer et al., 2013, p. 158) 

Ĉ𝑃  = ∑
(O𝑔,1−Ê𝑔,1)

2

Ê𝑔,1
+𝐺

𝑔=1 ∑
(O𝑔,0−Ê𝑔,0)

2

Ê𝑔,0

𝐺
𝑔=1 =

∑
(O𝑔,1−𝑛𝑔Π̅̂𝑔)

2

𝑛𝑔Π̅̂𝑔
+𝐺

𝑔=1 ∑
(𝑛𝑔−O𝑔,1−𝑛𝑔(1−Π̅̂𝑔))

2

𝑛𝑔(1−Π̅̂𝑔)

𝐺
𝑔=1                                                           (4) 

        = ∑
(O𝑔,1−𝑛𝑔Π̅̂𝑔)

2

𝑛𝑔Π̅̂𝑔(1−Π̅̂𝑔)
(1 − Π̅̂𝑔 + Π̅̂𝑔)𝐺

𝑔=1  , 

noting Ê𝑔,1 = ∑ Π̂𝑖
𝑛𝑔

𝑖=1
= 𝑛𝑔Π̅̂𝑔 and Ê𝑔,0 = 𝑛𝑔 − ∑ Π̅̂𝑔

𝑛𝑔

𝑖=1
= 𝑛𝑔(1 − Π̅̂𝑔). For 

example, Ĉ𝑃 could be used when each group denotes a unique covariate pattern 

among c categorical regressors. It is recommended that observed values of Ê𝑔,1 

exceed 5 for all 𝑔 in order to assume that the null distribution of Ĉ𝑃 is 𝜒𝐺−𝑐−1
2 . Thus, 

this approach would not be appropriate when the model contains numerous 

categorical covariates or continuous covariates since these settings may result in 

numerous groups with observed values of Ê𝑔,1 less than 5. 

 

Table 1. Observed and expected counts by groups. 

 Positive outcome Negative outcome  
Grou

p 

Observe

d 

Expecte

d 

Observe

d 

Expecte

d 

Tot

al 
1  O1,1  Ê1,1  O1,0  Ê1,0  𝑛1  

⋮ ⋮ ⋮  ⋮ ⋮  ⋮ 

𝑔 O𝑔,1 Ê𝑔,1  O𝑔,0 Ê𝑔,0  𝑛𝑔 

⋮ ⋮       ⋮ ⋮       ⋮ ⋮ 

𝐺 O𝐺,1 Ê𝐺,1  O𝐺,0 Ê𝐺,0  𝑛𝐺 
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In order to perform goodness-of-fit testing for a model containing continuous 

covariates, Hosmer and Lemeshow (1980) (denoted here as HL) propose a test which 

first orders all responses according to their estimated probabilities, and then 

classifies them into ten deciles. This approach essentially provides a substitute set of 

covariate patterns with sufficient cell sizes (Pulkstenis and Robinson, 2002). In this 

case, 𝐺 = 10, so that there are 10 rows in the classification table. The first group 

contains roughly 10% of the smallest estimated probabilities while the last group 

contains roughly 10% of the largest estimated probabilities. The observed and 

expected cell counts are obtained for each of these groups, and the statistic in (4) is 

calculated (Pulkstenis and Robinson, 2002, equation (3)). Denote the HL statistic as 

Ĉ𝐻𝐿. The value of this statistic can differ according to how the deciles are calculated. 

The limiting null distribution of Ĉ𝐻𝐿 is taken to be 𝜒𝐺−2
2  from which the p-value 

(HL.p) can be calculated (Hosmer and Lemeshow, 2013, Section 5.2.2). The HL test 

can be used with continuous and categorical predictors in the specified model. 

However, Hosmer and Lemeshow (2013, p. 161) warn that this test should be used 

when there is an adequate number of covariate patterns. Otherwise, there will be 

numerous ties in the rankings of the estimated probabilities which could affect 

selection of the deciles.  

Pulkstenis and Robinson (2002) (here denoted as PR) propose a goodness-of-fit test 

statistic which accommodates both continuous covariates and 𝑀 covariate patterns 

from c categorical regressors. The responses are sorted by the corresponding 

estimated probabilities within each of the 𝑀 categories. Each category is then split 

into two sub-categories where one subcategory has estimated probabilities below the 

median, and the other subcategory has estimated probabilities above the median. The 

observed and expected cell counts can be computed for each of these 𝐺 = 2𝑀 

groups, and the statistic in (4) is calculated (Pulkstenis and Robinson, 2002, equation 

(4)). Denote the PR test statistic as Ĉ𝑃𝑅. Pulkstenis and Robinson (2002) suggest that 

the null distribution of Ĉ𝑃𝑅 is 𝜒2𝑀−𝑐−2
2  from which the p-value (PR.p) can be 

calculated. The value of Ĉ𝑃𝑅 can vary depending upon how the median is calculated 

in the presence of ties.  

Xie et al. (2008) (here denoted as XIE) propose a goodness-of-fit test in which 

groups are formed by partitioning the covariate space. They utilize cluster analysis to 

obtain regions of similarity with respect to Euclidean distance among the k 

regressors. The resulting clusters form the covariate patterns which determine the 

groups. Xie et al. (2008) propose using 𝐺 = 10 clusters when 𝑘 < 5 and 𝐺 = 𝑘 + 5 

clusters when 𝑘 ≥ 5. The observed and expected cell counts can be computed for 

each of these 𝐺 groups formed from the clusters and the statistic in (4) is calculated 

(Xie et al., 2008, p 2706). Denote the XIE test statistic as ĈXIE. Xie et al. (2008) 

suggest the null distribution of ĈXIE is 𝜒𝐺−𝑘/2−2
2  from which the p-value (XIE.p) can 

be calculated. These authors utilize the Ward method of clustering (Rencher and 

Christensen, 2012, pp. 520-521). Their test is appropriate for any combination of 

continuous and categorical regressors such that the number of covariate patterns 
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exceeds 𝐺. The clustering is based upon all regressors in the model, including 

interaction terms.  

