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Repeated measures discriminant analysis (RMDA) have been developed for 

distinguishing between two or more independent groups in multivariate repeated 

measures designs, in which multiple outcomes are repeatedly measured at two or 

more measurement occasions. However, these models, which are based on structured 

covariances, rely on the assumption of multivariate normality. Monte Carlo methods 

were used to compare the accuracy of RMDA procedures based on maximum 

likelihood estimators and robust maximum trimmed likelihood estimators under a 

variety of data analytic conditions. RMDA based on robust estimators are 

recommended for discriminating between population in multivariate repeated 

measures designs characterized by non-normal distributions.  

 

Keywords: Repeated measures, longitudinal data, robust methods, covariance 

structure, trimmed estimators, non-normality, Outliers. 

 

  

1. Introduction 

Multivariate repeated measures (MRM) data, in which multiple outcomes are 

repeatedly measured at two or more occasions, are commonly collected in several 

disciplines including medicine, ecology, and environmental sciences, where 

investigators seek to understand changes in multiple correlated outcomes over time 

or different occasions1-6. Multivariate repeated measures data are particularly useful 

for studying evolutions in subjects’ responses over time on multiple 

characteristics7.For example, Fieuws and Verbeke1 reported data on a cohort of 

patients who having undergone kidney transplant, were longitudinally monitored at 

irregularly spaced intervals over a 10 year period. The repeated collection of multiple 

biochemical and physiologicalmarkers, whichconstitute multivariate repeated 
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measures data, were used to predict 10-year success of graft.Multivariate repeated 

measures data are inherently challenging to analyze because they are typically 

characterized by non-Gaussian distributions, and high-dimensional data8,9. Classical 

classification and prediction models developed for data collected in a cross-sectional 

study are not appropriate to address the complexities observed in multivariate 

repeated measures data 8, 9 . 

Repeated measures discriminant analysis (RMDA), which assume parsimonious 

mean and covariance structures, have been proposed for discriminating between 

population groups in MRM data. These procedureshave been primarily developed 

based on mixed-effects regression models, covariance pattern models, and growth 

curve models10-14. For example, Roy and Khattree developed RMDA procedures 

based on structured means and Kronecker product variance-covariance matrix of 

unstructured between-response correlation matrix and compound symmetric (CS) or 

first-order autoregressive (AR-1) within-response correlation for predicting group 

membership in MRM data12,13. One approach that has been widely used in applied 

behavioral research is growth curve modeling analysis. Discriminant analysis have 

been extended to the study of multivariate response curves that can be used to 

classify a given patient’s response curve (example: linear and quadratic shape) to the 

prognostic group it resembles most15.However, misspecification of the functional 

form of the growth curve can potentially lead to biased parameter estimates, 

misleading conclusions and lower accuracy16,17. Similarly, RMDA have been 

developed based on multivariate linear and non-linear mixed-effects models that 

assume no structure1,18 and a Kronecker product structure6,19-21 for the within-

variable and between-variable covariance matrices. RMDA based on mixed-effects 

models are known to be advantageous in that they can accommodate time-varying 

and time-invariant covariates in addition to the longitudinally measured outcomes to 

improve classification accuracy. Generalized linear mixed models have been 

extended in MRM data studies for different type responses (continuous, counts and 

binary)1,2,22. However, when the number of parameters increases with the sample size 

and a collection of responses, the random-effect approaches are more likely to be 

computationally intensive and unstable. Moreover, under misspecification of the 

random effect parameters commonly assumed as multivariate Gaussian distribution, 

estimates of the mixed model parameters may become seriously biased25 and 

consequently, the performance of the discriminant procedure may also be affected2. 

RMDA procedures assume the data are sampled from a multivariate Gaussian 

distribution, which may not be tenable. Multivariate repeated measures data are 

frequently characterized by multivariate skewed or heavy-tailed distributions23. So 

far, there has been limited investigations of RMDA procedures that are robust (i.e., 

insensitive) to departures from the assumptions of multivariate normality for 

discriminating between population groups in MRM non-normal data. The lack of 

these RMDA procedures that are robust to violation of the distributional assumptions 

of discriminant analysis has limited the application of RMDA in several applied 

research settings where MRM data are routinely collected (e.g., cancerscreening). 
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This study develops robust discriminant analysis models forMRM non-normal data. 

Specifically, we examined the accuracy of RMDA based on maximum trimmed 

likelihood estimation (MTLE) methods24,25 under a variety of data-analytic 

conditions.Multivariate repeated measures data from the Manitoba Inflammatory 

Bowel Disease (IBD) Cohort Study, was used to demonstrate the application of these 

procedures. 

