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This study focused on obtaining allocation rules when the assumption of normality is 

violated. More specifically, when available data is of the bivariate exponential 

distributions. Three different forms of bivariate exponential distribution were 

considered and allocation rules arising from each of the three were suggested. Both 

simulated and real-life data were used to demonstrate the applicability and 

performance of the suggested allocation rules.  
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discriminant analysis. 

 

  

1. Introduction 

Discriminant analysis has found relevance in many areas of science and engineering. 

Its purpose is to assign an observation x to one of two or more groups on the basis of 

the value of x. Many problems of discriminant analysis have assumed that the 

underlying distribution is the multivariate normal in which x is assumed to have 

means 𝝁𝑖(𝑖 = 1,2, … , 𝑔) and variance-covariance matrixΣwhich is the same for all 

the groups. Discrete models, Bayesian techniques and the nonparametric density 

estimation procedure are also available for discriminant analysis but have only been 

studied within the context of multivariate normal situation. The interest here is the 

case where the underlying distribution (or data generating process) is not 

multivariate normal. None of such study is known to the authors at the moment. 

Specifically, the bivariate exponential (BVE) distribution which has found wide 

application in reliability studies, competing risk, hydrology, rainfall and storm 

occurrence etc has not been considered in discriminant analysis. For example, on the 

basis of some suitably chosen vector of variables, rainfall occurrence can be 

classified as a particular type of various types, or failure of a system classified as 

either mild or severe. This study shall consider obtaining and applying allocation 

rule/region of classification when (𝑥1, 𝑥2) ∈ 𝒙 arecorrelated exponential random 

variables arising from the following distributions: 
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i. Freud (1961) bivariate exponential distributionwith joint pdfgiven as: 

𝑓(𝑥1, 𝑥2) = {
𝛼𝛽′𝑒𝑥𝑝{−𝛽′𝑥2 − (𝛼 + 𝛽 − 𝛽

′)𝑥1}      𝑖𝑓 𝑥1 < 𝑥2
𝛼′𝛽𝑒𝑥𝑝{−𝛼′𝑥1 − (𝛼 + 𝛽 − 𝛼

′)𝑥2}      𝑖𝑓 𝑥2 < 𝑥1
 

𝑥1 > 0, 𝑥2 > 0, 𝛼 > 0, 𝛽 > 0, 𝛼′ > 0, and  𝛽′ > 0 

ii. Marshal & Olkin (1967) bivariate exponential distributionwith joint pdf given 

as: 

𝑓(𝑥1, 𝑥2) = {
𝜃1(𝜃2 + 𝜃3)𝑒𝑥𝑝{−𝜃1𝑥1 − (𝜃2 + 𝜃3)𝑥2}      𝑖𝑓 𝑥1 < 𝑥2
𝜃2(𝜃1 + 𝜃3)𝑒𝑥𝑝{−𝜃2𝑥2 − (𝜃1 + 𝜃3)𝑥1}      𝑖𝑓 𝑥2 < 𝑥1

 

𝑥1 > 0, 𝑥2 > 0, 𝜃1 > 0, 𝜃2 > 0, 𝜃3 > 0, and 𝜃 = 𝜃1 + 𝜃2 + 𝜃3 

iii. Block &Basu (1974) bivariate exponential distribution with joint pdf given 

as: 

𝑓(𝑥1, 𝑥2) =

{
 
 

 
 𝜃1𝜃(𝜃2 + 𝜃3)

𝜃1 + 𝜃2
𝑒𝑥𝑝{−𝜃1𝑥1 − (𝜃2 + 𝜃3)𝑥2}      𝑖𝑓 𝑥1 < 𝑥2

𝜃2𝜃(𝜃1 + 𝜃3)

𝜃1 + 𝜃2
𝑒𝑥𝑝{−𝜃2𝑥2 − (𝜃1 + 𝜃3)𝑥1}      𝑖𝑓 𝑥2 < 𝑥1

 

𝑥1 > 0, 𝑥2 > 0, 𝜃1 > 0, 𝜃2 > 0, 𝜃3 > 0, and 𝜃 = 𝜃1 + 𝜃2 + 𝜃3 

The above listed distributions have been applied in real life situations. For example, 

see;Rai & Van (1984), Inaba &Shirahata (1986) and Gross & Lam (1981).Properties 

of various BVE distributions, including those considered in this study has been 

summarized in Balakrishnan & Lai (2009). In general, the bivariate exponential 

distributions assume that 𝑥1 and 𝑥2 are lifetimes of two independent exponential 

components. Dependence of 𝑥1 and 𝑥2 arises when a failure (or shock) occurs to 

either the𝑥1 component or the 𝑥2component or even to both components. The failure 

of one component changes the parameter of the other component by inducing an 

additional burden on the other component as in Block &Basu (1974) and Freud 

(1961). 