The HL, PR, XIE tests are similar in that they are all chi-square based tests. The 

major differences exist in the grouping algorithms. For instance, Hosmer and 

Lemeshow (1980) use deciles of the sorted estimated probabilities to form the 

groups, Pulkstenis and Robinson (2002) use the median of the sorted estimated 

probabilities within each covariate pattern (as determined by categorical regressors) 

to form the groups, and Xie et al. (2008) used the covariate space and then apply 

clustering to obtain the groups. However, these groupings may not be appropriate if 

the specified model contains lack-of-fit. For instance, if a first-order term, an 

interaction term, or a quadratic term is omitted from the model, then the estimated 

probabilities (�̂�) could have large discrepancies from the true probabilities (�̇�), 

which could then lead to poor groupings in these tests. 

 

3. Proposed tests 

As discussed in the previous section, if continuous predictors exist in a model, then 

the Pearson chi-square test cannot be applied directly. Some grouping algorithms are 

needed to compute the modified chi-square test statistics (HL, PR, and XIE). 

Misspecifications of the covariates in an assumed model could cause large 

discrepancies between the estimated probabilities and the true probabilities that 

would adversely affect the groupings in the modified chi-square test statistics. In 

particular, this problem may lead to low power in detecting some types of lack-of-fit.  

These concerns suggest new approaches for improving these goodness-of-fit tests. 

Specifically, it might be possible to achieve better test performance by forming the 

groupings based upon estimated probabilities from an over-fit logistic regression 

model. For instance, this over-fit model could be obtained using all of the observed 

covariates, interaction terms, as well as nonlinear functions of the covariates. Rather 

than having to specify all of these terms, a more convenient approach would be to 

use a Generalized Additive Model (GAM) (Hastie and Tibshirani (1986)). The GAM 

formulation of the logistic regression model is given by 

logit(𝜋(𝒙𝑖)) = log {
𝜋(𝒙𝑖)

1−𝜋(𝒙𝑖)
} = 𝑠0 + ∑ 𝑠𝑗(𝑥𝑖,𝑗)𝑝

𝑗=1       (5) 

where 𝑠𝑗 is the smooth function for variable 𝑗. The GAM is a generalization of the 

standard linear model, and it allows easier interpretations of the contributions of each 

variable. Hastie and Tibshirani (1986) suggest a mixture of the generalized linear 

models (Nelder and Wedderburn (1972)) and the GAM to be used in practice, which 

is the approach adopted in this study for the proposed tests. The resulting model is  

logit(𝜋(𝒙𝑖, 𝜷)) = log {
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
} = 𝑠0 + ∑ 𝛽𝑗𝑥𝑖,𝑗

𝑝
𝑗=1 + ∑ 𝑠𝑗(𝑥𝑖,𝑗)𝑞

𝑗=𝑝+1  .            (6) 

where 𝑥𝑖,𝑗, 𝑗 = 1, … , 𝑝, are the categorical variables, and 𝑥𝑖,𝑗, 𝑗 = 𝑝 + 1, … , 𝑞, are 

the continuous variables. The smooth functions (𝑠𝑗) can be estimated by the 
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scatterplot smoother which is an iterative procedure called the local smoothing 

algorithm. The local smoothing algorithm utilizes scatter plot smoothers to 

generalize the usual Fisher scoring procedure for computing maximum likelihood 

estimates. Hastie and Tibshirani (1986) use the local average estimates based on 

symmetric nearest neighborhoods. Associated with a neighborhood is the span or 

window size, 𝑤, which is the proportion of total points contained in each 

neighborhood. Different scatterplot smoothers can be used such as a running mean, 

running median, running least squares line, kernel estimate, or spline (Reinsch 

(1967), Cleveland (1979)). The running mean is not a satisfactory smoother because 

it creates large biases at the end points (Hastie and Tibshirani (1986)). The kernel or 

spline smoother could be expected to work well, but requires an increased cost of 

computation. So, Hastie and Tibshirani (1986) suggest using the running lines 

smoother, which produces reasonable results and has the advantage that the estimate 

in a neighborhood can be found by updating the estimate of the previous 

neighborhood. In summary, GAM proves to be useful in uncovering nonlinear 

covariate effects. It has the advantage of being completely automatic. Hence, the 

GAM provides a convenient tool to develop an over-fit model that can be used for 

grouping in the newly proposed goodness-of-fit tests. The proposed approach for the 

goodness-of-fit tests is to develop a mixture GAM from (6) with all of the available 

covariates as well as two-way interaction terms to obtain an overfit model. The 

estimator of the mixture GAM probabilities are denoted as �̂�𝐺𝐴𝑀, which is used to 

construct the groupings for the previously mentioned goodness-of-fit tests. The 

smooth functions for 𝑠 consist of a maximum order of 3 polynomial components for 

each of the continuous variables. The gam function from the gam package in R is 

used fit the GAM. The associated modified tests are denoted as HL.GAM, PR.GAM, 

and XIE.GAM. The degrees of freedom for these proposed tests are obtained 

following the same rules as specified previously. Simulation studies and a clinical 

trial example will be performed in later sections to illustrate and evaluate the 

proposed testing procedures. 

 

4. Simulation results 

In this section, several simulation scenarios are considered with the proposed test 

procedures. These scenarios include assumed models containing lack-of-fit from 

omitting an interaction term, a quadratic term, or a first-order term. These simulation 

scenarios are used to evaluate the size and the power of the proposed tests. The 

simulations involve randomly generating 𝑁 binary values from the Bernoulli 

distribution with true model probabilities �̇�𝑖 as  

Y𝑖
(𝑡)

 i. i. d.  𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(�̇�𝑖) ,  𝑖 = 1,2, … , 𝑁 .                     (7)  

The simulation of 𝑁 binary values is repeated 5000 times with 𝑡 = 1,2, … ,5000. 

For each 𝑡, the goodness of fit tests are conducted at level 𝛼 = 0.05. The number of 
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rejections out of 5000 are used to assess the size of the tests under the correctly 

specified model and the power of the tests under the incorrectly specified models.   

