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A statistical non-normal regression model was developed to characterize the growth 

of white shrimp (Litopenaeusvannamei) and the shrimp’s weight distributions 

throughout the fattening process. Empirical data was collected from submersible 

cages in the Gulf of California, Mexico. In this article, the authors demonstrate the 

efficiency in predicting the shrimp size distribution by using the extreme value 

regression methodology. The extreme value regression has been used in quality 

control engineering, reliability and survival analysis; however, it has yet to be 

applied in aquaculture setting. Findings suggestthat the extreme value regression was 

the best model to fit the weight of shrimp. The extreme value regression model can 

be used to predict not only the average weight but also the shrimp size distribution 

and the percentiles as a function of the number of days that the shrimp stay in the 

farm.  

 

Keywords: Shrimp, Non-Normal Regression, Extreme Value Regression, 

Submersibles Sea Cages, growth, Litopenaeus vannamei. 

 

  

1. Introduction 

In terms of economic value, shrimp farming is one of the important fishery resources 

in Mexico (Pérez-Castañeda et al., 2015). In Mexico, shrimp farming is valued at 

11,479 million pesos (MXN; roughly, 575, 600 USD; Comision Nacional de 

Acuacultura y Pesca, 2018). Thus, shrimp aquaculture production has grown in 

recent years (Pérez-Castañeda et al., 2015). Mathematical models in aquaculture 

have become an essential tool for estimating and computing the growth of 

aquaculture species (Araneda, Hernández, Gasca-Leyva, and Vela, 2013; Franco, 

Ferreira, &Nobre, 2006). The growth modeling methodology allows researchers to 

accumulate observations throughout a culture period. Utilizing this empirical data, 

researchers are able to analyze growth variables to maximize production, aiding 

farmers in decision-making, and calculating cost-benefit analyses (Araneda et al., 

2013; Yu, Leung, and Bienfang, 2006). Due to the economic importance of shrimp, 

not only in Mexico but worldwide, research has focused on developing these growth 

models for shrimp in recent years (Franco et al., 2006).  
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1.1 Functional Forms Used to Model the Growth of Shrimp 

A prediction of shrimp growth is fundamental to make an adequate decision for 

farmers and businesses who are rearing shrimp (Tian et al., 1993). In the aquaculture 

literature, there exist several functional forms to use as a growth model for shrimp 

and other species; For example, there arestudies focusing on temperature and feed, or 

the effect of salinity and temperature on shrimp growth (Ponce-Palafox, Martinez-

Palacios, & Ross, 1997; Wyban, Walsh & Godin, 1995) as well as studies using 

classical statistical methods to model shrimp growth (Carvajal &Nebot, 1998). 

Typically, quantitative methods model the average weight through statistical 

regression techniques using several functional forms. For example,Esmaeili 

andTarazkar(2011) compared linear and non-linear regression models to estimate 

growth focusing on artificial neural networks (ANNs) to predict shrimp growth. 

Similarly, Yu et al. compared eight regression functional forms to model the shrimp 

average weight: Linear, Polynomial, Log reciprocal, von Bertalanffy, Gompertz, 

Logistic, Exponential, and ANN (Yu et al, 2006). The authors concluded that the 

ANN method delivered the most accurate prediction out of the eight 

models.Additionally, in aquaculture research, Katsanevakisperformed a similar 

model selection study for modeling fish growth (2006).  

Shrimp weight-marketing price depends on the shrimp size, not only average weight 

prediction is required, but also the distribution of the weight and size (Instituto 

Nacional de Pesca, 2018).  In this sense, few researchers have focused on both 

predicting shrimp average growth and modeling the size distribution. However, 

research has shown that size heterogeneity is produced due to size-dependent 

variables that affect the growth and level of overcapacity which can increase, 

decrease or stabilize heterogeneity (Peacor, Bence & Pfister, 2007). For example, 

Araneda et al., (2013) studied modeling the shrimp growth considering the size 

variabilityof white shrimp in freshwater. The authors state: “to the extent of the 

authors’ knowledge, there are at present no studies at the intensive level where 

heterogeneity is studied when modeling growth in aquaculture” (p. 1, Araneda et al., 

2013). The authors named the size distribution as "size heterogeneity,”and presented 

three functional forms to model average with size heterogeneity: Gompertz, von 

Bertalanffy and Pütter. The researchers concluded that utilizing size 

heterogeneityproduced better statistical results than when it is not considered as part 

of the model.  