 

2. Methodology 

2.1 Repeated Measures Data Analysis (RMDA) 

Let 𝐲𝑗𝑖 = (𝐲𝑗𝑖 1, 𝐲𝑗𝑖 2, … , 𝐲𝑗𝑖𝑞 ) be a 𝑝𝑞 x 1 vector of qoutcomes, each repeatedly 

measured at p occasions for the ith individual  in  the  jth  population,  sampled  from  

a  multivariate  normal  distribution  such  that  𝐲𝑗𝑖 𝑁𝑝𝑞 (𝝁𝑗 , 𝛀𝑗 ), where𝝁𝑗 and𝛀𝑗  is  

assumed  to  bepqx  1mean  vector  andpqxpq  positive  definite  covariance  matrix  

respectively. When 𝝁 and 𝛀 are unknown and completely unspecified, a total of pq+ 

pq(pq+1)/2 unknown parameters must be estimated. This number increases very 

rapidly as p and qincrease. Estimation of so many parameters will require a very 

large sample, which may not always be feasible. A parsimonious approach to 

parameter estimation is to assume that 𝛀𝑗  has a Kronecker  product structure:𝛀𝑗 = 
𝐕𝑗 ⨂𝚺𝑗 , where 𝐕𝑗  and 𝚺𝑗   are p × p and q × q positive definite matrices 

respectively, and ⨂ denotes the Kronecker product function12, 13. The matrix 𝐕𝑗 is the 

correlation matrix of the repeated measures on a given response variable and it is 

assumed to be the same for all response variables. The matrix 𝚺𝑗 represents the 

variance-covariance matrix between the measurements on all response variables at a 

given time point and this is assumed constant for all time points. Suppose that no 

structures whatsoever are assumed on 𝐕 and 𝚺 except that they are positive definite 

matrices; then, the classifier has the  form 

         (1) 

where 

      (2) 

𝜋j is the prior probability that an observation 𝒚I is from class j, and 

 is the squared Mahalanobis distance between 

the multiple response vector 𝒚𝑖 and the population mean, 𝝁𝑗. The parameters 𝝁𝑗, 𝐕𝑗 

and 𝚺𝑗 are unknown and should be estimated relying on training samples from the 

different classes. 

Specifically, DA rule for two groups allocates 𝒚𝑖 to population 1 if 𝜆12 𝒚𝑖 ≤ 0 where 

        (3) 
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With  are 𝜋1 and 𝜋2 the a priori probabilities that 

observations belong to populations 1 and 2, respectively. The parameters 𝝁𝑗 , 𝐕𝑗 and 

𝚺𝑗 are estimated using MLE. Based on the choice of covariance structures, estimates 

of the Mahalanobis distance and classification rule can be derived11, 12. The 

homoscedastic model is obtained when the variance components are homogeneous, 

that is, 𝛀1 = 𝛀2 = 𝛀, the pooled covariance matrix for j = 1,2. The above classifier 

implies classification of a unit with multiple response vector 𝐲𝑖 in the first group, if 

and only if 

      (4) 

which is the linear discriminant analysis (LDA) function, and quadratic discriminant 

analysis (QDA) function when 𝐕1 ≠ 𝐕2as 

  (5) 

However, conventional RMDA procedures rely on the assumption of multivariate 

normal distribution, which may not betenable in multivariate repeated measures data, 

which are usually characterized by non-normal distributions2,26. 

2.2 Robust RMDA 

An alternate approach to overcome these limitations involves the development of 

robust RMDA procedures based on maximum trimmed likelihood estimators 

(MTLE) ofmean, 𝛍𝑗 and covariance components, 𝐕𝑗 and 𝚺𝑗. In MTLE,the 

contribution each 𝒚𝑖to the (log)likelihood function scores (ℓ 𝜽; 𝒚𝑖 are ranked from 

the smallest to the highest. Loglikelihood function scores at the extreme tails are 

assigned smaller or no weights. Depending on the weights assigned to observations 

at the tails, different robust estimators could be derived. Specifically, in this study we 

developed robust RMDA based on minimum covariance determinant (MCD) and 

minimum volume ellipsoid (MVE) estimators, which are special cases ofMTLE24, 25. 

For any given value of𝜽: 

      (6) 

where ℓ (𝜽; 𝒚𝑖) = ln𝑓(𝒚𝑖; 𝜽) is the contribution of the ith observation to the log-

likelihood function. 