4.1 Omitting an interaction term 

Consider the following model modified from Xie et al. (2008). The simulated true 

probabilities  �̇�𝑖 are randomly generated using  

log (
�̇�𝑖(𝒙𝑖)

1−�̇�𝑖(𝒙𝑖)
) = −1.7918 + 𝑥𝑖,1 + 𝑥𝑖,2 + 0.1352𝑥𝑖,3 + 1.7918𝑥𝑖,4 +

0.5973𝑥𝑖,3𝑥𝑖,4 ,              (8)  

where 𝑥𝑖,1 i.i.d 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑥𝑖,2 i.i.d 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.15), and 𝑥𝑖,3 i.i.d 

𝑈(−3,3). The sample size was chosen to be 𝑁 = 500 so that it would be possible to 

detect lack-of-fit when it exists. Three scenarios are developed to study the influence 

of covariates on the model fit, where 𝑥𝑖,4 is randomly sampled from 𝑁(0,4), 

𝑈(−3,3), and 𝐵𝑒𝑡𝑎(4,2) × 6 − 3, respectively. The latter two distribution are 

specified to have supports on [−3,3]. The specified normal distribution has about 

86.6% of the values within [−3,3]. The support values for 𝑥𝑖,4 are important since it 

determines the magnitude of the interaction (𝑥𝑖,3𝑥𝑖,4) in (8) relative to the other 

covariates. Three models are considered:  

(a) the full model that includes the interaction between 𝑥𝑖,3 and 𝑥𝑖,4,  

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4 𝑥𝑖,4 + 𝛽5𝑥𝑖,3𝑥𝑖,4,          (9)     

with estimated probabilities 𝜋𝑠 ;  

(b) the reduced model that omits the interaction between 𝑥𝑖,3 and 𝑥𝑖,4,  

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4 𝑥𝑖,4,                          (10)    

with estimated probabilities 𝜋𝑟 ;  

(c) the mixture GAM to be used in the proposed tests,   

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝑠0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,1𝑥𝑖,2 + 𝑠1(𝑥𝑖,3) + 𝑠2(𝑥𝑖,4) 

  +𝑠3(𝑥𝑖,1𝑥𝑖,3) + 𝑠4(𝑥𝑖,1𝑥𝑖,4) + 𝑠5(𝑥𝑖,2𝑥𝑖,3) + 𝑠6(𝑥𝑖,2𝑥𝑖,4)+𝑠7(𝑥𝑖,3𝑥𝑖,4),   (11)                                     

with estimated probabilities 𝜋𝐺𝐴𝑀 .  

Test results from 5000 iterations are summarized in Table 2. The sizes of all 

the tests appear to be around the 0.05 level. However, the power of the tests 

vary. The Hosmer-Lemeshow test (HL) has relatively high power with about 75% 

rejection rate on the reduced model in scenarios 1 and 2, and a 43% rejection rate in 

scenario 3. The Pulkstenis and Robinson chi-square (PR) test has low power with 

rejection rate <10% in all three scenarios. The Xie chi-square test (XIE) has a 

rejection rate at 26% in scenario 1, 81% in scenario 2, and 39% in scenario 3. 

However, the modified tests using the over-fit GAM in (11) has increased the power 

for all tests and scenarios. The modified Hosmer and Lemeshow test (HL+GAM) has 

a rejection rate at around 90% in the three scenarios. The power from the modified 
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Xie test (XIE+GAM) has been increased with rejection rates at greater than 90% in 

scenarios 1 and 2, and 74% in scenario 3. The new grouping algorithm also 

improved the Pulkstenis and Robinson chi-square test as the rejection rates have 

increased to 79% in scenario 1, 57% in scenario 2, and 62% in scenario 3. 

 

Table 2. Goodness-of-fit tests applied to the full model (9) and to the lack-of-fit 

model (10) that omits an interaction term. 

 Full model Reduced 

model 

 
𝑥𝑖,4 i. i. d 𝑁(0,4) Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Powe

r 
HL 7.72

0 

48.40

2 

8 6.60

% 

29.6

44 

411.7

3 

8 75.18

% 
PR 3.66

2 

5.28

9 

4 2.44

% 

4.94

6 

7.862 4 6.80

% 
Xie 3.02

8 

3.48

4 

6.

5 

0.14

% 

11.4

56 

23.83

7 

7 25.80

% 
HL + GAM 7.79

7 

17.18

9 

8 2.98

% 

27.6

12 

56.19

5 

8 97.18

% 
PR + GAM 

 

4.87

0 

5.89

0 

4 4.44

% 

14.9

90 

41.03

1 

4 79.28

% 
Xie + GAM 4.69

5 

7.38

3 

6 1.06

% 

26.7

28 

170.11

9 

6.

5 

94.38

% 
           𝑥𝑖,4 i. i. d 𝑈(−3,3) Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Powe

r 
HL 7.56

2 

47.65

8 

8 5.98

% 

27.9

33 

298.24

2 

8 76.18

% 
PR 3.72

2 

5.44

0 

4 2.48

% 

4.30

8 

6.501 4 4.44

% 
Xie 4.48

0 

7.09

3 

6.

5 

1.18

% 

20.1

06 

47.80

8 

7 80.52

% 
HL + GAM 7.58

8 

17.44

4 

8 2.94

% 

25.0

50 

43.25

0 

8 94.40

% 
PR + GAM 

 

4.74

3 

5.73

2 

4 4.44

% 

11.2

11 

29.93

0 

4 56.52

% 
Xie + GAM 5.75

6 

10.39

7 

6 3.48

% 

28.2

44 

120.31

0 

6.

5 

95.90

% 
𝑥𝑖,4 i. i. d 𝐵𝑒𝑡𝑎(4,2) × 6

− 3 

Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Powe

r 
HL 7.76

1 

18.68

1 

8 4.96

% 

15.5

16 

54.43

3 

8 43.12

% 
PR 3.83

5 

6.36

7 

4 3.62

% 

4.18

1 

7.138 4 4.50

% 
Xie 5.13

5 

26.11

6 

6.