1.2 Non-normal Regression Models 

Because the distribution of shrimp weight does not follow a normal distribution, it is 

necessary to try modelling the shrimp size with other alternative distributions. The 

logarithm and the Box-Cox transformations do not work well with these data. 

Another approach would be to use non-normal regression models such as the 

extreme value regression. Using these kinds of models is common in quality control 

engineering and survival analysis (Crowder, Kimber, Sweeting & Smith, 1994; 

Meeker & Escobar, 2014). In fact, researchers have applied extreme value regression 

to model multiple levels of stress in life-testing (Ng, Balakrishnan, Chan, 2007), 

predicting bank failures (Calabrese &Giudici, 2015), and predicting a snow 
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avalanche runout (McClung & Mears, 1991). Non-normal regression modelsinclude 

the lognormal regression, Weibull regression, and extreme value regression. These 

models are useful to model the scale parameter of non-normal distributions as 

function of one or more variables. Typically, the dependent variable is time and the 

independent variable can be the load or the temperature. In these methodologies the 

focus is set into the percentile’s statistics more than in the mean of the distribution. 

The goal of these models is to have a statistical equation to estimate the shrimp size 

and weight as a function of time. Time, which is the dependent variable is measured 

in days. Similarly, as linear regression, the weight distribution mean is modeled as a 

linear or transformation function of the independent variables. These regression 

methods have been used to solve practical problems in lifetime. For example, 

Meeker and Escobar (2014) explain how to model the time that a computer program 

spends executing (in a multitask system) as a function of the load (i.e. the number of 

users). In Meeker and Escobar’s example, the regression model is not a normal 

regression model. In the same manner, for this study, the shrimp weight depends on 

the number of days in the farm.  

The initial step is to identify what kind of distribution follows the variable of interest 

(or response variable) for each level of the explanatory variable. Then, the location 

parameter and scale (or shape) parameter are fitted separately for each level. Finally, 

a joint model is estimated in which the scaled parameter σ is limited to be equal for 

all levels of the explanatory variable and at the same time the location parameters are 

estimated. Next, the assumptions of the model must be assessed. Similarly, to a 

normal linear regression model, these assumptions are: y= weights are independent 

and follow a non-normal distribution with location parameter μ(x)=β_0+β_1 xand 

constant scale (or shape) parameter σ. Note that only parameter μdepends on x. If 

variable Y follows a non-normal distribution, the residuals ε=Y-Y ̂ also follow a non-

normal distribution. Then, the analyses of residuals can be performed in order to 

evaluate these assumptions (Crowder et al., 1994; Meeker & Escobar, 2014). For 

example, if the assumption is that values follow extreme value distribution (also 

known as Gumbel distribution), it can be evaluated by graphical or analytical 

methods.  For these graphical methods, an extreme value probability plot is useful. If 

residuals follow an extreme value distribution, a straight line of residuals plot should 

be observed. Analytical methods of goodness-of-fit tests such as Kolmogorov-

Smirnov, Cramer-von Mises or Anderson-Darling are valuable to this process. 

1.3 Purpose and Rationale 

In this study, farmers breed white shrimp (Litopenaeusvannamei) inside of 

submersible sea cages (SC) in the Gulf of California, Mexico. White shrimp post-

larvae (PL) were seeded at the beginning of June 2010 (time = 0) and were harvested 

on October 25 (time = 135 days). Scuba divers feed the shrimp inside sea cages each 

day. In order to monitor the shrimp growth in this period of fattening, a sample was 

taken regularly. For each sample, biometric measurements were performed to obtain 

individual information about the weight, size, and other shrimp quality 

characteristics. However, in this study it wasnotenough to know the average weights 
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of shrimp, because the shrimp market prices depend on the shrimp size, it is also 

important to know the statistical distribution of shrimp size.  

