
 

 

Journal of Modern Applied Statistical 

Methods 

 

Volume 21 | Issue 2                                                                                                    Article 1 

 

Stress Strength Reliability in Multicomponent Model 

for Rayleigh-Exponential (Log Logistic) Distribution  

Nafeesa Bashir  

Department of Statistics, University of Kashmir, India,  

nafeesabashir@gmail.com  

 

J.P.S. Joorel  

Department of Statistics, University of Jammu, India,  

joorel@rediffmail.com  

 

T. R. Jan  

Department of Statistics, University of Kashmir, India,  
drtrjan@gmail.com 
 
 

 

 

 

 

 

 

 

 

 

 

Recommended Citation 

Nafeesa Bashir, J.P.S. Joorel, T. R. Jan (2022). Stress Strength Reliability in Multicomponent 

Model for Rayleigh-Exponential (Log Logistic) Distribution. Journal of Modern Applied 

Statistical Methods, 21(2), https://doi.org/10.56801/Jmasm.V21.i2.1 

https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm
https://digitalcommons.wayne.edu/jmasm/vol19
https://digitalcommons.wayne.edu/jmasm/vol19/iss1
https://digitalcommons.wayne.edu/jmasm/vol19/iss1/1


 

 

     

Journal of Modern Applied Statistical Methods            Copyright © 2022 JMASM                

2022, Vol. 21, No. 2,   ISSN 1538 – 9472 

Doi: 10.56801/Jmasm.V21.i2.1 

                       

Stress Strength Reliability in Multicomponent 

Model for Rayleigh-Exponential (Log Logistic) 

Distribution  

Nafeesa Bashir  J.P.S. Joorel  T. R. Jan  

Department of Statistics, 

University of Kashmir, India  

Department of Statistics, 

University of Jammu, India  

Department of Statistics, 

University of Kashmir, India  

 

 

 

Multivariate repeated measures (MRM) data, in which multiple outcomes are 

repeatedly measured at two or more occasions, are commonly collected in several 

disciplines including medicine, ecology, and environmental sciences, where 

investigators seek to understand changes in multiple correlated outcomes over time 

or different occasions1-6. Multivariate repeated measures data are particularly useful 

for studying evolutions in subjects’ responses over time on multiple 

characteristics7.For example, Fieuws and Verbeke1reported data on a cohort of 

patients who having undergone kidney transplant, were longitudinally monitored at 

irregularly spaced intervals over a 10 year period. The repeated collection of multiple 

biochemical and physiological markers, which constitute multivariate repeated 

measures data, were used to predict 10-year success of graft. Multivariate repeated 

measures data are inherently challenging to analyze because they are typically 

characterized by non-Gaussian distributions, and high-dimensional data8, 9. 

Classical classification and prediction models developed for data collected in a cross-

sectional study are not appropriate to address the complexities observed in 

multivariate repeated measures data 8, 9 .  

 

Keywords: Multivariate repeated measures (MRM), biochemical and physiological 

markers. 

 

  

1. Introduction 

The stress strength relation is undoubtedly flexible relation to different areas of 

natural phenomena and human venture. It is an effective way in reliability analysis 

for measuring the system performance. Stress Strength Reliability (SSR) may be 

defined as an estimation of reliability of the system, in terms of a random variables 

“Y” which represents stress by the unit and “𝑋” denoting the strength available in a 

unit available to resist the applied shock. It is the probability that the system will 

serve the purpose appropriately until the strength transcends stress i.e. if  𝑅 = (𝑌 >
𝑋) , the system collapse. Various attempts have been made to study the 
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generalizations of the models and their application with respect to SSR. The notion 

of this idea was given by Bimbaum (1956) which was further developed by 

Bimbaum and Mc Carty (1958). The estimation of SSR for single component model 

have been considered by various researchers for several lifetime models. Johnson 

(1988) described SSR thoughtfully – as the probability that a system functions well 

in an effective environment, when a random stress 𝑌 is given to a component having 

the strength 𝑋, specifically 𝑌 is taken to be the highest value due to the “critical 

stress”. The estimation procedure for SSR for power lindley distribution was 

obtained by Ghitany et al. (2013). Bhattacharyya and Johnson (1974) noticed that, in 

real world set-ups, the performance of a whole system does not only depend on 

single unit but depends on more than one unit which possess their own strength and 

considerably formulate SSR for multicomponent model. SSR for multicomponent 

models have been analyzed by many authors. The survival analysis in 

multicomponent model for Burr model have been studied by Panday and Bohran 

(1985).  Rao (2017) et al. laid stress on generalized weibull model for obtaining 

profit analysis in terms of multicomponent model. Recently, Pandit and Joshi (2018) 

obtained SSR for generalized pareto Distribution. Also, Bashir et al. (2019) studied 

survival analysis for exponentiated inverse power lindley model and measured its 

system performance. Further, Sanku Dey and Fernando (2019) determined SSR of 

bathtub shape for multicomponent system. 