5 

5.44

% 

13.2

02 

25.74

7 

7 39.48

% 
HL + GAM 8.85

8 

14.15

3 

8 5.32

% 

23.1

64 

43.22

8 

8 88.60

% 
PR + GAM 

 

4.11

7 

5.31

9 

4 2.92

% 

11.3

69 

20.14

3 

4 62.26

% 
Xie + GAM 6.03

4 

15.39

6 

6 5.36

% 

18.1

65 

51.49

5 

6.

5 

74.06

%  

Figure 1 shows the groupings formed by each goodness-of-fit test based upon the 

true probabilities (�̇�) in (8) versus those based upon the estimated probabilites (�̂�𝑠) 

from the full model in (9), the estimated probabilites (�̂�𝑟) from the reduced model in 

(10), and the estimated probabilities (�̂�𝐺𝐴𝑀) from the over-fit GAM. Hence, a plot of 

these groupings between the true and estimated probabilities illustrates discrepancies 

in the grouping results. For example, consider the Hosmer and Lemeshow test in 

scenario 1 (Figure 1a, b, c). With 𝐺 = 10 deciles, the counts 𝑛𝑖,𝑗 = 10 from cell 

(𝑖, 𝑗) in the plot (displayed in different color) provides the average number of 

observations that have been grouped into decile 𝑖 based on the true probabilities (�̇�) 

from (8), but are grouped into decile 𝑗 based on the estimated probabilities 

(�̂�𝑠, �̂�𝑟 , �̂�𝐺𝐴𝑀) obtained from (9), (10) and (11), respectively, with 

∑ ∑ 𝑛𝑖,𝑗
10
𝑗=1

10
𝑖=1 = 500. Only those cells with 𝑛𝑖,𝑗 ≥ 5 observations are 

displayed in the plots.  
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Figure 1: Group ID based on simulated true probabilities from (8) compared 
to (a) group ID based on the estimated probabilities from the full model (9) 

used for the original Hosmer and Lemeshow test; (b) group ID based on the 
estimated probabilities from the reduced model (10) used for the original 

Hosmer and Lemeshow test; (c) group ID based on the estimated 
probabilities from the GAM (11) used for the modified Hosmer and 

Lemeshow test; (d) group ID based on the estimated probabilities from the 
full model (9) used for the original Pulkstenis and Robinson tests; (e) group 

ID based on the estimated probabilities from the reduced model (10) used for 
the original Pulkstenis and Robinson tests; (f) group ID based on the 

estimated probabilities from the GAM (11) used for the modified Pulkstenis 
and Robinson tests; (g) group ID based on the estimated probabilities from 
the full model (9) used for the original Xie test; (h) group ID based on the 

estimated probabilities from the reduced model (10) used for the original Xie 
test; and (i) group ID based on the estimated probabilities from the GAM (11) 

used for the modified Xie test. 

 

Specifically, the grouping results based on the estimated upon probabilities (�̂�𝑠) 

from the full model in (9) match well with grouping results based the simulations of 

the true probabilities (�̇�). This holds for the Hosmer and Lemeshow test (Figure 1a), 
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the Pulkstenis and Robinson test (Figure 1d), and the Xie test (Figure 1g). Consider 

the tests using the groupings based upon the reduced model in (10). For the Hosmer 

and Lemeshow test (Figure 1b), the groupings based on the estimated probabilities 

from the reduced model (�̂�𝑟) are different from the groupings based on simulations 

of the true probabilities (�̇�). These grouping results are better in the Pulkstenis and 

Robinson test (see Figure 1e). In the Xie test, omitting an interaction term in the 

reduced model causes large discrepancies in the groupings (see Figure 1h). More 

importantly, after using the probabilities (�̂�𝐺𝐴𝑀) from the GAM (11), the grouping 

results have been improved, especially for the modified Hosmer-Lemeshow test. As 

shown in Figure 1c, the grouping results based on the estimated probabilities from 

the GAM generally match well with grouping results based on simulated true 

probabilities (�̇�). The grouping in the modified Pulkstenis and Robinson tests 

(Figure 1f) is better than the reduced model. However, the modified Xie test (Figure 

1i) does not show much improvement in the grouping results after incorporating the 

estimated probabilities (�̂�𝐺𝐴𝑀) from the GAM in the cluster analysis. 

 

Table 3. Summaries of 𝑅2 between true probabilities and estimated probabilities. 

 Full model (9) Reduced model 

(10) 

GAM model  

(11) 
 Mean        SD Mean        SD Mean SD 

𝑥𝑖,4 i. i. d 𝑁(0,4) 0.9940

7 

0.00369

4 

0.9305

6 

0.00520

1 

0.9798

7 

0.00655

1 
           𝑥𝑖,4 i. i. d 𝑈(−3,3) 

i.i.d. Beta(4, 2) × 6 − 3 

0.9937

9 

0.9924

0 

0.00386

8 

0.00477

2 

0.9397

5 

0.9660

9 

0.00644

4 

0.00582

4 

0.9792

6 

0.9745

0 

0.00674

9 

0.00799

8 

𝑥𝑖,4 i. i. d 𝐵𝑒𝑡𝑎(4,2) × 6

− 3 

0.9926

8 

0.9924

0 

0.00472

8 

0.00477

2 

0.9260

3 

0.00510

5 

0.00582

4 

0.9747

3 

0.9745

0 

0.00803

2 

0.00799

8 

 

The simulation also allows for comparison of the simulated true probabilities and the 

estimated probabilities. The squared correlation 𝑅2 is computed for each simulation 

and the mean and standard deviations are given from the 5000 iterations. In general, 

the squared correlation between true probabilities and the estimated probabilities 

from the full model is high (> 0.99) in the three scenarios. The estimated 

probabilities from the reduced model show some differences from the simulated true 

probabilities with an average 𝑅2 close to 0.93 in the three scenarios. The over-fit 

GAM seems to approximate the true probabilities well, with an average 𝑅2 greather 

than 0.97 for all 3 scenarios.  

