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In this article, the researchers set up one and two parameters life model called the 

Logarithm Transformed Exponential Distribution (LTE) and Logarithm Transformed 

Weibull Distribution (LTW). The researchers give extensive consequence of the 

survival function and hazard rate function. To fit this model as survival model and 

hazard rate function the researchers adopted to use Bayesian approach. A real 

survival data set is used to illustrate this work. Application is done by R and Stan, 

then a comparison of the two models is conducted by using LOO package to find the 

best model and simulation. R and Stan codes have been given to actualize censoring 

mechanism via optimization and also simulation tools.  
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1. Introduction 

S. K. Maurya et al. [12] developed a method for proposing new lifetime distribution 

which is parsi- monious in parameter and also adds more flexibility in baseline 

distribution. Here one parameter expo- nential distribution has been taken here as 

baseline distribution Logarithm Transformed Exponential Distribution(LTE) and 

Logarithm Transformed Weibull Distribution (LTW). This paper, aim is to fit the 

Logarithm Transformed Exponential Distribution(LTE) and Logarithm Transformed 

Weibull Distribution (LTW) using a Bayesian approach and this distribution has an 

important role in lifetime modelling. Statistical methods for lifetimes data analysis 

have continued to flourish in the last few decades. Applications of the methods have 

been seen widened from their historical use in can- cer and reliability research to 

business, criminology, epidemiology and social sciences. Survival analysis measures 

the time to certain event, such as failure, death, response, relapse, the development of 

a given disease, parole or divorce. In many practical situations it has been seen that 

the survival models are very effectively analyzed in Bayesian paradigm. 

consequently therefore, with the end goal of Bayesian investigation of this model, 

two vital techniques are utilized, one of the simulation methods, and the other are 

strategies for estimating pointwise out-of-sample prediction accuracy from a fitted 

Bayesian model utilizing the log-probability assessed at the posterior simulations of 
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the parameter values; all are implemented using rstan and loo packages of R. Stan is 

a new Bayesian statistical software program that implements the powerful and 

efficient Hamiltonian Monte Carlo (HMC) algorithm. The package rstan [10], is a C 

+ + library for Bayesian modeling and inference to obtain posterior simulation. The 

package LOO [20], [21] and [25] are employed for estimating pointwise out-of-

sample prediction accuracy. A real survival data set is used to illustrate in R. Thus, 

Bayesian analysis of Logarithm transformed Exponential Distribution(LTE) and 

Logarithm transformed Weibull Distribution (LTW) have been made with the 

following objectives: 

To define a Bayesian model, that is, specification of likelihood and prior distribution. 

To write down the R code for approximating posterior densities with Stan. 

To illustrate numeric as well as graphic summaries of the posterior densities. 

  

2. Logarithm transformed (LT) method 

S. K. Maurya et al [12] proposed a transformation and called it Logarithm 

transformed (LT), to obtain a new distribution. If f (x) and F (x) be the probability 

density function (pdf) and (cdf ) of some baseline distribution, then the (pdf) g(x) of 

new distribution is proposed by: 

                                                                                 (1) 

The (cdf) and hazard rate function corresponding to the (pdf) g(x) are given by: 

                                                                                     (2) 

                                                                      (3) 

2.1 Logarithm Transformed Exponential Distribution (LTE) 

S. K. Maurya et al [12] utilized the method for adding parameter prompts the 

Exponential distri- bution. In this segment, one parameter exponential distribution as 

baseline distribution we infer one parameter, then CDF of new distribution by taking 

LT method define in equation (1) and say it Log- arithmic Transformed Exponential 

(LTE) distribution. To construct the probability density function (pdf) and 

cumulative distribution function (cdf) of Exponential distribution which are given by 

(4) and (3), individually, 

                                                                                                  (4) 
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                                                                                        (5) 

By inserting (3) and (4) into (1) and (2), we have the pdf, cdf, survival function and 

hazard func- tion of the Logarithm Transformed Exponential Distribution(LTE) 

given by respectively, as in Figure(1). 

                                                                                           (6) 

                                                                                       (7) 

                                                                             (8) 

                                                                   (9) 

2.2 Logarithm Transformed Weibull Distribution (LTW) 

Logarithm Transformed Weibull Distribution (LTW) additional Logarithm 

Transformed to the two-parameter Weibull distribution. It is clear that the new two-

parameter distribution is exceptionally adaptable. At the point when the (pdf), (cdf), 

survival function and hazard function of LTW appropriation is f (x) ∼ w(θ, α), the 

outcomes are (10), (11), (12) and (13), individually, as in Figure(2) 

                                                                                         (10) 

                                                                                     (11) 

                                                                         (12) 

                                                            (13) 



 

ABUJARAD ET AL. 

 

5 

 

 

Figure 1: Probability density plots, cdf, survival and hazard curves of 
logarithm transformed exponential distribution (LTE) for different value. 