Note, the original indices of the observations may not satisfy the likelihood ordering 

in (6) for all values of 𝜽. If, for a given value of 𝜽, the above ordering is not 

satisfied, the indices of the observations can be changed so that (6) is satisfied24,25. 

The ordering of the observations may be different for different values of 𝜽. The 

trimmed log likelihood function is given as 
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         (7) 

where ℎ is the trimming parameterand 𝑤𝑖 ≥ 0 are weights. The MTLE 𝜽 (ℎ, 𝑤) is 

obtained by maximizing the trimmed log likelihood function. The key idea is to trim 

the 𝑛𝑗 − ℎ points that are the most unlikely from the estimation of the likelihood 

function. Special cases of MTLE includes MLE, MCD, and MVE when win = 1. 

The parameter ℎ has to be set manually.A recommendable and common choice for h 

that yields maximum breakdown is: h=(𝑛𝑗 + pq + 1)/2, which asymptotically reaches 

half of the data, but any integer h within the interval [(𝑛𝑗 + pq + 1)/2, 𝑛𝑗 ] can be 

chosen27.Some researchers have investigated 5%-25% trimming41-43. Even though 

one research argue 20% trimming42, another recommend no more than 10% 

trimming to achieve optimal results43.The farther ℎ is from 𝑛𝑗, the more robust but 

the less efficient are the estimators.When ℎ =  𝑛𝑗, we obtain the  MLE  of  𝜽 an𝑑 for 

ℎ < 𝑛𝑗,  the  MCD  and  MVE  estimators  are  MTLEs  of  𝜽  =  (𝝁ℎ , 𝛀ℎ)  for  ℎ 

observations yielding the desired robust estimates24,28. The MCD approachis similar 

to the MVE in that it searches for a portion of the data that minimizes the impact of 

outlying observations on estimation of means and covariance parameters. However, 

whereas MVE seeks to minimize the volume of an ellipsoid created by the retained 

data,  whiles  MCD  minimizes  the  determinant  of  the  variance-covariance  

matrix.  For example; the location estimate of MVE is the center of the minimum 

volume ellipsoid covering (at least) ℎ of the data whiles for MCD, the location 

estimate is the mean of ℎ of the data for which the determinant of the covariance 

matrix is minimal. 

 

3. Simulation Study 

A Monte Carlo simulation study was conducted to examine the accuracy of 

robustRMDA procedures in comparison to the conventional RMDA based on MLE 

estimators. Specifically we investigated the following procedures: (a) RMDA that 

assumes structured means and Kronecker correlation matrix of unstructured 

between- responses and within-response AR-1 correlation matrices (st-UNAR), (b) 

RMDA that assumes unstructured means and Kronecker correlation matrix of 

unstructured between-responses and within-response AR-1 correlation matrices(un-

UNAR), (c) RMDA that assumes structured means and Kronecker correlation matrix 

of structured between-responses and within-response CS correlation matrices (st-

UNCS) and (d) RMDA that assumes unstructured means and Kronecker correlation 

matrix of between-responses and within-response CS correlation matrices(un-

UNCS). The parameters of eachRMDA procedure were estimated using MLE, MVE 

and MCD estimators. Moreover, repeated measures LDA was used for classification 

when group covariances were homogeneous, while repeated measures QDA was 

adopted when group covariances were heterogeneous. 



 

BROBBEY ET AL. 

 

7 

 

 

 

The following simulation conditions were investigated: (a) number of different 

outcomes (𝑞), (b)number of repeated occassions(𝑝), (c) total sample size (𝑛), (d) 

group sizes(𝑛1, 𝑛2), (e) Covariance pattern and magnitude of correlation among the 

repeated measurements(𝜌), (f) mean configuration, (g) Covariance heterogeneity, 

and (h) population distribution. All procedures were investigated for two 

independent groups. 

The number of repeated measurements was set at 𝑝 = 3, and 5 whilst the number of 

different outcomes was set at 𝑞 = 3, and 7. Previous studies about RMDA procedures 

have considered 𝑝 ranging from 3 to 10, an increase in classification accuracy  was  

quite  significant  when p increases  from  three  to  five11,12. Total  sample  sizes   of 

𝑛 = 100, 140 and 200 were investigated. This is consistent with previous simulation 

studies that examined the accuracy of RMDA based on parsimonious covariance 

structures with 𝑛ranging between 60 and 500.Moreover, consistent with previous 

studies, we examined the impact of equal and unequal group sizes11,12,29,30,31,32. For 𝑛 

= 100, we set 𝑛1, 𝑛2 = 50, 50 , and (40, 60).Similar equal (1:1) and unequal (2:3) 

group size ratios were investigated when 𝑛 = 140 and 200considering small-sampled 

studies for multivariate RMDA procedures12,13,33-35. A variety of mean 

configurationsof different forms have been previously investigated in the 

development of RMDA procedures11,12. In this study, four mean configuration 

structures for population 1 (𝝁1) were selected for each pair ofp and q. (see Table 1) 

and mean configuration structures for population 2(𝝁2) was the null vector for all 

conditions11,12,36.  

