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We are interested here in the estimation of the lifetime distribution by using the right 

censored observations taking into account the probability p that a censored item 

might contract the interest event after the right censoring.  This type of censorship  is 

known in the literature as long-term survival item. We assume that the lifetime 

follows a log-normal distribution with parameters µ and σ2. An EM-algorithm is 

developed so as to estimate the parameters µ, σ and p. Simulations indicate good 

accurate and robustness results. The EM- 

algorithm is then applied to the Cameroonian custom services data set in order to 

estimate the distribution of the return delays of the Global Position System (GPS). 

The EM-algorithm leads to accurate results of the parameters involved with smaller 

mean squared error.  

 

Keywords: EM-algorithm; Estimation; lifetime distribution; right censoring; 

simulation; application. 

 

  

1. Introduction 

The problem to be addressed here is related to the estimation of the return delay 

distribution of the GPS (Global Position System) in the Customs context in 

Cameroon. In fact, the Port of Douala in Cameroon which provides 95% of national 

port traffic is also the first port of Economic and Monetary Community of Central 

Africa (CEMAC), serving Tchad and Central African Republic with preferential 

rates, e.g., see Pibasso (2010). To carry out its daily activities, especially in the 

efficient routing of the goods towards the stations borders (with its neighbors), 

Cameroon Customs established a control and monitoring goods system. The system 

is based on GPS that are connected on each truck in transit so as to enable the 

follow-up from an Information Technology (IT, hereafter) platform. But they are 
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some challenges. The first challenge is that GPS is very expensive and customs need 

a specific tool to optimize the amount needed per day for the different travels. The 

second challenge is that the Cameroonian Customs need to manage the quantity of 

GPS in their routine activities. Also, the number of GPS necessary for the trucks 

transit development on a given day depends on the ones arrived the days before and 

on their supply. The third main challenge is that not all the GPS launched will return 

and this is due to the fact that some of them might be either lost or stolen. The 

Customs therefore need a forecasting tool to have an idea of the number of GPS that 

will eventually return after a given period. 

Our attention here is then on the estimation of the lifetime distribution denoted here 

by the random variable T, that is the time elapsed from the launching day of a given 

GPS until its return day. The idea to keep in mind is that a GPS may not be returned 

by the deadline L and this due to the reasons mentioned earlier. We therefore have 

two types of observations: (i) observations for which GPS is returned on or before 

the deadline L (in which case the duration is completely observed); and (ii) 

observations for which the GPS is not returned to the date L (it is therefore a data 

right censored in the classic sense). But the additional information here is the fact 

that among these GPS not returned at time period L, there is a proportion p 

(unknown) which could have been returned if we had increased the value of L and 

there is another 1 − p proportion that will never be returned. These particulars items 

are referred in the literature as long-term survival items or cured items. Of course, 

absent any other problems, we could manage the first three challenges (complete and 

censored data) with a MLE estimator. The fourth more serious challenge described 

as long-term survival posed other issues for which an EM algorithm is needed. 

Our objective here is then not only to estimate the law of the time of return of the 

GPS but also this proportion p. We estimate T in a parametric way. More precisely, 

we assume that T follows a log-normal law (inspired by the ‘motivation problem’). 

Some examples of lifetime duration estimated under log-normal hypothesis can be 

found in Dube et al. (2011); Fan and Hsu (2014) and Hemmati and Khorram (2013). 

In the absence of the ‘long-term survival items’, the estimation problem is reduced to 

a standard case of estimation of the duration law. In the presence of right censoreship 

the problem is dealt with in a nonparametric way (see Kaplan and Meier (1958) or in 

a parametric way, see Cox (1984). By taking into account the long-term survival 

item, but assuming that the data follow a discrete law (that of Geometric for 

example), the problem has already been analysed in the literature by Carrasco and 

Ponce-Cueto (2009); Goh and Varaprasad (1986); Kelle and Silver (1989); Toktay et 

al. (2000) and Toktay et al. (2003). In our case, we are interested in taking this type 

of censorship into account but assuming a continuous law (in this case that of the 

log-normal law). This makes the problem more appealing and perhaps close to the 

reality on the ground. 