Suppose a system under consideration consists of k iid units having strengths 

𝑋1, 𝑋2, … , 𝑋𝑘 and each unit is exposed to the random shock having magnitude  𝑌. 

The system is observed to be active, if atleast  ′𝑠′  (𝑠 ≤ 𝑘) out of ′𝑘′ components 

sustains the shock. If 𝑌, 𝑋, 𝑋2, … , 𝑋𝑘  be independent random samples, 𝐺(𝑦) be cdf 

of 𝑌 and 𝐹(𝑋) be the common cdf of 𝑋1, 𝑋2, … , 𝑋𝑘. The SSR for multicomponent 

model as proposed by Bhattacharyya and Johnson (1974) is given as 

𝑅𝑠,𝑘 = 𝑝[𝑎𝑡𝑙𝑒𝑎𝑠𝑡 𝑠 𝑜𝑓(𝑋1, 𝑋2 … 𝑋𝑘)𝑒𝑥𝑐𝑒𝑒𝑑𝑠 𝑌]    

 𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

) ∫ (1 − 𝐹(𝑦))
𝑖
[𝐹(𝑦)]𝑘−𝑖∞

−∞
𝑘
𝑖=𝑠 𝑑𝐺(𝑦)                                                  (1)     

Statistical distributions are very useful in unfolding the actual day to day phenomena. 

In the study of lifetime data, the Log-Logistic (LL) distribution is extensively put in 

use in practice and is an alternate to log-normal distribution, as it exhibits a hazard 

rate function which first shows an increasing trend, reaches to peak after some time 

and then gradually declines. It has a wide application in the field of survival analysis, 

actuarial sciences. Aryal (2013) transmuted the log logistic model and established its 

statistical properties and confirmed its flexibility in terms of survival analysis. 

Further, Tahir et al. (2014) demonstrated its use in reliability and life-testing 

experiments in censored data. Recently a new generalized odd LL family of 

distributions has been discussed by Hossein et al. (2017). Adeyinka and Olapade 

(2019) generalized LL Distribution by Transmuted technique and demonstrated the 

flexibility of the model in statistical data analysis by proving that the distribution 

obtained by the said technique has a better goodness of fit as compared to base 

distribution.  
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The technique of generalizing models is well known practice in which the 

parameters are added to the base distribution to generate the more flexible 

distribution. Various techniques have been used to obtain new statistical models. 

Some old practices are created on the notion of mixing the two models or by 

inducting some parameters to the base model. Adding single parameters to the 

existing distribution were first started by Azzalini (1985), Gupta et al. (1998). 

Marshall and okhlin (1997) developed a common technique and generate another 

family of life models, in terms of reliability function. Subsequently, adding two or 

more parameters to the base distribution was put forward by Eugene et al. (2002), 

Cordeiro and de-Castro (2011), and Alexander et al. (2012). In course of time a new 

generalized approach for generating flexible distributions was put forth by Alzaatreh 

et al. (2013) and gave the (T-X) method.  The CDF and the corresponding pdf, if it 

exists, of the T-X family of distributions is given as: 

𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡

𝑊(𝐹(𝑥))

𝑎

 

Here, r(t) is the pdf of continuous random variable T.   F(x) is the CDF of a random 

variable X and W is an increasing function.  

𝑔(𝑥) = {
𝑑

𝑑𝑥
𝑊(𝐹(𝑥))} 𝑟 (𝑊(𝐹(𝑥))) 

Aljarrah et al. (2014) proposed the function W(F(x)) as the quantile function of a 

random variable Y and defined the T-R{Y} family.  

The CDF and the corresponding pdf, if it exists, of the T-X{Y} family of distributions 

using quantile function 𝑄𝑌  is given as: 

𝐺(𝑥) = ∫ 𝑟(𝑡)𝑑𝑡                                                                                                       (2)
𝑄𝑌(𝐹(𝑥))

𝑎
  

𝑔(𝑥) =
𝑓(𝑥)

𝑝{𝑄𝑌(𝐹(𝑥))}
𝑟{𝑄𝑌(𝐹(𝑥))}                                                                                          (3)  

The pdf of T-X{log-logistic} family as given by Aljarrah et al. (2014) is: 

𝑔(𝑥) =
(

𝛼

𝛽
)𝑓(𝑥)

𝐹
𝛽−1

𝛽 (𝑥)(1−𝐹(𝑥))

𝛽+1
𝛽

𝑟 {𝛼 (
𝐹(𝑥)

1−𝐹(𝑥)
)

1

𝛽
}                                                                       (4)  

In this article our motive is to enhance the flexibility of log logistic distribution using 

T-X{Y} family approach given by Aljarrah et al. (2014). The new model proposed is 

named as Rayleigh-Exponential {log-logistic} R-E(LL) distribution. The new model 

exhibits the complex shape of hazard rate function and outshines various existing 

model in terms of survival analysis and stress strength reliability. Various reliability 

measures of the proposed model have been obtained. The SSR for single and 

multicomponent (Rs,k) of the system has been established. Further, MLE of the 

parameters, asymptotic distribution and confidence interval (CI) of Rs,k are derived. 
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A simulation study has been performed to access the behaviour of Rs,k , using 

MonteCarlo technique. Further comparison of the proposed model with existing 

models has been given in terms of SSR. Finally the conclusions are specified. 