 

Table 1. Four mean configuration structures assumed for population 1 (𝝁1) in the 

Monte Carlo Study 

 p q=3 q=7 

  Configuration 

I  𝟏𝑝 ⨂ (30,30,30) 𝟏𝑝 ⨂ (30,30,30,30,30,30,30) 

II 3 or 5 𝟏𝑝 ⨂ (27,29,31) 𝟏𝑝 ⨂ (30,31,32,33,34,35,36) 

III  𝟏𝑝 ⨂ (30,25,30) 𝟏𝑝 ⨂ (30,27,24,21,24,27,30) 

IV 3 (1,1.1,1.2) ⨂ (30,25,30) (1,1.1,1.2)⨂ (30,27,24,21,24,27,30) 

 5 (1,1.1,1.2,1.3,1.4)⨂ (30,25,30) (1,1.1,1.2,1.3,1.4)⨂ 

(30,27,24,21,24,27,30) 

Note: For population 2, 𝛍2 = 𝟏p ⨂ 25𝟏q for all conditions; q=number of outcome 

variables; p=number of repeated occasions 

 

The descriptions of the four configurations for 𝝁1 in Table 1 are as follows; 

configuration I- III had no change in mean pattern over time (𝟏𝑝 ) for constant, 
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monotonic increasing and quadratic mean patterns among repeated outcomes 

respectively, and configuration IV was assumed to have monotonic increasing mean 

pattern over time (for example; (1,1.1,1.2)) for non-constant means among the 

repeated measurements. Furthermore, the accuracy of RMDA procedures is known 

to be influenced by the magnitude and pattern of within- and between-variable 

correlations37. Therefore, we investigated the following components of the assumed  

Kronecker  variance-covariance  matrices:  𝛀𝑗 = 𝐕𝑗 ⨂𝚺𝑗 , 𝑗 = 1, 2where  𝚺𝑗  was  

assumed  to  be  a  q  ×  q unstructured variance-covariance matrix with a common 

variance of 60 among outcome variables and the p × p correlation  matrix  𝐕𝑗 = 𝐕𝑗 
(𝜌𝑗 ) was  assumed  to  follow  a  AR-1  or  CS  structure  with  𝜌𝑗  chosen  as  0.3  

and  0.7, representing moderate to strong autocorrelation in the data11,12 (See Table 2 

for more details). 

 

Table 2. Configuration of unstructured between-responses covariance matrix Ʃ1 

given within-response correlation coefficient (ρ) for the Monte Carlo Study 

 

 

In order to assess the performance of the discriminant function, random samples 

were generated from both multivariate normal and multivariate non-normal 

distributions. With specified mean, 𝝁𝑗 and covariance matrix 𝛀𝑗, pq-variate normal 

distribution populations were generated using the mvrnorm function from the MASS 

R package38, multivariate lognormal distribution were generated using the rlnorm 

function from the compositions R package39, multivariate t distribution were 

generated using the rmvt function from the mvnfast R package40, and multivariate 

Cauchy distribution were generated using the rmsc function from the sn R package40. 
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For robust estimators, the proportion of trimmed data was fixed at 10% symmetric 

trimming. The FASTMCD and FASTMVE algorithms44-46 were used to define a 

subsample of observations for the trimmed means and covariances. More 

specifically, robust estimates of the LDA and QDA procedures that assumed 

unstructured or structured means and structured covariances were derived by 

maximizing the likelihood of the 90% best subsample of original observations using 

the fast algorithms. These means and covariance have high robustness properties44, 

47. 

Fixed-effects analysis of variance (ANOVA) model was used to assess the relative 

importance of different simulation factors on the variations in the average 

classification accuracy for each procedure48,49. The percentage of explained variance 

attributable to each main effect and interactions were evaluated using 𝜂2, an R2 

equivalent in regression analysis50. The classification was performed on the 

generated samples from each of the two populations. Some of the previous 

classification research have employed the accuracy or the error rate (1-accuracy) 

metric to discriminate between two or groups11,12,29. Thus, the overall classification 

accuracy (correctly classified / total sample) was used as performance metric in this 

study and the standard errors were also calculated. For each procedure and each 

method of estimation, a total of 1440 combination of simulation factors was 

investigated. There were 1000 replications for each combination. The Monte Carlo 

study was conducted using R version 3.6.3. 