Notations 

Notation Description 

Π𝑖 
𝑓𝑖(𝑥1, 𝑥2, … , 𝑥𝑘) 
𝒙 

𝛼1, 𝛼1
′ , 𝛽1, 𝛽1

′  

𝛼2, 𝛼2
′ , 𝛽2, 𝛽2

′  

𝜃1, 𝜃11, 𝜃21, 𝜃31 

𝜃2, 𝜃12, 𝜃22, 𝜃32 

MOBVE 

BBBVE 

FBVE 

Population 𝑖 (𝑖 = 1,2) 
pdf of𝒙 = (𝑥1, 𝑥2, … , 𝑥𝑘)population 𝑖 
𝑘 𝑥 1 observation 

Parameters of 𝑓1(𝑥1, 𝑥2) for Freud distribution 

Parameters of 𝑓2(𝑥1, 𝑥2) for Freud distribution 

Parameters of 𝑓1(𝑥1, 𝑥2) for Marshal/Olkin and Block/Basu distributions 

Parameters of 𝑓2(𝑥1, 𝑥2) for Marshal/Olkin and Block/Basu distributions 

Marshal and Olkin Bivariate Exponential distribution 

Block and Basu Bivariate Exponential distribution 

Freud Bivariate Exponential distribution 

 

2. Methodology 

Definition:Let 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2) be the joint densities of observations coming 

from group Π1 and group Π2 respectively, the region of classification R according to 

Anderson (2003)is givenas  
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𝑅: 
𝑓1(𝑥1, 𝑥2)

𝑓2(𝑥1, 𝑥2)
≥ 𝑐 

Where 𝑐 is a constant determined such that the critical region should have the 

required size.If the inequality in 𝑅 holds, the observation falls in region 𝑅1 and it is 

classified as belonging to population Π1, otherwise the observation is said to fall into 

𝑅1 region and consequently is classified a belonging to population Π2. We now 

derive and present allocation rules for classifying a future observation to one of 

population Π1 or population Π2 given that the underlying distribution is any of Block 

&Basu (1974), Freud (1961)orMarshal & Olkin (1967). 

Freud BVE 

If 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2) are the joint densities for group Π1 and group Π2 

respectively and (𝑥1, 𝑥2) follows the Freud BVE, thenthe best region of 

classification𝑅1 is  

𝑅1: (𝑥2 − 𝑥1)𝜆 + (𝛾 + 𝜔)𝑥1 ≥ 𝑐𝑎            𝑖𝑓 𝑥1 < 𝑥2 

and  

𝑅1: (𝑥1 − 𝑥2)𝜈 + (𝛾 + 𝜔)𝑥2 ≥ 𝑐𝑏            𝑖𝑓 𝑥2 < 𝑥1 

Where 𝑐𝑎 = log (
𝛼2𝛽2

′

𝛼1𝛽1
′),𝑐𝑏 = log (

𝛼2
′𝛽2

𝛼1
′𝛽2
),𝜆 = 𝛽2

′ − 𝛽1
′ ,𝜈 = 𝛼2

′ − 𝛼1
′ ,𝜔 = 𝛽2 − 𝛽1, and 

𝛾 = 𝛼2 − 𝛼1.  