 

2. Rayleigh-Exponential (Log Logistic) Distribution 

On keeping 𝛼 = 𝛽 = 1 in the pdf on T-X{log logistic} family and let  𝑟  be the pdf 

of Rayleigh distribution, 𝑟(𝑡) =
2𝑡

𝛾2  𝑒𝑥𝑝 {− (
𝑡

𝛾
)

2

}. Further 𝐹  be the cdf of 

exponential model, 𝐹(𝑥) = 1 − 𝑒𝑥𝑝{−𝜃𝑥}, the pdf and cdf of R-E(LL) distribution 

by using 2, 3 and 4 is given as: 

𝑔(𝑥) =
2𝜃(1−𝑒−𝜃𝑥)

𝛾2𝑒−2𝜃𝑥  𝑒𝑥𝑝 {− ((
1

𝛾
) (

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

}              γ , θ > 0,     x > 0               (5) 

𝐺(𝑥) = 1 −  𝑒𝑥𝑝 {− ((
1

𝛾
) (

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

}      γ , θ > 0,     x > 0              (6) 

     

3. Reliability Measures 

In this section, the reliability measures of R-E(LL) has been obtained. 

Survival Function: It is the probability that the object will work satisfactorily beyond 

any definite time. The survival function 𝑅(𝑥) of R-E(LL) distribution is given as: 

𝑅(𝑥) = 𝑒𝑥𝑝 {− ((
1

𝛾
) (

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

}   

Hazard Rate Function: It defines the probability that the component will fail in time 
{𝑥, 𝑥 + 𝑑𝑥} given that the component did not fail before in [0, 𝑥]. The hazard rate 

function ℎ(𝑥) of R-E(LL) distribution is given as 

ℎ(𝑥) =
2𝜃(1−𝑒−𝜃𝑥)

𝛾2𝑒−2𝜃𝑥
   

Reverse Hazard Rate: In reliability field, it is the probability of failure of the 

component in time interval [𝑥 − 𝑑𝑥, 𝑥] given that the failure had occurred at time 𝑥. 
It is the ratio of pdf and cdf . The reverse hazard rate function 𝜇(𝑥) of R-E(LL) 

distribution is given as: 

𝜇(𝑥) =

2𝜃(1−𝑒−𝜃𝑥)

𝛾2𝑒−2𝜃𝑥  𝑒𝑥𝑝{−((
1

𝛾
)(

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

}

1− 𝑒𝑥𝑝{−((
1

𝛾
)(

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥
))

2

}
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Cumulative Hazard Function: It is the probability of failure at time 𝑥 given that the 

component survives until time 𝑥. It is given as  

 𝐻(𝑥) = ∫ ℎ(𝑥)𝑑𝑥
𝑥

0
 

The function can also be expressed as: 

𝐻(𝑥) = − ln 𝑅(𝑥)  

Using above relation, the cumulative hazard function 𝐻(𝑥) of R-E(LL) distribution 

is given as: 

𝐻(𝑥) = ((
1

𝛾
) (

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥
))

2

  

 

 

 

4. SSR of Single Component Model 

If X~ R − E(LL) with parameters (𝜃, 𝛾1) and Y~ R − E(LL) with parameters (𝜃, 𝛾2) 

,then the SSR for single component model is given as 
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 𝑅 = 𝑃(𝑌 < 𝑋) 

    = ∫ 𝐺𝑌(𝑥)𝑓(𝑥) 𝑑𝑥
∞

0
  

    = ∫ 𝑓(𝑥, 𝜃, 𝛾1)𝐹(𝑥, 𝜃, 𝛾2) 𝑑𝑥
∞

0
  

𝑅 = ∫
2𝜃(1−𝑒−𝜃𝑥)

𝛾1
2𝑒−2𝜃𝑥

 𝑒𝑥𝑝 {− ((
1

𝛾1
) (

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥
))

2

}
∞

0
× (1 −

 𝑒𝑥𝑝 {− ((
1

𝛾2
) (

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

})  𝑑𝑥  

After solving the above integral, we get 

𝑅 =
𝛾2

𝛾2+1  
           where               𝛾 =

𝛾1

𝛾2
 

 