4.2 Omitting a quadratic term 

Consider the following model modified from Xie et al. (2008). The simulated true 

probabilities  �̇�𝑖 are randomly generated using  

log (
�̇�𝑖(𝒙𝑖)

1−�̇�𝑖(𝒙𝑖)
) = −3.2324 + 𝑥𝑖,1 + 𝑥𝑖,2 + 𝑥𝑖,3 + 0.5583𝑥𝑖,4 + 0.5002𝑥𝑖,4

2 ,    (12)  

where 𝑥𝑖,1 i.i.d 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑥𝑖,2 i.i.d 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.15), 𝑥𝑖,3 i.i.d 

𝑈(−3,3). The sample size was chosen to be 𝑁 = 500. Again, three scenarios are 

developed where 𝑥𝑖,4 is randomly sampled from 𝑁(0,4), 𝑈(−3,3), and 

𝐵𝑒𝑡𝑎(4,2) × 6 − 3, respectively. Three models are considered: 
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(a) the full model that includes the interaction between 𝑥𝑖,3 and 𝑥𝑖,4,  

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4 𝑥𝑖,4 + 𝛽5𝑥𝑖,4

2 ,             (13)     

with estimated probabilities �̂�𝑠 ;  

(b) the reduced model that omits the quadratic term 𝑥𝑖,4
2 ,  

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4 𝑥𝑖,4,                          (14)    

 with estimated probabilities �̂�𝑟 ;  

(c) the mixture GAM to be used in the proposed tests,   

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝑠0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,1𝑥𝑖,2 + 𝑠1(𝑥𝑖,3) + 𝑠2(𝑥𝑖,4) 

 +𝑠3(𝑥𝑖,1𝑥𝑖,3) + 𝑠4(𝑥𝑖,1𝑥𝑖,4) + 𝑠5(𝑥𝑖,2𝑥𝑖,3) + 𝑠6(𝑥𝑖,2𝑥𝑖,4)+𝑠7(𝑥𝑖,3𝑥𝑖,4),    (15)                                     

with estimated probabilities �̂�𝐺𝐴𝑀 .  

Notice that the quadratic term (𝑥𝑖,4
2 ) and the cubic term (𝑥𝑖,4

3 ) are included in this 

overfit GAM since the smoothing function has maximum order of 3 polynomial 

components.  

The test results from 5000 iterations are given in Table 4. The size of all tests 

are close to the 0.05 level. The Hosmer-Lemeshow test has low power with 

rejection rates at 15% in scenario 1, 6% in scenario 2, and 22% in scenario 3. The 

Pulkstenis and Robinson chi-square test has low power with rejection rates less than 

10% in all scenarios. The Xie chi-square test behaves differently with rejection rate 

of 100% in scenario 1, 68% in scenario 2, and 11% in scenario 3. However, the 

estimated power of test statistics has been dramatically increased to almost 100% in 

the proposed tests (HL+ GAM, PR + GAM, XIE + GAM) in scenarios 1 and 2. For 

scenario 3, the power from the proposed tests (HL + GAM, PR + GAM, XIE + 

GAM) are also higher than the original tests (HL, PR, XIE).Table 5 gives summaries 

for 𝑅2 to measure the squared correlation between the simulated true probabilities 
(�̇�) and the estimated probabilities for the full model (�̂�𝑠), reduced model (�̂�𝑟), and 

GAM (�̂�𝐺𝐴𝑀). In general, the correlations between true probabilities versus the 

estimated probabilities from the full model are very high (>0.99) in the three 

scenarios. The GAM also seems to approximate the true probabilities very well with 

an average 𝑅2 > 0.97 for all three scenarios. The estimated probabilities from the 

reduced model show differences from the simulated true probabilities with an 

average 𝑅2  of 0.63 in scenario 1, 0.81 in scenario 2, and 0.97 in scenario 3, 

respectively. The power from the proposed tests does not provide much 

improvement for scenario 3 as the estimated probabilities do not improve the average 

squared  correlation to the true probabilities  in scenario 3 from the reduced model. 
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Table 4. Goodness-of-fit tests applied to the full model (13) and to the lack-of-

fit model (14) that omits an interaction term. 

 Full model Reduced 

model 

 
𝑥𝑖,4 i. i. d 𝑁(0,4) Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Pow

er 
HL 8.01

3 

22.13

6 

8 6.50

% 

10.4

96 

23.13

9 

8 14.58

% 
PR 3.87

1 

6.05

0 

4 3.14

% 

3.88

6 

6.084 4 3.42

% 
Xie 4.50

9 

33.51

5 

6.

5 

3.06

% 

50.7

69 

80.61

4 

7 100.0

0% 
HL + GAM 8.23

2 

12.88

1 

8 4.30

% 

127.4

05 

236.70

1 

8 100.0

0% 
PR + GAM 

 

5.28

0 

9.21

5 

4 9.74

% 

93.3

98 

268.08

3 

4 100.0

0% 
Xie + GAM 5.87

0 

71.58

0 

6 4.10

% 

119.5

57 

617.49

5 

6.

5 

100.0

0% 
           𝑥𝑖,4 i. i. d 𝑈(−3,3) Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Pow

er 
HL 7.95

4 

17.08

9 

8 5.26

% 

8.37

7 

16.27

4 

8 5.82

% 
PR 3.94

6 

6.27

4 

4 3.28

% 

4.04

3 

5.905 4 2.98

% 
Xie 4.04

5 

5.26

8 

6.

5 

0.36

% 

17.4

00 

36.57

3 

7 68.40

% 
HL + GAM 8.53

4 

12.04

7 

8 3.96

% 

51.0

29 

132.69

8 

8 100.0

0% 
PR + GAM 

 

4.53

6 

6.13

1 

4 4.26

% 

27.5

58 

67.06

1 

4 99.74

% 
Xie + GAM 5.46

4 

8.24

5 

6 2.02

% 

34.3

89 

160.29

1 

6.

5 

98.12

% 
𝑥𝑖,4 i. i. d 𝐵𝑒𝑡𝑎(4,2) × 6

− 3 

Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Pow

er 
HL 7.96

6 

16.31

7 

8 5.26

% 

11.8

50 

61.77

5 

8 21.90

% 
PR 3.88

6 

6.12

8 

4 3.34

% 

4.27

7 

7.380 4 5.10

% 
Xie 4.19

9 

6.20

0 

6.