The rest of the paper is organized as follows: Section 2 deals with the description of 

the GPS issue. Section 3 presents the GPS modeling process and related issues. 

Section 4 is related to the estimation procedure. Section 5 deals with the simulation 

study. Section 6 considers a real data application. Section 7 concludes the paper. 
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2. Description of the Problem 

Douala is the second largest city of Cameroon with a renowned Port Authority. This 

port is used by almost all CEMAC countries including the landlocked countries, 

Central African Country, Chad etc. The port is facing a number of challenges 

including: 

(i) Lost of goods; 

(ii) Lost of competitiveness; 

(iii) Delay in delivery of goods and services; 

(iv) Stolen of goods etc 

(v) And reputation 

As a response to these issues, the Douala port authorities have developed an IT 

platform with the introduction of the GPS (Global Pointing System) for tracking, 

monitoring and assisting the port users. The Douala port authorities would like to 

provide answers to the following questions: 

Q1: What is the distribution of the time elapsed from the launching day of a given 

GPS until its return day? 

Q2: What is the maximum, the minimum, the mean, the mode, the median and the 

variance of this distribution? 

Q3: What proportion p of the GPS units will eventually return? 

Indeed, the answer to these questions would allow Customs to predict the amount of 

GPS available in stock at any given time and this will allow them to know the 

amount of GPS to be available per day for trucks. 

To answer the above questions, we follow a cohort of N = 3645 trucks with GPS 

from March 3, 2014 to May 12, 2014. For each GPS, we record daily: its launch date 

and its eventual return date. The GPS units whose return date is not observed until 

the last observation date are therefore considered in ‘survival analysis’ as the right 

censored GPS. To take into account the fact that some of the GPS units censored on 

the right may have returned after the last observation date, we denote by p this 

unobserved proportion which will be estimated from the observations. These are in 

fact the GPS that were not stolen and are not lost. 

 

3. GPS Survival Modeling and Related Issues 

3.1 Continuous-time modelling 

We aim at estimating the time elapsed from initial time to the occurrence of an 

interest event. We consider a sample of n items which are observed during a given 

period of time, from an origin date to an end date L. For each item i, we denote by Si 

its starting time and Ri its end date, that is the moment where the interest event 
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occurs. We assume that in the sample, there are exactly K items of which Ri < +∞ 

and n − K of which Ri = +∞, K and n − K representing respectively the cardinals of J1 

and J2 where J1 and J2 are defined by 

 

The time elapsed from the starting time to the end date is denoted by Ti = Ri-Si and 

T1,...,Tn are then considered as i.i.d continuous random variables. In the following, 

we assume that for each i, knowing Ri < +∞, Ti follows a log-normal distribution 

(motivated from empirical data), that is 

 

where  is red as ’the distribution law of Ti knowing that Ri < ∞’ and ∼ 

is red as ’follows’. The probability density function of Ti knowing that Ri < +∞ can 

then be written as: 

                                    (2) 

Since the distribution of T is known in a parametric way, its mean, median and 

variance are given respectively by 

• Mean:  

• Median: Me(T) = 𝑒𝑥𝑝(µ) 

• Mode: M0(T) = 𝑒𝑥𝑝 (µ − σ2) 

• Variance: Var(T) = (𝑒𝑥𝑝 (σ2) − 1) 𝑒𝑥𝑝 (2µ + σ2) 

To answer questions Q1 and Q2, traditionally it suffices to estimate the parameters µ 

and σ. But in the present case there are some difficulties in terms of estimation; 

difficulties inherent to the nature of the data. The next section is more specific. 

Discrete-time modelling 

The observed data for a fixed L (limit data of observation) is represented by Yi = 

(Xi,δi)  where  ) with Li = L − Si and δi = 1{𝑅𝑖≤L}. 