5. SSR for Multicomponent Model 

Let 𝑋 and 𝑌 be two independent random variables following R-E(LL) with 

parameters 
(𝜃, 𝛾1) and (𝜃, 𝛾2) respectively. The multicomponent SSR for R-E(LL) 

using (1) is given as: 

𝑅𝑠,𝑘 = ∑ (
𝑘
𝑖

) ∫ [𝑒
−(

1

𝛾1
(

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

]

𝑖

× [1 − 𝑒
−(

1

𝛾1
(

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

]

𝑘−𝑖

×
∞

0
𝑘
𝑖=𝑠  

2𝜃(1−𝑒−𝜃𝑥) 𝑒

−(
1

𝛾2
(

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥
))

2

𝛾2
2𝑒−𝜃𝑥 𝑑𝑥 

𝑅𝑠,𝑘 = 𝛾2 ∑ (
𝑘
𝑖

) ∫(1 − 𝑧)𝑘−𝑖𝑧𝑖+𝛾2−1 𝑑𝑧

1

0

𝑘

𝑖=𝑠

 

  Where,   𝑧 = 𝑒
−(

1

𝛾1
(

1−𝑒−𝜃𝑥

𝑒−𝜃𝑥 ))

2

           𝑎𝑛𝑑                  𝛾 =
𝛾2

𝛾1
 

𝑅𝑠,𝑘 =  𝛾2 ∑ (
𝑘
𝑖

) 𝛽[𝑖 + 𝛾2, 𝑘 − 𝑖 + 1]

𝑘

𝑖=𝑠

 

𝑅𝑠,𝑘 = 𝛾2 ∑
𝑘!(𝑖+𝛾2−1)

𝑖! (𝑘+𝛾2)

𝑘
𝑖=1                               (7) 

The probability in (7) is the expression for SSR in a multicomponent model. 
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6. Maximum Likelihood Estimator (MLE) Of  𝐑𝐬,𝐤 

Let X~ R-E(LL)  (𝜃, 𝛾1) of size n and Y~ R-E(LL)  (𝜃, 𝛾2) of size m then, the log-

likelihood function based on two independent random variables is obtained as: 

𝑙(𝜃, 𝛾1, 𝛾2) = ∑ 𝑙𝑛[𝑓(𝑥𝑖)]𝑛
𝑖=1 + ∑ 𝑙𝑛[𝑓(𝑦𝑗)]𝑚

𝑗=1     

𝑙(𝜃, 𝛾1, 𝛾2) = 𝑛𝑙𝑜𝑔2 + 𝑛𝑙𝑜𝑔𝜃 − 2𝑛𝑙𝑜𝑔𝛾1

+ ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜃𝑥𝑖) − 2𝜃 ∑ 𝑥𝑖 −
1

𝛾1
2

𝑛

𝑖=1

𝑛

𝑖=1

∑ (
1 − 𝑒−𝜃𝑥𝑖

𝑒−𝜃𝑥𝑖
)

2𝑛

𝑖=1

 

 +𝑚𝑙𝑜𝑔2 + 𝑚𝑙𝑜𝑔𝜃 − 2𝑚𝑙𝑜𝑔𝛾2 + ∑ 𝑙𝑜𝑔(1 − 𝑒−𝜃𝑦𝑗) − 2𝜃 ∑ 𝑦𝑗 −𝑚
𝑗=1

𝑚
𝑗=1

1

𝛾2
2 ∑ (

1−𝑒
−𝜃𝑦𝑗

𝑒
−𝜃𝑦𝑗

)
2

𝑚
𝑗=1  

The MLE of  𝜃, 𝛾1, 𝛾2 are the solutions of the following equations: 

𝜕𝑙

𝜕𝛾1
= 0 =>   

−2𝑛

𝛾1
+

2

𝛾1
3 ∑ (

1−𝑒−𝜃𝑥𝑖

𝑒−𝜃𝑥𝑖
)

2

=   0𝑛
𝑖=1                                                   (8) 

𝜕𝑙

𝜕𝛾2
= 0 =>   

−2𝑚

𝛾1
+

2

𝛾2
3 ∑ (

1−𝑒
−𝜃𝑦𝑗

𝑒
−𝜃𝑦𝑗

)
2

𝑚
𝑗=1   =   0                       (9) 