5 

0.82

% 

8.41

4 

18.67

0 

7 10.80

% 
HL + GAM 8.40

6 

12.13

3 

8 4.02

% 

13.3

04 

21.84

6 

8 28.28

% 
PR + GAM 

 

4.54

7 

5.97

5 

4 4.26

% 

6.94

6 

10.79

3 

4 20.26

% 
Xie + GAM 5.61

5 

8.53

7 

6 2.90

% 

9.47

9 

28.71

9 

6.

5 

18.58

%  

4.3 Omitting a first-order term 

For this scenario, consider the model in (8) which is modified by replacing the 

interaction term (𝑥𝑖,3𝑥𝑖,4) with a new varible (𝑥𝑖,5). The simulated true 

probabilities (�̇�𝑖) are randomly generated using  

log (
�̇�𝑖(𝒙𝑖)

1−�̇�𝑖(𝒙𝑖)
) = −1.7918 + 𝑥𝑖,1 + 𝑥𝑖,2 + 0.1352𝑥𝑖,3 + 1.7918𝑥𝑖,4 +

0.5973𝑥𝑖,5,                           (16)  

where 𝑥𝑖,1 i.i.d 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.5), 𝑥𝑖,2 i.i.d 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(0.15), 𝑥𝑖,3 i.i.d 

𝑈(−3,3), and 𝑥𝑖,4 i.i.d 𝑁(0,4) with 𝑁 = 500 and 𝑇 = 5000. Three scenarios 

are developed where 𝑥𝑖,5 is randomly sampled from 𝑁(0,4), 𝑈(−3,3), and 

𝐵𝑒𝑡𝑎(4,2) × 6 − 3, respectively. Three models are considered: 

(a) the full model that includes the first order term ‘𝑥𝑖,5’,  

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4 𝑥𝑖,4 + 𝛽5𝑥𝑖,5,             (17)     

with estimated probabilities 𝜋𝑠 ;  

(b) the reduced model that omits the first-order term 𝑥𝑖,5,  

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,3 + 𝛽4 𝑥𝑖,4,                          (18)    
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with estimated probabilities 𝜋𝑟 ;  

(c) the mixture GAM to be used in the proposed tests,   

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝑠0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + 𝛽3𝑥𝑖,1𝑥𝑖,2 + 𝑠1(𝑥𝑖,3) + 𝑠2(𝑥𝑖,4) +

𝑠3(𝑥𝑖,5) + 𝑠4(𝑥𝑖,1𝑥𝑖,3) + 𝑠5(𝑥𝑖,1𝑥𝑖,4) + 𝑠6(𝑥𝑖,2𝑥𝑖,3) + 𝑠7(𝑥𝑖,2𝑥𝑖,4)+𝑠8(𝑥𝑖,3𝑥𝑖,4)         

(19)                                     

with estimated probabilities 𝜋𝐺𝐴𝑀 .  

 

Table 5: Summaries of 𝑅2 between true probabilities and estimated probabilities. 

 Full model (13) Reduced model 

(14) 

GAM model  

(15) 
 Mean        SD Mean        SD Mean SD 

𝑥𝑖,4 i. i. d 𝑁(0,4) 0.9935

8 

 

0.00406

3 

0.6333

6 

0.00468

7 

0.9759

3 

0.00708

1 
           𝑥𝑖,4 i. i. d 𝑈(−3,3) 

i.i.d. Beta(4, 2) × 6 − 3 

0.9926

9 

0.9924

0 

0.00474

3 

0.00477

2 

0.8144

4 

0.9660

9 

0.00429

3 

0.00582

4 

0.9730

8 

0.9745

0 

0.00840

5 

0.00799

8 

𝑥𝑖,4 i. i. d 𝐵𝑒𝑡𝑎(4,2) × 6

− 3 

0.9924

0 

0.9924

0 

0.00477

2 

0.00477

2 

0.9660

9.9660

9 

0.00582

4 

0.00582

4 

0.9745

0 

0.9745

0 

0.00799

8 

0.00799

8 

 

The GAM in (19) does not contain interactions involving 𝑥𝑖,5. This was necessary to 

inusre convergence of the GAM fit which could be problematic in the presence of 

numerous correlated predictors.  

Goodness-of-fit tests are known to have low power in detecting a missing first-order 

term (Xie et al., 2008). The proposed modified tests are also likely to have low 

power to detect a missing first-order term if that missing term is not incorporated 

into the GAM. However, if the necessary data is available, the proposed approach 

provides a way to incorporate this missing model information into the grouping 

mechanism in order to better detect lack-of-fit. Thus, the proposed GAM in (19) 

incorporates the missing predictor (𝑥𝑖,5) assuming such data is available. The 

simulation results are shown in Table 6.  

 

Table 6: Goodness-of-fit tests applied to the full model (17) and to the lack-of-fit 

model (18) that omits a first-order term. 

 Full model Reduced 

model 

 
𝑥𝑖,4 i. i. d 𝑁(0,4) Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Pow

er 
HL 7.92

4 

60.61

1 

8 6.76

% 

6.96

0 

15.82

2 

8  

3.56

% 

PR 3.62

0 

5.34

9 

4 2.60

% 

3.66

9 

5.490 4 2.36

% 
Xie 4.06

9 

6.890 6.

5 

1.26

% 

4.25

2 

27.11

6 

7   

3.30% 
HL + GAM 7.45

1 

10.23

0 

8 1.98

% 

26.71

8 

47.108 8 96.48

% 
PR + GAM 

 

4.57

7 

5.18

6 

4 3.40

% 

15.1

85 

30.409 4 85.24

% 
Xie + GAM 5.72

8 

9.666 6 2.70

% 

16.47

8 

35.933 6.

5 

66.74

% 
           𝑥𝑖,4 i. i. d 𝑈(−3,3) Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Pow

er 
HL 7.84

3 

50.20

0 

8 6.12

% 

7.34

6 

17.38

9 

8 4.20

% 
PR 3.72

4 

5.93

1 

4 2.74

% 

3.45

5 

4.967 4 1.90

% 
Xie 3.45

1 

12.4

98 

6.