Marshal and OlkinBVE  

If 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2) are the joint densities for populationΠ1 and populationΠ2 

respectively and (𝑥1, 𝑥2) follows the Marshal and Olkin BVE, then the best region of 

classification 𝑅1 is 

𝑅1: (𝜃12 − 𝜃11)𝑥1 + (𝜆2 − 𝜆1)𝑥2 ≥ 𝑑𝑎            𝑖𝑓 𝑥1 < 𝑥2 

and  

𝑅1: (𝜃22 − 𝜃21)𝑥2 + (𝛿2 − 𝛿1)𝑥1 ≥ 𝑑𝑏            𝑖𝑓 𝑥2 < 𝑥1 

Where 𝑑𝑎 = log (
𝜃12𝜆2

𝜃11𝜆1
), 𝑑𝑏 = log (

𝜃22𝛿2

𝜃21𝛿1
), 𝜆1 = 𝜃21 + 𝜃31, 𝜆2 = 𝜃22 + 𝜃32, 𝛿1 =

𝜃11 + 𝜃31, 𝛿1 = 𝜃12 + 𝜃32 

Block and Basu BVE 

If 𝑓1(𝑥1, 𝑥2) and 𝑓2(𝑥1, 𝑥2) are the joint densities for populationΠ1 and populationΠ2 

respectively and (𝑥1, 𝑥2) follows the Block and Basu BVE, then region of 

classification 𝑅1 is 

𝑅1: (𝜃21 − 𝜃11)𝑥1 + (𝜑2 − 𝜑1)𝑥2 ≥ ℎ𝑎             𝑖𝑓 𝑥1 < 𝑥2 

and  

𝑅1: (𝜃22 − 𝜃21)𝑥2 + (𝜓2 −𝜓1)𝑥1 ≥ ℎ𝑏            𝑖𝑓 𝑥2 < 𝑥1 
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Where ℎ𝑎 = log (
𝜏2𝜑1𝜃11𝜃1

𝜏1𝜑2𝜃21𝜃2
), ℎ𝑏 = log (

𝜏2𝜓1𝜃21𝜃1

𝜏1𝜓2𝜃22𝜃2
),𝜑1 = 𝜃21 + 𝜃31, 𝜑2 = 𝜃22 + 𝜃32, 

𝜓1 = 𝜃11 + 𝜃31, 𝜓1 = 𝜃12 + 𝜃31, 𝜏1 = 𝜃11 + 𝜃21, 𝜏2 = 𝜃12 + 𝜃22, 𝜃1 = 𝜃11 +
𝜃21 + 𝜃31, and  𝜃2 = 𝜃12 + 𝜃22 + 𝜃32 

For the three cases considered, any observation falling into 𝑅1is classified as 

belonging to populationΠ1, otherwise it is classified as belonging to populationΠ2. 

By replacing ≥ with < in each of the 𝑅1, we obtain the best region of classification 

𝑅2 satisfying the hypothesis that 𝒙 = (𝑥1, 𝑥2)belongs to population Π2. The right-

hand side of each of the regions of classification 𝑅1 above represents the well-known 

discriminant function since in each case the right-hand side of 𝑅1 is a function of the 

observation vector 𝒙 = (𝑥1, 𝑥2). By assuming that the two populations are equally 

likely and the cost of misclassification𝑐(1 2⁄ ) and 𝑐(2 1⁄ )are also equal, the right-

hand side of the rules presented above will be purely a function of the parameters of 

the corresponding distribution. 

2.1 Probability of Misclassification 

Perhaps, we may wish to know the probabilities of misclassification before we draw 

our samples 𝑛1 and 𝑛2 for the purpose of determining the allocation rule. Let the 

probability of an observation coming from population Π1 and Π2 be 𝑝1 and 𝑝2 

respectively (𝑝1+𝑝2 = 1).If𝒙 = (𝑥1, 𝑥2) be a random observation then we wish to 

find the distribution of  

𝑈 = {
(𝑥2 − 𝑥1)𝜆 + (𝛾 + 𝜔)𝑥1 ≥ 𝑐𝑎            𝑖𝑓 𝑥1 < 𝑥2
(𝑥1 − 𝑥2)𝜈 + (𝛾 + 𝜔)𝑥2 ≥ 𝑐𝑏            𝑖𝑓 𝑥2 < 𝑥1

 

on the assumption that𝑈 is distributed according to the Freud bivariate exponential 

function. The exact distribution of 𝑈is very difficult to evaluate. Therefore, we resort 

to treating the asymptotic expansions of their probabilities as 𝑛1 and 𝑛2 increases. As 

such, the probability of wrongly classifying an observation originally from Π1 as 

belonging to Π2 is 

𝑃(2|1) = {
𝑝1ϕ[

𝑐𝑎−𝐸(𝑈)