𝜕𝑙

𝜕𝜃
= 0 =>  

𝑛

𝜃
+ ∑ 𝑥𝑖 (

 𝑒−𝜃𝑥𝑖

1− 𝑒−𝜃𝑥𝑖
)𝑛

𝑖=1 − 2 ∑ 𝑥𝑖
𝑛
𝑖=1 −

2

𝛾1
2 ∑ 𝑥𝑖 (

1−  𝑒−𝜃𝑥𝑖

  𝑒−2𝜃𝑥𝑖
)𝑛

𝑖=1  +
𝑚

𝜃
+

∑ 𝑦𝑗 (
 𝑒

−𝜃𝑦𝑗

1− 𝑒
−𝜃𝑦𝑗

)𝑚
𝑗=1 − 2 ∑ 𝑦𝑗

𝑚
𝑖=1 −

2

𝛾2
2 ∑ 𝑦𝑗 (

1−  𝑒
−𝜃𝑦𝑗

  𝑒
−2𝜃𝑦𝑗

)𝑚
𝑗=1     = 0             (10) 

Simplifying 8 and 9, we get 

𝛾1 =  √(
1

𝑛
∑ (

1−𝑒−𝜃𝑥𝑖

𝑒−𝜃𝑥𝑖
)

2
𝑛
𝑖=1 )                  (11) 

γ̂2 =  √(
1

m
∑ (

1−e
−θyj

e
−θyj

)
2

m
j=1 )                   (12) 

Using (11) and (12) in  (10), we get, we get estimate of θ as 𝜃  

Substituting 𝜃, we obtain the MLEs of  𝛾1 and  𝛾2 𝑎𝑠: 

𝛾1 =  √(
1

𝑛
∑ (

1−𝑒−�̂�𝑥𝑖

𝑒−�̂�𝑥𝑖
)

2
𝑛
𝑖=1 )                    (13) 

γ̂2 =  √(
1

m
∑ (

1−e
−�̂�yj

e
−�̂�yj

)

2

m
j=1 )                  (14) 
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Hence, we get the MLE of 𝑅𝑠,𝑘 as: 

�̂�𝑠,𝑘 = 𝛾 2 ∑
𝑘!(𝑖+�̂� 2−1)

𝑖! (𝑘+�̂� 2)

𝑘
𝑖=𝑠                                                                      (15) 

Further, the asymptotic variance (AV) of the MLEs is given as: 

𝑉(𝛾𝟏) = [𝐸 (−
𝜕2𝑙

𝜕𝛾1
)]

−1

=
4𝑛

𝛾1
2  

𝑉(𝛾𝟐) = [𝐸 (−
𝜕2𝑙

𝜕𝛾2
)]

−1

=
4𝑚

𝛾2
2    

The AV of an estimate of 𝑅𝑠,𝑘 which is the function of two independent statistic 

(𝛾1, 𝛾2) as obtained by Rao (1973) is given as: 

𝐴𝑉(�̂�𝑠,𝑘) =  𝑉(𝛾𝟏) (
𝜕𝑅𝑠,𝑘

𝜕𝛾1
)

2

+ 𝑉(𝛾𝟐) (
𝜕𝑅𝑠,𝑘

𝜕𝛾2
)

2

  

For simplicity of the derivation of  𝑅𝑠,𝑘, we obtain derivatives of 𝑅𝑠,𝑘 at (𝑠, 𝑘) =
(1,3) 𝑎𝑛𝑑 (2,4) and are given as: 

𝜕�̂�1,3

𝜕𝛾1
=

12𝛾2(3𝛾4+12𝛾2+11)

𝛾2(𝛾2+1)2(𝛾2+2)2(𝛾2+3)2  

𝜕�̂�1,3

𝜕𝛾2
=

−12𝛾(3𝛾4+12𝛾2+11)

𝛾2(𝛾2+1)2(𝛾2+2)2(𝛾2+3)2  

𝜕�̂�2,4

𝜕𝛾1
=

−48𝛾(3𝛾4+18𝛾2+26)

𝛾2(𝛾2+2)2(𝛾2+3)2(𝛾2+4)2  

𝜕�̂�2,4

𝜕𝛾2
=

−48𝛾2(3𝛾4+18𝛾2+26)

𝛾2(𝛾2+2)2(𝛾2+3)2(𝛾2+4)2  

𝐴𝑉(�̂�1,3) =
36�̂�2(3�̂�4+12�̂�2+11)

2

((�̂�2+1)(�̂�2+2)(�̂�2+3))
4 (

�̂�2

𝑛
+

1

𝑚
)  

𝐴𝑉(�̂�2,4) =
576�̂�2(3�̂�4+18�̂�2+26)

2

((�̂�2+1)(�̂�2+2)(�̂�2+3))
4 (

�̂�2

𝑛
+

1

𝑚
)  

𝐴𝑠 𝑚1 → ∞, 𝑚2 → ∞,        
�̂�𝑠,𝑘−𝑅𝑠,𝑘

𝐴𝑉(�̂�𝑠,𝑘)
→ 𝑁(0,1)   

The asymptotic 95% (CI) is given  as  �̂�𝑠,𝑘 ± 1.96 √𝐴𝑉(�̂�𝑠,𝑘)  