5 

1.60

% 

4.16

0 

22.75

5 

7 2.62

% 
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HL + GAM 7.69

8 

10.79

4 

8 2.44

% 

21.41

8 

38.912 8 83.28

% 
PR + GAM 

 

4.33

2 

5.00

0 

4 2.90

% 

12.23

6 

25.36

3 

4 67.78

% 
Xie + GAM 5.85

9 

7.89

9 

6 2.38

% 

12.65

5 

25.086 6.

5 

38.94

% 
𝑥𝑖,4 i. i. d 𝐵𝑒𝑡𝑎(4,2) × 6

− 3 

Mea

n 

Var d

f 

Siz

e 

Mea

n 

Var d

f 

Pow

er 
HL 7.83

5 

31.02

8 

8 7.26

% 

7.62

8 

19.83

5 

8   

5.64

% 

PR 3.67

3 

6.66

6 

4 3.40

% 

3.55

9 

4.902 4 2.18

% 
Xie 3.28

0 

3.34

5 

6.

5 

0.06

% 

4.52

8 

24.37

6 

7   

3.56

% 

HL + GAM 7.46

6 

9.056 8 1.88

% 

11.71

4 

16.27

2 

8 16.26

% 
PR + GAM 

 

4.02

3 

5.11

4 

4 2.48

% 

6.47

6 

10.14

7 

4 16.82

% 
Xie + GAM 5.79

5 

9.45

7 

6 2.98

% 

7.69

7 

12.35

2 

6.

5 

  

7.30

% 

 

The tests results from a simulation with 5000 iterations are shown in Table 6. The 

rejection rate of these tests on the full model are around 5%, which suggests the size 

of these test remains at level α. HL, PR and XIE tests all have low power to detect 

lack-of-fit associated with the omission of a first-order term. However, if the first-

order term 𝑥𝑖,5 is included in the GAM (19), the power can be increased to 96% and 

83% in the modified Hosmer and Lemeshow test, 85% and 68% in the modified 

Pulkstenis and Robinson chi-square test, and 67% and 39% in the modified Xie chi-

square test. The proposed tests did not have very high power for the third scenario, 

though there is some improvement over the original tests.  The proposed tests also 

did not provide increased power when 𝑥𝑖,5 was not included in the GAM (19) as 

might be expected.  

The results are confirmed by the 𝑅2 between the simulated true probabilities (�̇�) 

and the estimated probabilities. For instance, the squared correlations between �̇� and 

�̂�𝐺𝐴𝑀 in (19) are relatively close to those between �̇� and �̂�𝑠. On the other hand, the 

squared correlations between �̇� and �̂�𝐺𝐴𝑀 without 𝑥𝑖,5 are closer to those between �̇� 

and �̂�𝑟. Thus, the incorporation of the omitted first-order term in the GAM would be 

expected to produce groupings consistent with those of the full model.    

 

Table 7: Summaries of 𝑅2 between true probabilities and estimated probabilities. 

 Full model (17) Reduced model 

(18) 

GAM (19) 

GAM w/o  𝑥𝑖,5 

 Mean        SD Mean        SD Mean         SD 

𝑥𝑖,5 i. i. d 𝑁(0,4)  0.9947

1 

0.00321

8 

0.9303

2 

0.00265

3 

0.9813

8 

0.00576

6 
     0.9244

7 

0.00496

1 
           𝑥𝑖,5 i. i. d 𝑈(−3,3) 

i.i.d. Beta(4, 2) × 6 − 3 

0.9946

0 

0.9944

3 

0.00331

3 

0.00347

6 

0.9451

9 

0.9660

9 

0.00295

2 

0.00582

4 

0.9810

9 

0.9745

0 

0.00578

7 

0.00799

8 

     0.9380

5 

0.00509

0 
𝑥𝑖,5 i. i. d 𝐵𝑒𝑡𝑎(4,2) × 6

− 3 

0.9944

3 

0.9924

0 

0.00347

6 

0.00477

2 

0.9760

8.9660

9 

0.00291

6 

0.00582

4 

0.9809

0 

0.9745

0 

0.00611

4 

0.00799

8 

     0.9656

4 

0.00545

1 
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4.4 Clinical trial example 

The proposed tests are applied to a clinical trial example described by Barat et al. 

(2011). The data was collected at two urban clinics and two suburban clinics by 

Johns Hopkins University in an effort to identify characteristics of young female 

patients who successfully complete the three-injection sequence of the Gardasil 

quadrivalent human papillomavirus vaccine. The data consists of measurements 

taken from 1413 cases of young female patients aged 11-26 years. Original 

predictors include age (continuous variable), race (white, black, Hispanic, unknown, 

or other), insurance (0 represents that the patient received ‘Medical Assistance’, 1 

represents ‘Private Payer’, 2 represents ‘Hospital Based’, and 3 represents 

‘Military’), location (0 represents suburban and 1 represents urban), and practice (0 

represents ‘Pediatrics’, 1 represents ‘Family Practice’, and 2 represents ‘OBGYN’). 

All subjects are classified into 10 age cohorts, where the first age cohort contains all 

subjects from 11 to 13 years old, and the last age cohort contains all subjects from 25 

to 26 years old. There are indications of a non-linear relationship involving age 

based upon the empirical logits computed by each age cohort. Eight models have 

been posited which are listed in Table 8. An overfit mixture GAM is developed to 

include all first-order terms and polynomial terms as 

log (
𝜋(𝒙𝑖,𝜷)

1−𝜋(𝒙𝑖,𝜷)
)  = 𝑠0 + 𝛽1𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖 + 𝛽2𝑟𝑎𝑐𝑒𝑖 + 𝛽3𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 +

𝛽4𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑖 + 𝛽5𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖 × 𝑟𝑎𝑐𝑒𝑖 + 𝛽6𝑟𝑎𝑐𝑒𝑖 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽7𝑟𝑎𝑐𝑒𝑖 ×
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑖 + 𝛽8𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 + 𝛽9𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖 ×
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑖+𝛽10𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖 × 𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑖 + 𝑠1(𝑎𝑔𝑒𝑖)+𝑠2(𝑎𝑔𝑒𝑖 ×
𝑖𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒𝑖)+𝑠3(𝑎𝑔𝑒𝑖 × 𝑟𝑎𝑐𝑒𝑖)+𝑠4(𝑎𝑔𝑒𝑖 × 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑖)+𝑠5(𝑎𝑔𝑒𝑖 ×
𝑝𝑟𝑎𝑐𝑡𝑖𝑐𝑒𝑖) .                                       (20)                                     

 

Table 8. Eight models for the clinical trial data. 