 

 

3. Stan 

Stan (named after Stanislas Ullam, see [4]) can be defined [17]. Stan is a computer 

language for Bayesian inference that, among other approximate techniques, 

implements the NUTS algorithm to remove hand- tuning. More precisely, as a 

probabilistic programming language for statistical inference written in C++. It uses 

the No-U-Turn sampler (NUTS) [10] to obtain posterior simulation given user-

specified model and data. The Stan language is used to specify a (Bayesian) 

statistical model with an imperative program calculating the log probability density 

function. Using stan, statistical modeling becomes easier and faster, particularly for 

Bayesian estimation problems. Complex models with large numbers of parameters 

can be estimated easily using stan, and can generally do it faster than alternative like 

JAGS/BUGS. Stan manipulates two main tools to efficiently to work out and solve 

Bayesian problems: Hamiltonian Monte Carlo (HMC) and the no-U-turn sampler 

(NUTS).Markov chain Monte Carlo (MCMC) algorithms allowing drawing random 

samples from the posterior. Stan implements Hamiltonian Monte Carlo [14] and its 

extension, the No-U-Turn Sampler (NUTS) [10]. These algorithms converge much 

more quickly especially for high-dimensional models regardless of whether the 

priors are conjugate or not. As an illustration of the acceleration brought by HMC. 

 



 

BAYESIAN INFERENCE AND SIMULATION FOR LOGARITHM 

TRANSFORMED (LT) METHOD USING STAN 

 

6 

 

4. Leave-One-Out Cross-Validation and WAIC for Bayesian 

This package LOO implements the methods described in [20], [21] and [25]. 

Watanabe-Akaike information criterion (WAIC) proposed by [24] and leave-one-out 

cross-validation (LOO) both allowing to compare different models applied to the 

same data (lower WAICs and LOOs indicate better model fit) using the log-

likelihood evaluated at the posterior simulations of the parameter values. The WAIC 

can be seen as an improvement of the popular deviance information criterion (DIC), 

which has been criticized by several authors [15], [22] in part because of problems 

arising from fact that the DIC is only a point estimate. In rstan, WAIC and LOO are 

implemented using the LOO package [20], [21]. 

 

Figure 2: Probability density plots, cdf, survival and hazard curves of 
Logarithm Transformed Weibull Distribution (LTW) for different values of θ 

and λ. 

 

 

5. Bayesian Inference 

1. p(θ) is the set of prior distributions for parameter set θ; for it uses probability as a 

means of quantifying uncertainty about θ before taking the data into account. 

2. p(x|θ) is the likelihood or likelihood function, in which all variables are related in 

a full probability model 



 

ABUJARAD ET AL. 

 

7 

 

3. p(θ|x) is the joint posterior distribution that expresses uncertainty about parameter 

set θ after taking both the prior and the data into account. Calculating posterior 

probabilities is the main goal of Bayesian statistics. 

When prior information is available about θ, it should be included in the prior 

distribution of θ. then the posterior distribution of θ from the previous model may be 

used as the prior distribution of θ for the present model. To determine the propriety 

of a joint posterior distribution, the marginal likelihood must be finite for all x. Then, 

the marginal likelihood is: 

                                                                                         (14) 

It is popular, for good reasons, to center and scale all continuous predictors [9]. 

Although centering and scaling predictors are not discussed here, it should be 

obvious that the potential range of the posterior distribution of θ for a centered and 

scaled predictor should be small. A popular WIP for a centered and scaled predictor 

may be 

 

[8], better properties for scale parameters are yielded with the non-conjugate, proper, 

halfCauchy distribution, with a general recommendation of scale=25 for a weakly 

informative scale parameter 

δ ∼ HC(25) 

use the half-Cauchy distribution with scale parameter δ = 25 as prior distribution for 

scale parameters. 

 

Figure 3 

 

 

6. Survival Data: Veteran’s Administration Lung Cancer Data 

In this data, males with advanced inoperable lung cancer were randomized to either a 

standard or test chemotherapy. Only 9 of the 137 survival times were censored. The 

data is available in survival package and is presented in [11] and [16]. A portions of 
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the data is analyzed by several other authors ( [16]; [5]; [13]; [3]). In this analysis, 

the 137 subjects who completed the randomized portion of the trial and for whom 

complete covariate information was available are considered. Six covariates are 

available which include treatment, age, tumor cell type (adeno, small cell, squamous 

or large), time between ini- tial diagnosis and enrollment in the trial, Karnofsky 

performance status, and prior therapy attempted (yes/no). 

Treatment: 0 = standard, 1 = test. 

Type of tumour: 1 = squamous, 2 = small cell, 3 = adeno, 4 = large cell. 

Age in years. 

Prior therapy: 0 = no, 1 = yes. 

diagtime: Time in months from diagnosis to randomization. 

Performance status: Karnofsky performance score (100 = good). 

 

7. Bayesian Analysis of Model 

Bayesian analysis is the method to obtain the marginal posterior distribution of the 

particular param- eters of interest. In principle, the route to achieving this aim is 

clear; first, we require the joint posterior distribution of all unknown parameters, 

then, one integrates this distribution over the unknowns param- eters that are not of 

immediate interest to obtain the desired marginal distribution. Or equivalently, using 

simulation, we draw samples from the joint posterior distribution, then looks at the 

parameters of interest and ignores the values of the other unknown parameters. The 

Bayesian paradigm is based on specifying a probability model for the observed data 

y, given a vector of unknown parameters λ, leading to the likelihood function L(λ y). 