√𝑣𝑎𝑟(𝑈)
] ,            𝑖𝑓 𝑥1 < 𝑥2

𝑝1ϕ [
𝑐𝑏−𝐸(𝑈)

√𝑉(𝑈)
] ,            𝑖𝑓 𝑥2 < 𝑥1

                        (1) 

Also, the probability of wrongly classifying an observation originally from Π2 as 

belonging to Π1 is 

𝑃(1|2) = {
𝑝2ϕ [

𝑐𝑎−𝐸(𝑈)

√𝑣𝑎𝑟(𝑈)
] ,            𝑖𝑓 𝑥1 < 𝑥2

𝑝2ϕ [
𝑐𝑏−𝐸(𝑈)

√𝑉(𝑈)
] ,            𝑖𝑓 𝑥2 < 𝑥1

              (2) 

Where 
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𝐸(𝑈) =

{
 
 

 
 𝜆𝛽

1(𝛽𝛽1 − 𝛼′𝛽′𝛼) + (𝛾 + 𝜔)(𝛼′ + 𝛽)

𝛼′(𝛼 + 𝛽)
,            𝑖𝑓 𝑥1 < 𝑥2

𝜆 [
𝛽𝛽′ − 𝛼′𝛼

𝛼′𝛽′(𝛼 + 𝛽)
] + (𝛾 + 𝜔) [

𝛽′ + 𝛼

𝛽′(𝛼 + 𝛽)
] ,            𝑖𝑓 𝑥2 < 𝑥1

 

And  

𝑉(𝑈)

=

{
 
 

 
 1

(𝛼 + 𝛽)2
{[
𝜆2(𝛽2𝛽′2 − 𝛼2𝛼′2)

𝛼′2𝛽′2
] + (𝛾 + 𝜔) [

𝛼′2 + 2𝛼𝛽 + 𝛽2

𝛼′2
]} ,            𝑖𝑓 𝑥1 < 𝑥2

1

(𝛼 + 𝛽)2
{[
𝜆2𝛽2(𝛽′2 − 𝛼′2)

𝛼′2𝛽′2
] + (𝛾 + 𝜔) [

𝛽′2 + 2𝛼𝛽 + 𝛼2

𝛽′2
]} ,            𝑖𝑓 𝑥2 < 𝑥1

 

In the same way, if  

𝑈 = {
(𝜃12 − 𝜃11)𝑥1 + (𝜆2 − 𝜆1)𝑥2 ≥ 𝑑𝑎            𝑖𝑓 𝑥1 < 𝑥2
(𝜃22 − 𝜃21)𝑥2 + (𝛿2 − 𝛿1)𝑥1 ≥ 𝑑𝑏            𝑖𝑓 𝑥2 < 𝑥1

 

on the assumption that 𝑈is distributed according to the Marshal and Olkin bivariate 

exponential function, then 𝑃(2|1) and 𝑃(1|2) can be written as in (1) and (2) above 

by replacing 𝑐𝑎 and 𝑐𝑏 with 𝑑𝑎 and 𝑑𝑏 respectively with 𝐸(𝑈) and 𝑉(𝑈) given in the 

case of Marshal and Olkin as 

𝐸(𝑈) =

{
 
 

 
 (𝜃12 − 𝜃11)(𝜃2 + 𝜃12) + (𝜆2 − 𝜆1)(𝜃1 + 𝜃12)

(𝜃1 + 𝜃12)(𝜃2 + 𝜃12)
,            𝑖𝑓 𝑥1 < 𝑥2

(𝜃22 − 𝜃21)(𝜃2 + 𝜃12) + (𝛿2 − 𝛿1)(𝜃1 + 𝜃12)

(𝜃1 + 𝜃12)(𝜃2 + 𝜃12)
,            𝑖𝑓 𝑥2 < 𝑥1

 

And  

𝑉(𝑈) =

{
 
 

 
 (𝜃12 − 𝜃11)

2(𝜃2 + 𝜃12)
2 + (𝜆2 − 𝜆1)