A balanced harvest point is desirable between feeding shrimp and the final harvest to 

commercialize the shrimp. For farmers it is important to know the shrimp length or 

size as the final product, because these factors determine the project feasibility, 

marketing conditions, their final price in market, and return on investment of this 

new form of shrimp production. Farmers lacked information on two main issues: (a) 

to know the optimal date to harvest shrimp, and (b) to know if they need to continue 

feeding shrimp with the possibility that it may stop growing after a few days. The 

uncertainty of this information can causecost-effectiveness problems for farmers. To 

resolve this issue, farmers can predict shrimp growth utilizing a statistical model. 

Thus, the goal was modeling the size through non-linear models to these data; 

specifically, to model the distribution of the weight of shrimp at different times 

before and after the harvest. In this work, the authors propose to apply a non-normal 

regression model such as the extreme value distribution to a shrimp growth model. 

Past research has focused on linear, non-linear regression models, artificial neural 

networks (ANNs) but no research has explored the extreme value distribution 

(Esmaeili&Tarazkar, 2011; Yu et al., 2006). Thus, this study will be addressing a gap 

in the literature focusing on the performance of the extreme value distribution in 

modeling shrimp growth.  

 

2. Methodology 

2.1 Sampling 

The samples were taken during the fattening period and the sample size was different 

for each sample due to the sampling method. To select the sample, scuba divers 

dropped a small net from the top of the submersible sea cageswhen the net was 

extended over the cage’s bottom, then the scuba divers pulled the net selecting the 

shrimp. The sampling days were selected according to the weather conditions and 

resources available. Note, the sampling time intervals were not equal. 

2.2 Variables 

The variables considered in this work are the following: 

The independent variable or explanatory variable is the number of days since larva 

was seeded. 

The dependent variable or response variable is the size of shrimp. 

A simple view of this information can be seen in the scatter plot Days versus Weight 

in Figure 1. 
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Figure 1. Days vs shrimp weight 

 

The general idea of the regression model is to describe the shrimp size distribution as 

a function of the variable day(s).Pr⁡(Y≤y;x)=F(y;x)=F(y), where Y is the shrimp 

weight at timex(indays). The mean of the distribution isμ=β_0+β_1 x_i with only 

one explainer variable. 

The simplest distribution model for normal, logistic,and extreme value distributions 

is: 

Pr(𝑌 ≤ 𝑦) = 𝐹(𝑦; 𝜇, 𝜎) = 𝐹(𝑦; 𝛽0, 𝛽1, 𝜎) = Φ (
𝑦−𝜇

𝜎
)      (1) 

Where Φ is the accumulate quantile of the normal distribution, μ=β_0+β_1 x_iand σ 

does not depend on x the explanatory variable. The quantile function for this model 

is: 

𝑦𝑝 = 𝜇 + Φ−1(𝑝)𝜎 = 𝛽0 + 𝛽1𝑥 + Φ−1(𝑝)𝜎.       (2) 

The localization and scale parameters estimation of this regression model can be 

done in different manners. The most common is the maximum likelihood estimation 

(MLE), which consists of finding estimates for β0, β1and σ such that the sample 

likelihood function is maximized. The likelihood function is given by: 

𝐿(𝛽0, 𝛽1, 𝜎; 𝒙) = ∏ 𝐿(𝛽0, 𝛽1, 𝜎; 𝑑𝑎𝑡𝑎𝐼)𝒏
𝒊=𝟏 =  ∏ [

1

𝜎
𝜙 (

𝑦𝑖−𝜇𝑖

𝜎
)]

𝛿
𝒏
𝒊=𝟏 [𝟏 − 𝚽 (

𝑦𝑖−𝜇𝑖

𝜎
)]

𝟏−𝜹𝒊
     (3) 

Numerical methods are used to maximize this function, in which the first derivative 

with respect toβ_0,β_1,σof the likelihood functionL(β_0,β_1,σ;x)are set equal to zero 

andthen the equations aresolvedtoβ_0,β_1,σ. This procedure wasexecuted in the 

Statistical Analysis Software (SAS) via PROC RELIABILITY and PROC 

LIFEREG.The simplest distribution model for Log-Localization-Scale (including 

log-normal, log-logisticand Weibull)is similar as previous, the only difference is that 
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we use log(y) instead of y. 