Setting , the n items may be organized as follows 

           

Let us denote by ℙ(Ri < ∞) = p and ℙ (Ti = +∞, Ri = ∞) = ℙ (Ri = ∞) = 1 − p. We can 

write that ∀t ∈ ℝ, 
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In the following we denote by   the 

probability density function of Ti and  𝐹𝑇𝑖
  its cumulative density function. 

In the following, we consider two estimation methods: (i) the classical maximum 

likelihood estimation approach which allows to estimate µ and σ and (ii) an EM 

algorithm type approach which allows to estimate p, µ and σ. 

 

4. Estimation Procedure 

We present two estimation techniques: the traditional maximum likelihood 

estimation and the EM-algorithm procedure. 

4.1 Estimation of µ and σ2 by Maximum-Likelihood Method 

Under the classical assumptions of non-informative censorship and the independence 

between items, the likelihood for our sample containing complete observations and 

right censored observations can be written as 

 

where φnor(z) = (1/√2𝜋)exp(−z2/2) is the probability density function for a 

standardized normal and Φnor  the cumulative density function 

for a standardized normal. 

The logarithm of the likelihood of observations is given by 

 

and the gradient of log L is given by   where 

     

and 
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. 

The estimators (µˆ, σˆ) are obtained by maximizing the log-likelihood under 

constraints µ ≥ 0 and σ > 0 using the command ’constrOptim’ (in R software) by 

integrating the gradient function as input in order to increase the precision of 

estimates. 

This first method allows to estimate the parameters µ and σ2 but it does not take into 

account the estimation of the probability p which is our main concern. The next 

subsection is then devoted to the EM-algorithm which is formulated in order to take 

into account the probability p. 

4.2 EM-Algorithm for Parameters Estimation 

We recall here that T = (T1, ... ,Tn) is a random vector with a joint density fθ(t) = f(t,θ) 

where θ = (p,µ,σ2). As some of the complete-data vector T is observed, we will 

denote by expressing T as (Tobs , Tuobs) where Tobs denotes the observed and Tuobs the 

unobserved or missing data. More precisely, Ti
obs = Ti represents the elapsed time 

until the interest event when the end date is before L and Ti
uobs(Ti

uobs > Li) represents 

the elapsed time until the interest event when that event occurs after L. The algorithm 

is presented in three steps: (i) complete likelihood, (ii) E-step and (iii) M-step. 

In the following, for convenience, we note random variables by upper-case letters 

and their realizations by lower-case letters (for example ti and ri are used as a 

realization of random variable Ti and Ri respectively). 

4.2.1. The Complete Likelihood 

To write the complete likelihood, we proceed as follows: for a given individual i, its 

contribution to the likelihood is 

 if i ∈ J1 or (1 − p) if i ∈ J2. 

The complete likelihood of data is obtained by the product 

  . (4) 

since individuals are supposed to be independent. 

The logarithm of the complete likelihood is given by 
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The logarithm of the complete likelihood is then 

 

Where K’’ = ∑ 1{𝑟𝑖<∞} log 𝑡𝑖
𝑛
𝑖=1   and K’’ =∑ 1{𝑟𝑖<∞}

𝑛
𝑖=1 (log 𝑡𝑖)

2 

4.2.2. E-step 

This step consists of evaluating of the quantity Q(θ, θ(j)) where θ(j) represents the 

vector of parameters estimated at the iteration r of the algorithm. Using the 

definition, we have θ = (p, µ ,σ2), θ(j) = (p(j),µ(j),σ2(j)) and 

 

where the conditional expectation is written Eθ(.) = E(. | θ). 

 • We easily prove that 

Eθ(j) (K | Y ) = 𝑚𝐿 +  ∑ 𝛼𝑖𝑛
𝑖=𝑚𝐿+1                                                                                (6) 

where 

                                                                              (7) 

with 

 

where FT represents the cumulative density function of T and 
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. 