Mo

del 

Main terms Interactions 

1 age, age2, age3, insurance, 

race, location, practice 

age × race, age × insurance, age × location, age × 

p ractice, 

race × insurance, race × location, race × p ractice,   

insurance × location, insurance × p ractice, 

location×p ractice 
2 age, age2, age3, insurance, 

race, location, practice 

age × p ractice, race × p ractice, insurance × location, 

location×p ractice 

3 age, age2, age3, insurance, 

race, location, practice 

age × p ractice, insurance × location, location×p ractice 

4 age, age2, age3, insurance, 

race, location, practice 

age × p ractice, insurance × location 

5 age, age2, age3, insurance, 

race, location, practice 

age × p ractice 

6 age, age2, age3, insurance, 

race, location, practice 

 

7 age, age2, insurance, 

race, location, practice 
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8 age, insurance, race, 

location, practice 

 

Table 9 provides the AIC as well as the p-values from the goodness-of-fit tests. The 

p-values from these test results show no evidence against the claim that that Models 

1, 2, and 3 provide an adequate fit. When additional interaction terms are eliminated 

as in Models 4, 5, and 6, or cubic and quadratic term of age are eliminated as in 

Models 7 and 8, the Hosmer-Lemeshow test shows no evidence against the claim 

that all models provides an adequate fit. However, the Pulkstenis and Robinson test, 

the Xie test, as well as the modified Hosmer and Lemeshow test, the modified 

Pulkstenis and Robinson test, and the modified Xie test show strong evidence against 

the claim that Models 4 to 8 fit provide an adequate fit. Based upon all these test 

results, only Models 1, 2 and 3 appear to provide an adequate fit. Since Model 3 has 

the smallest AIC as shown in Table 9, this model could likely be chosen to be the 

final model.  

 

Table 9. AIC and p-values from goodness-of-fit tests on the 8 models. 

Mod

el 

AIC       HL PR XIE HL+GA

M 

PR+GA

M 

XIE+GA

M 
1 1732.38

4 

0.512

8 

0.933

2 

0.992

4 

0.7208 0.9394 0.9155 

2 1708.09

0 

0.724

6 

0.618

7 

0.901

0 

0.3215 0.6327 0.6043 

3 1699.85

9 

0.301

9 

0.518

8 

0.705

5 

0.1719 0.5321 0.1618 

4 1726.00

3 

0.211

8 

0.100

0 

0.000

3 

0.0004 0.0691 2.3e-06 

5 1729.26

9 

0.467

1 

0.049

8 

0.001

8 

1.5e-

05 

0.0498 7.8e-06 

6 1732.91

3 

0.984

2 

0.061

3 

0.001

7 

2.9e-

06 

0.0316 1.3e-05 

7 1733.17

2 

0.770

2 

0.077

8 

0.000

8 

2.2e-

06 

0.0325 5.6e-06 

8 1734.95

5 

0.967

8 

0.033

8 

0.000

8 

5.9e-

07 

0.0322 3.2e-06 

 

In this example, the modified HL (HL+GAM) test results appear to have been 

improved or made more sensitive to lack-of-fit. The modified PR test (PR+GAM) 

did not dramatically alter the p-values from the original PR test. While the Xie test 

was fairly sensitive to lack-of-fit in this example, the modified Xie test (Xie+GAM) 

dramatically decreased the p-values. 

 

5. Discussion 

This study investigates possible causes of low power in several chi-square based 

goodness-of-fit tests (Hosmer and Lemeshow (1980); Pulkstenis and Robinson 

(2002); Pulkstenis and Robinson (2002)). In summary, for a model containing lack-

of-fit, the estimated probabilities can have large discrepancies from the true 

probabilities, which directly affects the groupings that could lead to low power in 

these tests. Thus, a new grouping algorithm is proposed to develop an over-fit model 

that includes all the main effects terms and the interaction terms into a mixture 

GAM, and then utilizes the estimated probabilities from this GAM to form the 
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groups. The modified Hosmer-Lemeshow test, modified Pulkstenis and Robinson 

test, and modified Xie test are proposed based on this new grouping algorithm. 

Simulation results showed that this new algorithm improves the groupings, 

especially in the modified Hosmer-Lemeshow test.  

It is found that the distribution of the covariates also affects the power of the 

goodness-of-fit tests. For instance, if a covariate was generated from a right skewed 

𝐵𝑒𝑡𝑎(4,2) × 6 − 3, then a lack-of-fit model could still approximate the true 

probabilities well. Consequently, all these goodness-of-fit tests, including the newly 

proposed tests, have low power in this situation. In general, the proposed tests 

(HL.GAM, PR.GAM, and XIE.GAM) have higher power than the original tests (HL, 

PR, and XIE) when testing a model that omitted an interaction term or a quadratic 

term. In addition, if a first-order term was omitted from the model, the original HL, 

PR and XIE tests all have very low power. However, if data had been collected with 

respect to this term and had been utilized in the GAM, the proposed tests could 

achieve high power. This approach might be the only option that could increase the 

power to detect a model that omits first-order term.  

Simulation results show that the size of the proposed test statistics (HL.GAM, 

PR.GAM, and XIE.GAM) remain at the specified level (𝛼). In addition, the power 

of the proposed tests are higher than the original tests. The proposed tests are also 

easy to implement and conveniently supplement the chi-square tests commonly 

utilized in practice. Evans and Li (2005) conclude from their simulation study, “We 

propose that researchers do not rely on a single goodness of fit statistic but 

alternatively use the statistics to compliment each other”. This tests proposed here 

provide an important compliment to such goodness-of-fit tests. Care must also be 

taken to ensure that the selected GOF tests can be evaluated for all models in the 

candidate set in terms of the covariate patterns. 
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