Pr(𝑌 ≤ 𝑦) = 𝐹(𝑦; 𝜇, 𝜎) = 𝐹(𝑦; 𝛽0, 𝛽1, 𝜎) = Φ (
log (𝑦)−𝜇

𝜎
)    (4) 

𝐿(𝛽0, 𝛽1, 𝜎; 𝒙) = ∏ 𝐿(𝛽0, 𝛽1, 𝜎; 𝑑𝑎𝑡𝑎𝐼)𝒏
𝒊=𝟏 =  ∏ [

1

𝜎
𝜙 (

log (𝑦𝑖)−𝜇𝑖

𝜎
)]

𝛿
𝒏
𝒊=𝟏 [𝟏 −

𝚽 (
log (𝑦𝑖)−𝜇𝑖

𝜎
)]

𝟏−𝜹𝒊
         (5) 

Whereμ=β_0+β_1 xandσdoes not depend onx the independent variable. The quantile 

function for this model is: 

𝑦𝑝 = 𝜇 + Φ−1(𝑝)𝜎 = 𝛽0 + 𝛽1𝑥 + Φ−1(𝑝)𝜎.      (6)  

which is lineal in x. This relationship is known as log-linear. Numerical methods are 

used to maximize this function, in which the first derivative respect to β_0,β_1,σof 

the likelihood function  L(β_0,β_1,σ;x)are set equal to zero and resolve 

forβ_0,β_1,σ. The quantile function can be used to calculate the weight percentiles 

for theshrimp size distribution for a specific value ofx (days). 

 

3. Results 

3.1 Model screening 

To identify the underlying distribution, several models were estimated. At first 

glance the relationship between shrimp weight gain and the intervening days seems 

to be linear. Several types of linear regressions were estimated for these data. That is, 

functional forms, like linear square root of the dependent variable, square root of the 

independent variable, exponential, logarithm s-curve, and x-square.  For these 

models, the assumptions of normality were not met. For example, in the model 

square root of the independent variable (Equation 7) yielded one of the highest R2 

statistics; however, the analysis of residuals showed that residuals were not normally 

distributed. Table 1 shows the estimation of parameters for this model. Figure 2 and 

Figure 3 show the histogram and the normal probability plot for residuals of this 

model. 

𝑤𝑒𝑖𝑔ℎ𝑡 =  𝛽0 + 𝛽1√𝑑𝑎𝑦𝑠 + 𝜖        (7) 

 

Table 1. Estimation of parameters for the square root of the independent variable 

model 

Normal Parameter Estimates Asymptotic Normal 95% Confidence Limits 

Parameter Estimate Standard Error Lower Upper 

Intercept -15.00 0.55 -16.09 -13.91 

SqDays 3.36 0.06 3.24 3.47 

Scale  3.38 0.09 3.21 3.56 
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Figure 2. Histogram for residuals of the square root of the independent 
variable model 

 

As it can be seenin these two graphs, the residuals are far from following a normal 

distribution. Furthermore, all normality tests reject the null hypothesis that residuals 

follow a normal distribution at the 5% significance. Results of normality tests can be 

seen in Table 2. 