• using the same technique, we obtain 

                        

With   

, 

• In the same way, we have 

    (9) 

where 

. 

4.2.3. M-step 

The M-step involves the maximization of Q(θ;θ(j)), that is 

  (10) 

where  Aθ(j)(Y) =  𝔼𝜃(𝑗)(K | Y), Bθ(j)(Y) =  𝔼𝜃(𝑗)(K′ | Y)  and  𝐶𝜃(𝑗)(Y) =

 𝔼𝜃(𝑗)(K′′ | Y) 

 

 

and by solving Equation ∇θQ(θ;θ(j)) = 0, we obtain that 

   

   

                          (13) 

(8) 

(11) 

(12) 
(12) 
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where σ2 is obtained by solving the last equation of the previous system. The link 

between the parameters at step j and the ones for step j + 1 is then given by 

                                                                                        

(14) 

                                            (15) 

                                            (16) 

We can now confirm that the found values obtained are the maximum by checking 

the second order condition based on the Hessian Matrix of Q. The Hessian Matrix is 

then given by 

 

where θ1 = p, θ2 = µ and θ3 = σ2. After some algebra we have 

. 

If jc +1 represents the convergence step, that is θˆ= (p ˆ, µ ˆ, σˆ2) = θ(jc+1) the Hessian 

Matrix at (θˆ, θ(jc)) = (θ(jc+1),θ(jc)) is obtained as follows: 

. 

Using the relationship between (θ(jc+1)) and θ(jc) given by (14) − (16) and the fact that 

θ(jc+1) ≈ θ(jc) (since θ(jc+1) is the convergence value) we deduce that 

  

 

and we have 
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;   

 since   . 

 The Hessian Matrix at (θˆ, θ (jc)) is then given by 

 

Since all eigenvalues are negative, Hess(θˆ, θ(jc)) is then negative definite and we 

deduce that θˆ is the maximum of Q. 

4.3 The Steps of the EM-algorithm 

In practice, the different steps of the algorithm can be summarized as follows: 

• Step 1: We initialize the value of θ by θ(0) = (p(0),µ(0),σ(2,0)). In this work, (µ(0),σ(2,0)) 

is initialized by the estimates obtained from maximum likelihood method and p is 

initialized at 0.5. 

• Step 2: We use the expression of Aθ
((j)(Y ) and Bθ

(j)(Y ) in order to deduce the 

expression of 𝜃(𝑗+1) from the ones of 𝜃(𝑗) 

• Step 3: We evaluate the distance between 𝜃(𝑗+1) and 𝜃(𝑗) and compare it with a 

given threshold  (for example 𝜖 = 10−3) 

• Step 4: When the distance is less than 𝜖, we stop the algorithm and the estimation 

is the current value of θ, if not we evaluate the new values of θ. We then repeat 

these steps until convergence. 

 

5. Simulation study 

In this Section, in order to examine the performance of the proposed estimators, we 

conduct several simulations; the accuracy and robustness of the estimators involved 

are then assessed. 

5.1 The Design 

To analyze the accuracy of the estimators obtained by the aforementioned algorithm, 

we apply the method to several samples of data obtained from the log-normal 

distribution with different parameter values. These parameters are choosen in order 

to cover the different speeds of the cumulative function of log-normal distribution, 

that is µ ∈ {0.1,1} and σ ∈ {0.12, 0.25, 0.5}. The limit time L has been chosen 

according to the values of (µ, σ) and the different values are presented in Table 1. 
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Table 1. Simulation’s Different Values 

 

 

It is worth mentioning that the values of L is chosen such that we have enough values 

of censored data in our sample. The simulations are worked out for three different 

values of sample size (n = 100, 250, 500, 1000 and 2000). For each value of µ and σ 

and for each value of sample size n, we simulate the lifetime for n items from log-

normal distribution by using the fact that if the simulated value is less than L this 

value is considered as the observed lifetime of i otherwise its observation lifetime is 

L. For each simulated dataset, we used the EM-algorithm to estimate the values of p, 

µ and σ and the maximum likelihood method as well to estimate µ and σ; we then 

compare the two approaches. 