2(𝜃1 + 𝜃12)
2

(𝜃1 + 𝜃12)2(𝜃2 + 𝜃12)2
,            𝑖𝑓 𝑥1 < 𝑥2

(𝜃22 − 𝜃21)
2(𝜃1 + 𝜃12)

2 + (𝛿2 − 𝛿1)
2(𝜃2 + 𝜃12)

2

(𝜃1 + 𝜃12)2(𝜃2 + 𝜃12)2
,            𝑖𝑓 𝑥2 < 𝑥1

 

Again, if  

𝑈 = {
(𝜃21 − 𝜃11)𝑥1 + (𝜑2 − 𝜑1)𝑥2 ≥ ℎ𝑎             𝑖𝑓 𝑥1 < 𝑥2
(𝜃22 − 𝜃21)𝑥2 + (𝜓2 − 𝜓1)𝑥1 ≥ ℎ𝑏            𝑖𝑓 𝑥2 < 𝑥1

 

on the assumption that𝑈 is distributed according to the Block and Basu bivariate 

exponential function, then 𝑃(2|1) and 𝑃(1|2) can also be written as in (1) and (2) 

above by replacing 𝑐𝑎 and 𝑐𝑏 with ℎ𝑎 and ℎ𝑏 respectively with 𝐸(𝑈) and 𝑉(𝑈) given 

in the case of Block and Basu as 
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𝐸(𝑈)

=

{
 
 

 
 (𝜃21 − 𝜃11)

(𝜃1 + 𝜃12)
[1 +

𝜃12𝜃2
𝜃(𝜃1 + 𝜃2)

] +
(𝜑2 − 𝜑1)

(𝜃2 + 𝜃12)
[1 +

𝜃12𝜃1
𝜃(𝜃1 + 𝜃2)

] ,            𝑖𝑓 𝑥1 < 𝑥2

(𝜃22 − 𝜃21)

(𝜃2 + 𝜃12)
[1 +

𝜃12𝜃1
𝜃(𝜃1 + 𝜃2)

] +
(𝜓2 − 𝜓1)

(𝜃1 + 𝜃12)
[1 +

𝜃12𝜃2
𝜃(𝜃1 + 𝜃2)

] ,            𝑖𝑓 𝑥2 < 𝑥1

 

And  

𝑉(𝑈

=

{
 
 

 
 𝜃12𝜃2(𝜃21 − 𝜃11)

2

(𝜃1 + 𝜃12)
2 [

1

𝜃12𝜃2
+
2𝜃1𝜃 + 𝜃12𝜃2
𝜃2(𝜃1 + 𝜃2)

2 ] +
𝜃12𝜃1(𝜑2 − 𝜑1)

2

(𝜃2 + 𝜃12)
2 [

1

𝜃12𝜃1
+
2𝜃2𝜃 + 𝜃12𝜃1
𝜃2(𝜃1 + 𝜃2)

2 ] , 𝑖𝑓 𝑥1 < 𝑥2

𝜃12𝜃1(𝜃22 − 𝜃21)
2

(𝜃2 + 𝜃12)
2 [

1

𝜃12𝜃1
+
2𝜃2𝜃 + 𝜃12𝜃1
𝜃2(𝜃1 + 𝜃2)

2 ] +
𝜃12𝜃2(𝜓2 −𝜓1)

2

(𝜃1 + 𝜃12)
2 [

1

𝜃12𝜃2
+
2𝜃1𝜃 + 𝜃12𝜃2
𝜃2(𝜃1 + 𝜃2)

2 ] , 𝑖𝑓 𝑥2 < 𝑥1

 

2.2 Application 

In other to examine the applicability of the derived allocation rules, random data 

were generated for 𝑓(. ) under various samples sizes where 𝑓(. ) is the bivariate 

exponential density function. Apparent error rate was reported for each of MOBVE, 

BBBVE and FBVE for both 𝑥1 < 𝑥2 and 𝑥2 < 𝑥1 as seen in Table 1. 