 

Figure 3. Normal probability plot for residuals of the square root of the 
independent variable model 
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Table 2. Goodness-of-Fit Tests for Normal Distribution 

Normality Test  P-value 

Kolmogorov-Smirnov 0.09 0.010 

Cramer-von Mises 1.28 0.005 

Anderson-Darling 8.05 0.005 

 

If residuals do not follow an approximate normal distribution, then the follow-up 

questions are: What distribution do they follow? Is there a distributionthat fits the 

residuals appropriately? In order to answer these questions,the authors performed a 

series of tests with differentmodels. Residual plots were used to test for the normal 

distribution, lognormal distribution, the Weibull distribution, and the extreme value 

distribution. Figure 4 shows the probability plot for these four distributions. The 

extreme value distribution better fit the residuals(see Figure 4c). Aside of probability 

plots analytical tests were developed to verify whichdistribution model fits better to 

residuals. Tests of Goodness-of-fit failed to reject the null hypothesis, at theα=0.05 

level of significance, for the extreme value regression model, as it can be seen in 

Table 3.This table also shows the Akaike information criterion (AIC) and the 

Bayesian information criterion (BIC). The AIC and BIC also suggest the best model 

is theextreme value distribution. Therefore, we conclude shrimp weight can be 

modeled appropriately with an extreme value distribution.  

 

Table 3. Goodness-of-fit Test for distributions 

Model Log 

Likelihood 

 AIC  BIC Kolmogorov-

Smirnov 

P-Value Cramer-

Von 

Mises 

W2 

P-Value Anderson-

Darling 

A2 

P-Value 

Normal -1833.04 3672.1 3685.7 0.092 < 0.0001 1.276 < 0.0001 8.060 < 0.0001 

Weibull -1815.90 3637.8 3651.4 0.095 < 0.0001 1.361 < 0.0090 7.124 < 0.0090 

LogNormal -1891.67 3789.3 3803.0 0.100 < 0.0001 1.497 < 0.0090 8.442 < 0.0090 

Extrame Value -1780.83 3567.7 3581.3 0.029 0.5998 0.089 > 0.1000 0.551 > 0.1000 
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Figure 4. From left to right counterclockwise: a) Log normal plot for 
standardized residuals, b) Weibull Probability plot for standardized residuals, 

c) Extreme Value Probability plot for standardized residuals, d) Normal 
Probability plot for standardized residuals. 

 

To support the conclusion in a graphical manner, the histogram of standardized 

residuals and a line of the theoretical extreme value distribution are shown in Figure 

5.  The extreme value distribution line fits well to the shape of the histogram bars. 

Once the distribution of the residuals is found, the next step is estimating the extreme 

value linear regression. 
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Figure 5. Histogram of residuals for Extreme Value Distribution 

 

The weight of shrimp for each sample (day) was analyzed to identify what kind of 

distribution follows them. In most cases, the model that best fits is the extreme value 

regression. Therefore, the location parameterμ=β_0+β_1 xandσare estimated for each 

different day. Figure 6 shows the extreme value probability plots of the weight 

variable for each sample (day). The independent variable was transformed as the 

square root of day, due to the nature phenomena. It is assumed the shrimp will grow 

until the maximum limit for the species. 

 

Figure 6. Extreme value model different  scale parameter for each day 

 

Next, a joint estimation for all days was executed; the estimate of the extreme value 

regression is shown in Table 4. The result model is: 

𝜇(𝑥) = −14.7668 + 3.4940√𝑥, 𝜎 = 2.7015     (8) 
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Table 4. Extreme value Regression Model y = sqrt(x) 

Normal Parameter Estimates Asymptotic Normal 95% Confidence Limits 

Parameter Estimate Standard Error Lower Upper 

Intercept -14.77 0.42 -15.59 -13.95 

x = sqrt(days) 3.49 0.04 3.41 3.58 

𝜎 =EV Scale 2.70 0.08 2.55 2.86 

 

An estimation of the data can be seen in the graph of the Figure 7. Note the slopes of 

the σestimates are the same. This is due to the constraint over σ. 

 

 

Figure 7. Extreme value Regression Model y = sqrt(x) assuming σ same 
scale parameter for different days 

 

Before this model can be used to predict the percentile of the shrimp weight, an 

analysis of residuals has to be performed. Results of goodness-of-fit tests can be seen 

in Table 5. Cramer-von Mises and Anderson-Darling test indicated that residuals 

follow an extreme value distribution. Also, an extreme value probability plot is 

shown in Figure 8. The residuals fit well in the center of the line and are misaligned 

on the left side of the distribution. Note that the location parameter is nearly zero and 
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the scale parameter is equal to 1.  This is equivalent to having exponential residuals 

follow an exponential distribution with parameter  equal to 1. 