The asymptotic 95% CI for  �̂�1,3  𝑎𝑛𝑑  �̂�2,4   respectively is given by 

�̂�1,3 ± 1.96
6�̂�(3�̂�4+12�̂�2+11)

((�̂�2+1)(�̂�2+2)(�̂�2+3))
4 √(

�̂�2

𝑛
+

1

𝑚
)  

�̂�2,4 ± 1.96
24�̂�(3�̂�4+18�̂�2+20)

((�̂�2+2)(�̂�2+3)(�̂�2+4))
4 √(

�̂�2

𝑛
+

1

𝑚
)  
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7. Simulation Study 

Results are obtained from Monte-Carlo simulation on R Software, R Core Team 

(2017), to access the performance of  𝑅𝑠,𝑘    by changing the sample sizes using the 

following algorithm: 

7.1 Algorithm: 

To study the behaviour of 𝑅𝑠,𝑘 , the following algorithm has been used 

1) Compute 𝑅1,3 𝑎𝑛𝑑 𝑅2,4 from (7) for given values of (𝛾1, 𝛾2 ) 

2) Generate 3000 r.s of sizes  10(5)35 using Monte Carlo Simulation. 

3) Obtain 𝛾1 𝑎𝑛𝑑 𝛾2 using (13) and (14). 

4) Compute �̂�1,3 𝑎𝑛𝑑 �̂�2,4 from (15). 

5) Calculate Average Bias, Average Mean Square Error (MSE), Asymptotic 95% 

CI for 𝑅1,3 𝑎𝑛𝑑 𝑅2,4. 

3,000 random samples of varying sizes 10(5)35 were generated for (𝛾1, 𝛾2) =
(2.5, 0.5), (2.0, 0.5), (1.5, 0.5), (1.0,0.5), (0.5,0.5), (0.5, 1.0), (0.5, 1.5), (0.5,2.0),  
for both stress and strength population. In order to get the multicomponent reliability 

for the pairs (𝑠, 𝑘) = (1,3), (2,4), the ML estimators of 𝛾1, 𝛾2 are substituted in 𝛾. 

We considered, θ to be known (𝜃 = 1 ) in the simulation study. The average bias, 

average MSE are present in Tables 2 and 3. Average confidence length (ACL) of 

𝑅𝑠,𝑘   is given in table 4. The true values of multicomponent SSR for given 

combination of (𝛾1, 𝛾2) for  

(𝑠, 𝑘) = (1,3)  𝑎𝑟𝑒 0.9996, 0.9989, 0.9954, 0.9714, 0.75, 0.3435, 
0.1778 𝑎𝑛𝑑 0.1059  𝑎𝑛𝑑 𝑓𝑜𝑟   

(𝑠, 𝑘) =  (2,4) 𝑎𝑟𝑒 0.9989, 0.9964, 0.9860, 0.9285, 0.6, 0.2277,0.111 

𝑎𝑛𝑑 0.0647. From Table 1, it is observed that as 𝜃2 (stress parameter) increases, 

keeping 𝜃1 (strength parameter) constant, the reliability of multicomponent stress 

strength model decreases whereas, as 𝜃1 increases, keeping 𝜃2  constant, the 

multicomponent SSR increases. Further as sample size increases, the bias, MSE and 

length of CI decreases.   
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Table 1. Estimated Reliability 𝑅𝑠,𝑘 

(𝛾1,𝛾2) 

(𝑠, 𝑘)

 

(𝑛, 𝑚) (2.5,0.5) (2.0,0.5) (1.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.5)

 

(0.5,2.0) 

 

 

(1,3) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.9992 

0.9994 

0.9995 

0..9995 

0.9996 

0.9996 

0.9978 

0.9983 

0.9985 

0.9986 

0.9987 

0.9987 

0.9917 

0.9932 

0.9940 

0.9942 

0.9945 

0.9945 

0.9587 

0.9637 

0.9664 

0.9670 

0.9680 

0.9682 

0.7333 

0.7400 

0.7457 

0.7470 

0.7469 

0.7460 

0.3525 

0.3515 

0.3522 

0.3508 

0.3493 

0.3473 

0.1884 

0.1859 

0.1856 

0.1842 

0.1829 

0.1815 

0.1141 

0.1120 

0.1115 

0.1105 

0.1096 

0.1086 

 

(2,4) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.9976 

0.9982 

0.9984 

0.9985 

0.9986 

0.9985 

0.9933 

0.9946 

0.9951 

0.9956 

0.9957 

0.9957 

0.9775 

0.9809 

0.9826 

0.9834 

0.9837 

0.9839 

0.9090 

0.9167 

0.9209 

0.9227 

0.9233 

0.9234 

0.5938 

0.5984 

0.6018 

0.6019 

0.6011 

0.5999 

0.2390 

0.2366 

0.2365 

0.2349 

0.2335 

0.2318 

0.1196 

0.1174 

0.1170 

0.1159 

0.1150 

0.1139 

0.0704 

0.0688 

0.0685 

0.0677 

0.0672 

0.0665 

 