 

4. Results 

4.1 Simulation Study Results 

Table 3 describes the relative contribution of each of simulation conditions on the 

overall accuracy of the RMDA procedures. Specifically, population distribution, 

mean configurations, group covariance ratio, and estimation method accounted for 

more than 70% of the total variation in the classification accuraciesof the RMDA 

procedures. Therefore, our description of the simulation results will focus on these 

important simulation factors. 

Tables 4 and 5 describe the average predictive accuracies and standard errors of 

repeated measures LDA and repeated measures QDA based on MLE and MVE, 

respectively, by population distribution and number of outcomes. The average 

classification accuracy of the RMDA procedures were highest when the data were 

sampled from a multivariate normal distribution and lowest when the data were 

sampled from extremely heavy-tailed distribution, regardless of the type of 

estimation method adopted, number of outcome variables, or mean configuration. In 

particular, there were negligible differences in the average classification accuracy of 

RMDA procedures based on MLE and those based on robust estimators when the 

data were sampled from a multivariate normal distribution, or a moderately 
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multivariate heavy-tailed distribution. However, the robust estimators procedures 

were more accurate than MLE when the data were sample from a multivariate heavy-

tailed distribution. For example, the average classification accuracy of st-UNCS 

based on MLE and MVE were 0.86 and 0.85 when q = 7 and data were sampled 

from a multivariate normal distribution with outcome variables. Whereas, the 

average accuracy of the former and latter procedures were 0.54 and 0.70 when q = 7 

and the data were  sampled from a multivariate Cauchy distribution, respectively 

(Table 4). Similar patterns were observed in repeated measures quadratic 

discriminant analysis procedures (Table 5). 

 

Table 3. Proportion of Variance in Overall Classification Accuracy Explained by the 

Simulation Factors 
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Table 4. Overall Mean Accuracy of Repeated Measures LDA procedures based on 

MLE and Robust Estimator, Estimator, MVE (standard error) by population 

distribution, Number of Outcomes for equal group covariance 

 

 

Table 5. Overall Mean Accuracy of Repeated Measures QDA procedures based on 

MLE and Robust Estimator, MVE (standard error) by population distribution, 

Number of outcomes for unequal group covariance 

 

 

Furthermore, when the data were sampled from a multivariate normal distribution, 

the average accuracy of each repeated measures LDA procedures increased as the 

number of outcomes increased, regardless of the method or estimation. However, the 

increase in classification accuracy as q increased was smaller when the data were 
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sampled from a multivariate non-normal distribution. For example, when the data 

were sampled from a multivariate normal distribution, the average increase in 

classification accuracy of the un-UNAR procedure based on MLE and MVE was 

about 0.07 as q increased from 3 to 7. But when data were sampled from a 

multivariate lognormal distribution, there were negligible differences in the 

classification accuracies for these procedures as q increased. In contrast, the average 

classification accuracy of the repeated measures QDA procedures decreased as q 

increased for almost all the investigated population data distributions, except for the 

multivariate lognormal and Cauchy distributions (Table 5). 

However, for multivariate lognormal and Cauchy distributions, smaller to no change 

in average classification accuracy was observed for all procedures for MLE. For the 

un-UNAR procedure when data were sampled from multivariate lognormal, 0.54 

average classification accuracy was observed when number of responses were both 

three and seven, whereas for data sampled from multivariate Cauchy distribution 

average classification accuracy were 0.54 and 0.56, respectively for MLE (Table 4). 

In contrast, the decreased in average classification accuracy for non-normal 

distributions were much lower for RMDA based on MLE compared to the robust 

methods. Moreover, higher average classification accuracies were observed in these 

non-normal distributions under robust methods. For the un-UNAR procedure under 

MVE, when data were sampled from multivariate lognormal, 0.56 average accuracy 

was observed when number of responses, 𝑞 = 3 compared to 0.57 accuracy when 𝑞 = 

7, whereas for data sampled from multivariate Cauchy distribution average 

accuracies were 0.70 and 0.73, respectively (Table 4). Again, similar observations 

were seen for all procedures in robust methods. For both MLE and robust methods 

average accuracies, smaller to no change was observed for structured and 

unstructured mean for all procedures, irrespective of population distributions and 

number of responses. 