 

Table 5. Extreme value regression model y = sqrt(x) residual assumptions 

Goodness-of-fitTest 
 

P-value 

Cramer-von Mises 0.089 0.166 

Anderson-Darling 0.551 0.175 

 

 

Figure 8. Extreme value probability plot 

 

Now that the model has been evaluated, it can be used to estimate the size 

distribution of the shrimp. Table 6 contains the predicted weight of the 33 percentiles 

for several days 160, 170, 180, 190 and 200. This information is important for 

farmers for the reasons outlined in the literature review. For example, it is estimated 

for day 160 that 33% of shrimp will weigh less than 26.99 grams other 33% of the 

shrimp will weigh between 26.99 & 29.68g, and the other 33% of the shrimp will 

weigh between 29.68 and 35.43 grams. This information can be calculated from the 

quantile extreme value function, substituting the parameter estimates and the day. 

For example, for the first 33% shrimp the result is: 

𝑦𝑝 = 𝜇(𝑥) + [log [− log(1 − 𝑝)](𝑝)𝜎     

𝑦𝑝 = 𝛽0 + 𝛽1𝑥 + [log [− log(1 − 𝑝)](𝑝)𝜎      (9) 
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𝑦.33 = −14.7 + 3.4940(169) + [log [− log(1 − .33)](. 33)(2.7015) = 26.99055 

 

Table 6. Shrimp size prediction for different days usingthe Extreme Value 

Regression Model y = sqrt(x) 

Obs Day Probability Percentile 

1 160 0.33 27 

2 160 0.67 30 

3 160 1.00 35 

4 170 0.33 28 

5 170 0.67 31 

6 170 1.00 37 

7 180 0.33 30 

8 180 0.67 32 

9 180 1.00 38 

10 190 0.33 31 

11 190 0.67 34 

12 190 1.00 39 

13 200 0.33 32 

14 200 0.67 35 

15 200 1.00 41 

 

4. Limitations 

This study utilized secondary data, which made it impossible for the authors to 

gather other independent variables that could potentially be used in the model. 

Unlike Wyban, Walsh and Godin (1995), Ponce-Palafox, Martinez-Palacios, and 

Ross (1997), and Esmaeili and Tarazkar (2011), this study did not have additional 

variables to perform the statistical analysis.This is actually very common in an 

applied setting; however, it can be considered a limitation of the study.  Future 

research may focus on utilizing different meaningful variables in the model in order 

to evaluate the effect of one or more variables over the response variable. 
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5. Future Research 

It is always desirable to have more and detailed information in order to have better 

models. Thus, the addition of different independent variables would be a clear future 

research goal. Variables such as diet, water condition, and temperature could be 

added to this model to optimize model predictions. Additionally, the model can be 

improved substantially if there were biometric information at the time of planting, in 

order to have a better estimation on the left side of the growth curve. Additionally, 

other non-normal regression models could be explored such as the generalized 

extreme value distribution.  

 

6. Conclusions 

In this study, using empirical data,we explored the potential of the extreme value 

regression model to predict shrimp growth. The economic importance of shrimp 

growth goes hand-in-hand with the need of developing accurate statistical models to 

predict shrimp growth (Tian et al., 1993). Araneda et al. (2013) first introduced the 

idea of including size heterogeneity in a growth model. In this paper, the authors 

used the extreme value distribution and size heterogeneity to predict the shrimp size 

distribution in similar conditions. This model does not only estimate the average 

weight, but also the percentiles and the size percentages for a determined time. Also, 

the model is able to extrapolate information in order to predict the size distribution to 

determine time in the future. This allows certainty for strategic planning purposes 

and decision making for farmers and statisticians working in the aquaculture field. 

The most important implication of this study is that the shrimp size distribution can 

be better modeled using an extreme value distribution as shown by the results of this 

study. 
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