Table 2.  Average bias of  𝑅𝑠,𝑘 

(𝛾1,𝛾2) 

(𝑠, 𝑘)

 

(𝑛, 𝑚) (2.5,0.5) (2.0,0.5) (1.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.5)

 

(0.5,2.0) 

 

 

(1,3) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

-0.0004 

-0.0003 

-0.0002 

-0.0002 

-0.0001 

-0.0001 

-0.0011 

-0.0006 

-0.0004 

-0.0003 

-0.0002 

-0.0002 

-0.0037 

-0.0021 

-0.0014 

-0.0010 

-0.0009 

-0.0008 

-0.0126 

-0.0076 

-0.0050 

-0.0038 

-0.0033 

-0.0032 

-0.0166 

-0.0090 

-0.0042 

-0.0039 

-0.0030 

-0.0029 

0.0089 

0.0079 

0.0086 

0.0072 

0.0057 

0.0037 

0.0106 

0.0081 

0.0078 

0.0064 

0.0051 

0.0037 

0.0081 

0.0060 

0.0056 

0.0045 

0.0037 

0.0027 

 

(2,4) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

-0.0012 

-0.0006 

-0.0004 

-0.0003 

-0.0002 

-0.0002 

-0.0031 

-0.0018 

-0.0011 

-0.0008 

-0.0007 

-0.0007 

-0.0084 

-0.0050 

-0.0033 

-0.0025 

-0.0022 

-0.0020 

-0.0194 

-0.0118 

-0.0076 

-0.0057 

-0.0052 

-0.0051 

-0.0061 

-0.0015 

-0.0018 

-0.0019 

 0.0011 

-0.0005 

0.0113 

0.0089 

0.0087 

0.0072 

0.0058 

0.0041 

0.0085 

0.0062 

0.0058 

0.0047 

0.0038 

0.0028 

0.0057 

0.0041 

0.0038 

0.0030 

0.0025 

0.0018 
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Table 3.   Average MSE of estimates of  𝑅𝑠,𝑘 

(𝛾1,𝛾2) 

(𝑠, 𝑘)

 

(𝑛, 𝑚) (2.5,0.5) (2.0,0.5) (1.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.5)

 

(0.5,2.0) 

 

 

(1,3) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.0039 

0.0051 

0.0023 

0.0014 

0.0010 

0.0010 

0.0084 

0.0120 

0.0058 

0.0035 

0.0027 

0.0026 

0.0399 

0.0380 

0.0204 

0.0132 

0.0101 

0.0084 

0.0016 

0.0008 

0.0005 

0.0003 

0.0003 

0.0002 

0.0155 

0.0102 

0.0076 

0.0060 

0.0052 

0.0045 

0.0141 

0.0093 

0.0072 

0.0057 

0.0048 

0.0041 

0.0060 

0.0038 

0.0029 

0.0022 

0.0019 

0.0016 

0.0026 

0.0016 

0.0012 

0.0009 

0.0007 

0.0006 

 

(2,4) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.0097 

0.0137 

0.0066 

0.0040 

0.0031 

0.0024 

0.0616 

0.0260 

0.0136 

0.0087 

0.0068 

0.0053 

0.0006 

0.0003 

0.0002 

0.0002 

0.0001 

0.0001 

0.0051 

0.0029 

0.0020 

0.0014 

0.0012 

0.0010 

0.0194 

0.0131 

0.0100 

0.0080 

0.0069 

0.0060 

0.0087 

0.0056 

0.0043 

0.0033 

0.0028 

0.0024 

0.0029 

0.0017 

0.0013 

0.0010 

0.0008 

0.0007 

0.0011 

0.0006 

0.0005 

0.0003 

0.0003 

0.0002 

 

Table 4. ACL of estimates of  𝑅𝑠,𝑘 

(𝛾1,𝛾2) 

(𝑠, 𝑘)

 

(𝑛, 𝑚) (2.5,0.5) (2.0,0.5) (1.5,0.5) (1.0,0.5) (0.5,0.5) (0.5,1.0) (0.5,1.5)

 

(0.5,2.0) 

 

 

(1,3) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.0022 

0.0014 

0.0010 

0.0008 

0.0007 

0.0006 

0.0066 

0.0043 

0.0032 

0.0027 

0.0024 

0.0022 

0.0225 

0.0156 

0.0122 

0.0104 

0.0093 

0.0085 

0.0895 

0.0677 

0.0559 

0.0490 

0.0445 

0.0412 

0.3162 

0.2620 

0.2292 

0.2067 

0.1898 

0.1769 

0.3067 

0.2554 

0.2239 

0.2015 

0.1846 

0.1713 

0.1984 

0.1631 

0.1427 

0.1281 

0.1173 

0.1087 

0.1306 

0.1068 

0.0936 

0.8416 

0.0772 

0.0718 

 