For Table 5, when QDA classifier was adopted for unequal group covariance, 

opposite effect of the number of responses seen in Table 4 was observed, that is 𝑞 = 

3 had a higher average accuracythan 𝑞 = 7 in normal distribution and t-distribution 

for un-UNAR, un-UNCS and st-UNCS except st-UNAR for both MLE and robust 

methods. For example: for the un-UNAR procedure under MVE, the average 

accuracy for 𝑞 = 3 was 0.82, whereas for 𝑞 = 7, it was 79, whiles for the st-UNAR 

procedure, the average accuracy for 𝑞 = 3 was 0.84, whereas for 𝑞 = 7, it was 0.86. 

Also, higher average accuracies were observed for the st-UNAR procedure compared 

to the other procedures. In addition, we observed higher increase in classification 

accuracy for increase number of responses in Table 5 for multivariate lognormal 

distribution under MLE compared to Table 4. For example, for the un-UNAR 

procedure under MLE, when data were sampled from multivariate lognormal, 0.65 

accuracy was observed when number of responses, 𝑞 = 3 compared to 0.70 accuracy 

rate when 𝑞 = 7. With regards to MLE and robust methods, higher average 

accuracies were observed for Cauchy distribution based on robust methods compared 

to MLE, but smaller to no increase average accuracies were observed in other 

population distributions (Table 4). 
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Tables 6 and 7 describe the overall average classification accuracy of the repeated 

measures LDA and QDA procedures by population distribution and mean 

configuration, respectively. Figures 2 and 3 show the overall average accuracy of 

robust RMDA procedures for non-normal population distributions from Tables 6 and 

7 respectively. There were negligible differences in the accuracy of the RMDA based 

on MLE and robust estimators when the data were sampled from multivariate normal 

or multivariate t distribution. However, the robust procedures were significantly 

more accurate than MLE when the data were sampled from multivariate Cauchy 

distribution. For example, the average classification accuracy of st-UNAR based on 

MLE and robust estimators were 0.72 and 0.71, when the data were sample from a 

multivariate t-distributions with mean configuration I, respectively. Whereas the 

average accuracy of the former and latter procedures were 0.53 and 0.64 when the 

data were sampled from a multivariate Cauchy distribution with the same mean 

configuration I. On the other hand, the impact of choice of mean configuration on the 

accuracy of the repeated measures LDA models was confounded by the population 

distribution. Specifically, when the data were sampled from a multivariate normal 

distribution, the average classification accuracy of the repeated measures LDA 

procedures were lowest under mean configuration  I, which assumed no change in 

mean pattern over time for constant mean among repeated outcomes, but highest 

under mean configuration IV, which assumed unstructured means among the 

repeated measurements regardless of the estimation methods. However, there were 

negligible differences in the classification accuracy of the procedures based on MLE 

estimators across all the mean configurations when the data were sampled from a 

multivariate log-normal or Cauchy distribution. In contrast, accuracy of the 

procedures based on robust estimators varied across mean configurations when the 

data were sampled from a multivariate lognormal or multivariate Cauchy 

distribution. For example, the average accuracy of the st-UNAR procedure based on 

MLE increased by 0.16 (were 0.72 and 0.88) across the mean configurations when 

the data were sampled from multivariate normal distribution, whereas there was 

negligible change in average accuracy of this procedure across the mean 

configurations when the data were generated from a multivariate log-normal 

distribution. In contrast, the change  in average classification accuracy for st-UNAR 

procedure based on robust estimators across the mean configurations were 0.16 and 

0.13 when the data were sampled from multivariate normal and multivariate Cauchy 

distributions, respectively (Table 6). Thus, the average accuracy of the procedures 

based on robust estimators increased across the mean configurations when the data 

were sampled from multivariate Cauchy distribution compared to procedures based 

on MLE (Table 6 and Figure 2). Similar results were obtained for repeated measures 

quadratic discriminant analysis (Table 7 and Figure 3). Results for RMDA based 

MCD and MVE were similar, hence we reported results for MVE estimation to avoid 

repetition. 
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Table 6. Overall Mean Accuracy of repeated Measures LDA procedures based on 

MLE and Robust Estimator, MVE (standard error) by population distribution, mean 

configuration for equal group covariance 

 

 