To analyse the variability of the estimators obtained by the EM-algorithm, we 

construct bootstrap samples of estimators in a parametric way following Efron and 

Tibshirani (1994). To do this, we simulate the data from estimated parameters, and 

we re-estimate the parameters using simulated data and so on (we repeat the process 

B = 1000 times, B equals the number of replications). We then obtain a bootstrap 

sample of estimated parameters. The bootstrap estimator is obtained as the average 

of this sample. The estimated bias (Est.bias) is therefore obtained as the difference 

between the bootstrap estimator and the one deduced from the data. The estimated 

standard deviation (Est.sd) is that of the bootstrap sample. The variability of the 

estimators obtained from the maximum likelihood method are obtained 

asymptotically. These different values are presented in Table 2. 

To analyse the robustness of our method, we consider its behaviour on the data using 

different distributions, frequently cited in the survival analysis: Poisson distribution 

(Pois.), Geometric distribution (Geom.), Negative binomial distribution (Neg. B.), 

Compound Poisson distribution (Com-P.), Log-normal distribution (Log-nor.), 

Gamma distribution (Gamma) and Weibull distribution (Weibull). For each of these 

distributions, we use the real data (presented in the following Section) to estimate by 

maximum likelihood method the different corresponding parameters (e.g, see Table 

5). We then use these estimated parameters to simulate the data with the same 

sample size close to the one of our data, that is n = 3000. The value of L is chosen 

according to the distributions (L = 10 for log-norm, L = 12 for Poisson, nbinon, 

Com-pois, Gamma and Weibull, L = 35 for geometric distribution) and we compare 

the different criteria (Est.Bias and Est.MSE =(Est.Bias)2+(Est.SD)2, where Est.Bias 

and Est.SD are obtained from nonparametric bootstrap) in order to check how our 

method behaves when the data come from a distribution different from the log-

normal one. 
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5.2 Results and Interpretations 

From Table 2, we observe that: (i) regardless of the estimation method, the estimates 

of µ and σ do not depend on the sample size; (ii) the values of µˆ estimated from 

Likelihood method (MLE) are almost constant whatever the sample size and look 

higher than the ones obtained from EM-algorithm; (iii) the values of ˆσ obtained 

from EM-algorithm are in general lower than the ones obtained by the MLE method 

regardless of the sample size. From this last observation, we can deduce that the EM-

algorithm is more accuracy than the MLE method. 

From Table 3 we can observe that the convergence speed is the same (number of 

iteration = 3) for all the distribution laws except the case where the data come from 

the geometric distribution. Looking at the estimated bias in absolute value and the 

mean square error, we observe that, except the Poisson distribution where the value 

is higher than the corresponding values; for other distributions we do not observe a 

real difference between the values of estimated bias and estimated MSE for all the 

distributions. From this last observation it is clear that our method outperforms the 

MLE method. 

 

6. A Real Data Example 

6.1 The Data 

The data are daily and span the period March 3, 2014 to May 12, 2014 i.e N = 3645 

observations or trucks with GPS. For each GPS, we observe its date of put in transit 

(si), its date back in stock (ri), and ti = ri − si + 1 its return delays (in days). We recall 

here that these data come from a large data set generated from the Nexus platform, 

which is the computer system that assists the customs transit in GPS aids connected 

on trucks. For each transit, we have three possible itineraries or corridors (Itinerary 

1: Douala-Yassa-Bonis-Bogdibo, Itinerary 2: Douala-Yassa-Bonis-Kousseri, and 

Itinerary 3: Douala-Yassa-Bonis-Garoua Boulais). Note that the GPS that are put in 

transit before and do not return before are considered as right censored GPS. For 

each of these three itineraries, we apply the EM-algorithm with 03 different values of 

L (corresponding respectively to L1= April 14, 2014, L2= April 28, 2014 and L3= 

May 12, 2014) and the results are compared. 