(2,4) 

(10,10) 

(15.15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.0035 

0.0023 

0.0017 

0.0014 

0.0012 

0.0011 

0.0093 

0.0063 

0.0049 

0.0041 

0.0037 

0.0034 

0.0273 

0.0198 

0.0160 

0.0139 

0.0125 

0.0115 

0.0834 

0.0659 

0.0559 

0.0496 

0.0453 

0.0421 

0.1799 

0.1508 

0.1322 

0.1194 

0.1096 

0.1019 

0.1190 

0.0980 

0.0856 

0.0767 

0.0701 

0.0648 

0.0675 

0.0550 

0.0479 

0.0429 

0.0392 

0.0363 

0.0420 

0.0341 

0.0298 

0.0267 

0.0245 

0.0228 
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8. Comparative Analysis 

An effort has been made to assess our results with existing distributions Rao et al. 

(2017), Rao (2017) at  (𝛾1, 𝛾2) = (2.5,0.5) which is displayed in Table 5. The results 

indicate average bias, MSE, and average lengths of CI are lesser as compared to 

previous results. Thus, our results for R-E(LL) distribution acts well with respect to 

the study of multicomponent SSR as compared to the existing models. 

 

Table 5. Comparison of bias, MSE,   𝐴𝐶𝐿 at ),( 21   = (2.5, 0.5) for three models. 

(𝑠, 𝑘)

 

(1,3)

 

(2,4)

  

Raleigh Exponential 

Log-logistic 

Distribution 

(𝑛, 𝑚)

 

𝐵𝑖𝑎𝑠

 

𝑀𝑆𝐸

 

𝐴𝐶𝐿

 

𝐵𝑖𝑎𝑠

 

𝑀𝑆𝐸

 

𝐴𝐶𝐿

 (10,10) 

(15,15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

-0.0004 

-0.0003 

-0.0002 

-0.0002 

-0.0001 

-0.0001 

0.0039 

0.0051 

0.0023 

0.0014 

0.0010 

0.0010 

0.0022 

0.0014 

0.0010 

0.0008 

0.0007 

0.0006 

-0.0012 

-0.0006 

-0.0004 

-0.0003 

-0.0002 

-0.0002 

0.0097 

0.0137 

0.0066 

0.0040 

0.0031 

0.0024 

0.0035 

0.0023 

0.0017 

0.0014 

0.0012 

0.0011 

Erlang-Truncated 

Exponential 

Distribution  

 

(10,10) 

(15,15) 

(20,20) 

(25,25) 

(30,30) 

(35,35) 

0.0097 

0.0082 

0.0064 

0.0029 

0.0045 

0.0040 

0.0127 

0.0089 

0.0067 

0.0053 

0.0044 

0.0037 

0.4339 

0.3585 

0.3118 

0.2786 

0.2558 

0.2373 

 0.0113 

 0.0090 

 0.0069 

 0.0038 

 0.0047 

 0.0042 

0.0078 

0.0053 

0.0040 

0.0031 

0.0026 

0.0021 

0.3361 

0.2752 

0.2380 

0.2114 

0.1940 

0.1796 

Two Parameter 

Exponentiated 

Weibull Distribution 

(10,10) 

(15,15)  

(20,20) 

(25,25) 

(30,30) 

(35,35) 

-0.0061 

-0.0031 

-0.0030 

-0.0020 

-0.0019 

-0.0019 

0.0100 

0.0050 

0.0040 

0.0030 

0.0030 

0.0020 

0.1095 

0.0873 

0.0753 

0.0667 

0.0608 

0.0556 

-0.0096 

-0.0049 

-0.0048 

-0.0032 

-0.0025 

-0.0031 

0.0026 

0.0015 

0.0010 

0.0008 

0.0007 

0.0006 

0.1816 

0.1454 

0.1255 

0.1115 

0.1016 

0.0930 

 

9. Conclusion: 

In this article, a new lifetime model known as Rayleigh-Exponential (Log Logistic) 

Distribution has been introduced. The proposed model acts well in terms of lifetime 

distribution as compared to existing models. Different reliability measures of the said 

distribution have been obtained. The SSR for single and multicomponent model has 

been derived. The Reliability model parameters are estimated using MLE method. 

MonteCarlo simulation technique has been used to compute large-sample CI.  We 

observe that greater the sample size, lesser is the bias, MSE. Also with increase in 
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sample size, CI decreases. Further, to examine the efficacy of the model, our work 

has been compared with previous work and concluded that R-E(LL) performs well in 

survival analysis in consideration to multicomponent SSR. 
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