Table 7. Overall mean Accuracy of Repeated Measures QDA procedures based on 

MLE and Robust Estimator, MVE (standard error) by population distribution, mean 

configuration for unequal group covariance 
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Figure 1. Observed mean longitudinal profiles of an indicator of whether a 
participant had active (Red) or inactive (Blue) IBD in each of the four IBDQ 

domains: emotional health (IBDQ-eh), systematic symptoms (IBDQ-ss), 
social function (IBDQ-sf) and bowel symptoms (IBDQ-bws) 

 

 

Figure 2: Overall Average Accuracy of Robust repeated measures LDA 
procedures by non-normal population distributions, mean configuration for 

equal group covariance 
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Figure 3: Overall Average Accuracy of Robust repeated measures QDA 
procedures by non-normal population distributions, mean configuration for 

unequal group covariance 

 

 

In addition, we investigated the influence of class imbalance on the accuracy of these 

proposed models, for which additional simulation condition results are provided in 

the Appendix. Tables 10 and 11 contain class-specific accuracies of repeated 

measures LDA procedures based on MLE and robust MVE by number of outcomes 

and sample sizes for normal and Cauchy distributions respectively. Conclusions and 

observations from the additional simulation results remained the same as the initial 

simulations. Thus, class imbalance did not influence the proposed repeated measures 

models. 

4.2 Manitoba Inflammatory Bowel Disease Study 

Multivariate repeated measures data from the Manitoba Inflammatory Bowel Disease 

(IBD) Cohort Study, a prospective longitudinal cohort study to investigate the 

determinants of disease outcomes in community dwelling individuals living with 

Crohn’s disease or ulcerative colitis, were used to demonstrate the application of 

these methods. Data were collected at six-month intervals, after baseline, using self-

report instruments. Study participants were rated as having active (n1 = 214) or 

inactive (n2 = 127) disease based on self-reported IBD symptoms at study entry. 

Details about the Manitoba IBD Cohort Study have been previously published 

elsewhere51,37. Differences between active and inactive disease groups on a disease-

specific measure of quality of life, the IBD questionnaire (IBDQ)29, were 
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investigated in the first year of the study (i.e., three measurement occasions, at 

baseline (0 months), 6 months, and 12 months, p=3). The primary research question 

is to be able to identify active and inactive disease groups within one year of 

diagnosis using their longitudinal profiles of quality of life. Multivariate repeated 

measures data collected on the four IBDQ domains (q=4) namely emotional health 

(IBDQ-eh), systematic symptoms (IBDQ-ss), social function (IBDQ-sf) and bowel 

symptoms (IBDQ-bws) over the one-year period were used to discriminate between 

both groups of participants. 

Of the 389 participants who provided data at baseline (month 0), 213 had complete 

IBDQ domains at the end of the first year. Among the 213 participants, 133 were 

participants with active IBD. Table 8 and Figure 1 describe the differences on each 

domains for active and inactive participants in the Manitoba IBD Cohort Study. 

Participants with inactive disease had higher quality of life scores on all four 

domains than participants with active disease (Figure 1). The group means and 

descriptive measures of multivariate skewness and kurtosis for the IBDQ data are 

reported in Table 8. The expected Mardia’s multivariate skewness is 0 and kurtosis is 

24 for a multivariate normal distribution of 4 variables52. P-value smaller than 0.05 

indicated significant skewness or kurtosis. At least one of these tests was significant, 

thus the underlying joint population was non-normal. Overall, the multivariate 

skewness and kurtosis suggested a moderate departure from the assumption of a 

normal distribution in the active disease group when compared with the inactive 

group (Table 8). A non-constant trend was observed in the group means for both the 

active and inactive disease group (Table 8) and moderate difference was observed in 

group covariances. Hence, we used RMQDA assuming Kronecker product 

covariance. The advantage of imposing the Kronecker product structure on the data 

is that it reduces the number of parameters to estimate, which results in greater 

precision of the estimates since n/pq is small for both active (~11) and inactive (~7) 

disease groups. 
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Table 8. Descriptive Statistics of IBDQ Domains in active and inactive IBD 

participants in Manitoba IBD Cohort Study 

 

 

In estimating parameters for the proposed robust RMQDA method (MVE), the 

symmetric trimming parameter was chosen to be 10%, and compared to RMQDA 

based on MLE. Results of these approaches were reported in Table 9. Overall, we 

observed a 1% to 3% increase in all robust methods compared to MLE with 10% 

trimming. As observed from the simulation, these robust procedures may not always 

be more efficient than RMDA based on MLE for moderate departures from a 

multivariate normal distribution. 