 

Table 1. Apparent error rate for the three models using simulated data 

 𝑥1 < 𝑥2 𝑥2 < 𝑥1 

Sample sizes MOBVE BBBVE FBVE MOBVE BBBVE FBVE 

10 

20 

50 

100 

250 

500 

750 

1000 

1500 

2000 

0.3500 

0.5250 

0.5400 

0.4600 

0.4220 

0.4720 

0.4600 

0.4605 

0.4473 

0.4525 

0.4500 

0.5250 

0.5400 

0.4550 

0.4460 

0.4860 

0.4713 

0.4680 

0.4580 

0.4680 

0.4000 

0.4750 

0.5200 

0.4250 

0.4120 

0.4520 

0.4453 

0.4450 

0.4343 

0.4450 

0.4000 

0.5750 

0.5400 

0.5500 

0.4720 

0.4950 

0.5033 

0.5020 

0.4893 

0.4875 

0.4500 

0.5750 

0.5200 

0.5300 

0.4720 

0.5100 

0.5220 

0.5130 

0.5023 

0.5035 

0.4000 

0.4750 

0.4500 

0.3800 

0.3780 

0.3980 

0.3807 

0.3765 

0.3727 

0.3813 

Apparent error rate as presented in Table 1 indicates the applicability of the 

allocation rules presented above. MOBVE and BBBVE generally produced less error 

rate when    𝑥1 < 𝑥2 than when 𝑥2 < 𝑥1 while the FBVE produced less error rate 

when 𝑥2 < 𝑥1. In the normal distribution function, error rate mostly reduces (or 

stabilizes) with increase in sample size,however, such was not the case in the 

bivariate exponential functions studied here.Only few larger sample sizes produced 

less error rate. 

2.3 Illustrative examples 

The allocation rules presented above were used to examine twosets of real-life data. 

The first set consist of n=60 observations representing the number of days between 

observed successive lowest temperature, denoted as 𝑥1 and number of days between 

observed successive highest precipitation denoted by𝑥2 recorded in two different 
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meteorological stations of Nigeria Institute for Oil Palm Research, Edo State. 

Bivariate exponential distribution has been applied and reported to be a good fit 

distribution for studying weather data. The grouping variable are the two different 

stations (both in same state of Nigeria) of the Institute. The data can be made 

available on request. 

The second set is a summarized extract of reported observations representing time 

(in days) from exposure to illness onset denoted here as𝑥1,and, the number of days 

from illness onset to confirmation of infection status denoted by 𝑥2 of the novel 

coronavirus (covid-19) of n=126 individuals in Wuhan Chinaas at January 2020. 

Only individuals with complete recorded information was included in the analysis. 

The data is available at http://www.mdpi.com/2077-0383/9/2/538/s1. The grouping 

variable are; Π1: Wuhan Residents (those who Lives Works and Studies in Wuhan) 

and  Π2: Other Residents (those who travelled to Wuhan).  

Since both 𝑥1 and 𝑥2 in the two sets are from same sampling unit, there are obvious 

correlation between the two variables. Given that these data follows the bivariate 

exponential distribution and the allocation rules above holds, the essence is that, in 

the first set of data, an observation could be classified as either belonging to the main 

station or the sub-station; and in the second set, an individual case of covid-19 could 

be classified as either a Wuhan resident or other resident. Results obtained are 

reported in Table 2. 

 

Table 2. Apparent error rate for the three models using real-life data 

 𝑥1 < 𝑥2 𝑥2 < 𝑥1 

Dataset MOBVE BBBVE FBVE MOBVE BBBVE FBVE 

Set I (n=60) 

Set II (n=126) 

0.4688 

0.4400 

0.5000 

0.4800 

0.4500 

0.4240 

0.5000 

0.4400 

0.5000 

0.5600 

0.3833 

0.4080 

Reported apparent error rates for the real-life data do not differ markedly from those 

reported for the simulated data. Whereas, each of the originating exponential 

functions considered above may have different forms, their applicability in any 

appropriate real-life situation is not out of place. The choice of which to use would 

depend on availability and reported performance. As in this study, the choice of 

which allocation rule to use could be enhanced by considering their respective 

apparent error rates. 

 

3. Conclusion 

Discriminant analysis in the presence of violation of normality assumption of the 

distributions of the study variables has been discussed.  This becomes necessary 

because such scenario often arise in many real-life situations as seen in the two 

illustrative examples above.This study has provided a framework for discriminant 

analysis when the assumption of normality is violated and the resulting data follows 

a bivariate exponential function. 

http://www.mdpi.com/2077-0383/9/2/538/s1
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