In the following, the data are then organized following the three different itineraries. 

Some basic statistics are provided in 4. In Table 4, by considering each itinerary, the 

following information are obtained: the minimum of the return delay (in days) of 

both itineraries (1) and (2) are the same simply because the cities Kousseri and 

Bogdibo are geographically close. The minimum return delay of itinerary (3) is 

lower than the others because of its proximity with Douala compared to Bogdibo and 

Kousseri. In addition, when the number of items is small, the standard deviation of 

the different return delays is also high. In that case we observe more truck returns. 



 

AN EM-ALGORITHM FOR ESTIMATING THE LIFETIME DISTRIBUTION 

WITH LONG TERMS SURVIVAL DATA  

 

14 

 

6.2 Distribution of the Data 

In order to find the distribution followed by the data, we use the parameters obtained 

in Table 5 to build the estimated cumulative function and put in competition on the 

same Figure different candidate distributions. The purpose is to choose that best fit 

the data. Different cumulative density functions are presented in Figure 2 

corresponding to the three itineraries. Based on results (in fact the characteristics of 

each distribution) in Figure 2, it turns out that return delay distribution for each 

itinerary is closer to a log-normal distribution. This result is motivated by the 

Kolmogorov-Smirnov test statistic (the lowest value of D in Table 5). It should be 

noticed, however, that the p-value of the Kolmogorov test is not significant and this 

is explained by the fact that the data contain significant ex-eaquo values. 

6.3 Estimation of parameters Using EM-algorithm 

We observe that the algorithm converges very fast, particularly just after 3 iterations 

as we can see in Figure 3. The estimates are reported in Table 7 where we recall that 

the algorithm has been initialized by the maximum Likelihood estimates. From Table 

7, we observe that: (i) the estimated p value is always around 0.9 regardless of the 

itinerary, which means that based on the current available data, a very small number 

of GPS are actually lost; (ii) the estimated values of µ and σ are almost the same for 

the three itineraries, which means that the delay is almost the same for the three 

itineraries; (iii) the Est.MSE of p and µ are very small (< 10−2) but the ones of σ2 is 

around 0.75, which means that the estimate of σ2 is less accurate than those of the 

two other parameters. This estimate of σ2 may be sensitive to the sample size. This 

can be illustrated by the fact that in Figure 1, in the distribution of σ2, the EM-

algorithm does not correspond to the peak of the distribution.; 

Results also indicate that the mean delay is 10 days for Itinerary 1 (Table 9); 11 days 

for Itinerary 2 (Table 10); and 7 days for Itinerary 3 (Table 11). In each case, the 

median is close to the mean; and the mode is not different from the median. The 

above results are obtained from the formula in 3.1. The above results are obtained 

from formula described 

6.4 Analysis of Variability of the Different Estimators 

To determine the variability of the different estimators, we use the parametric 

Bootstrap with re-sampling and based on replications. The aim here is to obtain (i) 

the estimated bias, (ii) the estimated variance and (iii) the MSE. 

In Figure 1 we report the estimated density of the different parameter distributions 

and for each of them, we draw the vertical line corresponding to the parameters 

estimation obtained from EM-algorithm. This Figure shows that the estimations 

always correspond almost to the peak of the curve. 
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7. Conclusions 

We propose here an EM-algorithm in order to estimate the parameters of lognormal 

distribution using right censored observations in a particular case where the interest 

event might occur after the censorship. The methodology advocated is applied in 

order to obtain GPS return delay distribution in customs context in Cameroon. 

A simulation study indicates the good behaviour of the estimators involved 

regardless of the sample size and the distribution used. 

Comparing results from the EM-algorithm and the MLE we notice that the first one 

outperforms the latter from all perspectives. We then conclude that the EM-algorithm 

proposed is appropriate in resolving the problem under consideration. 
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