 

Table 9. Overall Classification Accuracy of Conventional and Robust QDA 

procedures for IBD data 
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5. Discussion 

This study investigated RMDA procedures based on structured and unstructured 

means with Kronecker covariances based on maximum trimmed estimators for 

discriminating between population groups. As expected, the accuracy of the RMDA 

procedures were highest in multivariate normal distributions but lowest when the 

data were sampled from a multivariate Cauchy distribution. RMDA procedures 

based on MTLE were more accurate than the conventional RMDA based on MLEs 

when data were sampled from multivariate lognormal and Cauchy distributions24,36. 

However, there were negligible differences in the average accuracy rates of the 

former and latter procedures under multivariate normal and moderately heavy-tailed 

distributions. Furthermore, our results also showed that the impact of group mean 

separation i.e., distance and data dimensions on the accuracy of the conventional 

RMDA procedures could be masked by the departure from the assumption of 

multivariate normality. In contrast, the impact of both group mean separation and 

data dimension on the accuracy of the RMDA procedures based on MTLE was not 

confounded by departure from the assumption of multivariate normality. A common 

criticism of trimmed estimators is that they are less powerful in small-sampled 

studies under multivariate normal distributions53. However, our simulation study 

showed negligible differences in the accuracy of RMDA procedures based on MTLE 

and those based on MLE in small-sampled conditions36. 

Of note is the finding that we observed similar in the accuracy of the investigated 

RMDA procedures based on parsimonious means/or covariance matrices, regardless 

of the method of estimation. This can be attributed to the fact that all these 

procedures were investigated in scenarios where the underlying means and 

covariance structures were correctly specified. It is most likely that the predictive 

performances of these procedures might vary especially in multivariate repeated 

measures data in which group means and covariances are unstructured where the 

assumption of parsimony (i.e. Kronecker product assumption for group means and/or 

covariance) are violated. While previous research studies have suggested that RMDA 

procedures often result in decreased predictive accuracy when the means and 

covariances are mis-specified36,54, there is limited investigation of the robustness of 

the RMDA based on MTLE to model mis-specification. Future research 

investigations will examine the robustness of RMDA procedures based on MTLE to 

mis-specification of group means and covariance structure. 

This study has some limitations. Our simulation only investigated the classification 

performance of the investigated models in multivariate normal and multivariate 

heavy-tailed distributions but not in multivariate skewed distribution. Previous 

investigations have shown that trimmed estimators are particularly more efficient in 

data with moderate to significant heavy-tailed distributions36. Second, the 

assumption of complete MRM data in which there is no missing data on all outcomes 

and at all measurement occasions might not be realistic in multivariate longitudinal 

data often encountered in applied research. In clinical settings, missing data often 
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occur in multivariate longitudinal studies because patients miss some of their regular 

appointments or because some variables may not be measured at particular visits. 

RMDA based on mixed-effects models have been proposed for incomplete 

multivariate longitudinal data but the misspecification of the common assumption of 

the random effects parameter as multivariate normal distribution may seriously affect 

the accuracy of discriminant analysis classification rules. 25Pattern mixture and 

selection models have been proposed to adjust for potential bias in models when it 

cannot be assumed that the mechanism of missingness is ignorable55,56,57. Further 

research could investigate the development of RMDA procedures based on these 

models with imputations and further developments in which mixed-effects models 

can be extended to these robust trimmed methods for classification. In addition, the 

procedures developed in this study are based on two-group multivariate repeated 

designs. Nevertheless, our conclusions can be extended and generalized to multi-

group designs. In addition, this study rely on the assumption of Kronecker product 

structure covariance to capture relationship among multivariate repeated measures. 

Various researches have used Kronecker product covariance structures to address 

sample size and computational issues in multivariate repeated measures12,13,33-35. 

While Kronecker structures provide a parsimonious model approach to parameter 

estimation, the accuracy of the resulting RMDA procedures may be reduced when 

the means and/or covariance structure of the data is mis-specified58. It is important 

that the choice of these RMDA procedures be guided first by a preliminary 

examination of the appropriate means and/or covariance structure in the multivariate 

repeated measures data21,59. For example, several procedures have been developed 

for testing hypotheses Kronecker product covariance structures in multivariate 

repeated measures for such purposes13,35,60,61. 

In summary, this study proposes a new class of RMDA procedures based on MTLE, 

which overcome the inherently restrictive distributional assumption of multivariate 

normality when discriminating between populations groups in multivariate repeated 

measures data characterized by multivariate non-normal distributions. These 

procedures are useful for developing classification models for both short-term and 

long-term outcomes in complex data. 
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