Then we assume that λ is random and has a prior distribution denoted by p(λ). 

Inference concerning λ is then based on the posterior distribution, which is obtained 

by Bayes theorem. The posterior distribution of λ is given as equation (14).(see, e.g., 

[2]). 

7.1 Bayesian Analysis of Logarithm Transformed Exponential (LTE) Model 

As of now, the probability density function (pdf ) is indicated through this condition; 

 

Additionally, the survival function is set through; 

 

We have the capacity to condition the likelihood function for right censored (in the 

meantime similar to our case the data are right censored) as (see, e.g., [2]). 
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where δi is an indicator variable which takes value 0 if observation is censored and 1 

if observation is uncensored. Subsequently, the likelihood function is indicated by 

means of 

                               (15) 

Subsequently, the posterior distribution of our convictions about the basic inclination 

is determined in the standard way by applying Bayes’ rule [18], the joint posterior 

density is given by [2]. Here the functions include two parameters. 

        (16) 

Now the researchers get the Bayesian inference in the Logarithm Transformed 

Exponential (LTE) Model, as they use the prior distribution for βJs.  the researchers 

discussed the issue associated with specifying prior distributions in section 4.  

Elementary application of Bayes rule as displayed in (14), is applied to (15), then 

gives the posterior density for βJs as equation (16). Result for this marginal posterior 

distribution get high-dimensional integral over all model parameters βJs. The 

posterior in (16) does not have a closed form and one needs to use numerical 

integration or Markov chain Monte Carlo (MCMC) methods.  These methods can be 

used to solve the complex numerical integration including censoring mechanism 

using Stan functions. However, due to the availability of computer software package 

like rstan, this required model can easily be fitted in Bayesian paradigm using Stan 

as well as MCMC techniques.(see, e.g., [2]). 

7.2 Bayesian Analysis of Logarithm Transformed Weibull (LTW) Model 

Now, the probability density function (pdf ) is given by 

 

Also, the survival function is given by 
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In the presence of censoring, the resulting log-likelihood function is modified to 

account for the possibility of partially observed data (in correspondence with 

censoring) We can write the likelihood function for right censored (as is our case the 

data are right censored) as 

 

where δi is an indicator variable which takes value 0 if observation is censored and 1 

if observation is uncensored. Thus, the likelihood function is given by 

                            (17) 

Thus, the joint posterior density is given by 

 (18) 

To carry out Bayesian inference in the Logarithm Transformed Weibull (LTW) 

model, we must specify a prior distribution for θ  and βJs.  We discussed the issue 

associated with specifying prior distributions was discussed in section 5, but for 

simplicity at this point, we assume that the prior distribution for θ and βJs is half-

Cauchy on the interval [0, 5] and for β  is Normal with [0, 5]. Elementary application 

of Bayes rule as displayed in (5.14), is applied to (7.17), then given the posterior 

density for θ  and βJs as equation (7.18).  The result for this marginal posterior 

distribution gets high-dimensional integral over all model parameters θ  and βJs.  To 

resolve this integral, the researchers use the approximated using Markov chain 

Monte Carlo methods. However, due to the availability of computer software 

package like rstan, this required model can easily fit in Bayesian paradigm using 

Stan as well as MCMC techniques. 
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8. Implementation Using Stan 

The main function in the rstan package is Stan, which calls the Stan software 

program to estimate a specified statistical model. In order to use the Stan function, a 

Stan program has to be specified either as a separate Stan file ending with ’stan’ as 

the suffix or as an object in the R environment. The rstan package allows one to 

conveniently fit Stan models from R [19] and access the output, including posterior 

inferences and intermediate quantities such as evaluations of the log posterior density 

and its gradients. 

Import, clean, and prepare the data in R Before writing any Stan code; and thus the 

researchers typically first have to import and clean the data. 

Define a statistical model in Stan. This is the meat of the model. We define a 

statistical model using the Stan language, either in a separate file or as a string in R. 

4. Extract draws from posterior and perform inference on the parameters using R 

After fitting the model in Stan, the researchers again use R to extract draws from the 

posterior and work with these draws to perform inference on the parameters. 

8.1 Model Specification 

Presently we will look at the posterior estimates of the parameters when the Analysis 

of Logarithm Transformed Exponential Distribution (LTE) and Logarithm 

Transformed Weibull Distribution (LTW) model’s are fitted to the previously 

mentioned data. Accordingly the importance of the likelihood turns into the highest 

need for the Bayesian fitting. Indicate statistical models utilizing the Stan modeling 

language, which is detailed in the manual of Stan [17]. Here, we have likelihood 

as:(see, e.g., [2]). 

 

along these lines, our log-likelihood progresses toward getting to be 

 

8.1.1 Logarithm Transformed Exponential (LTE) Model 

The first model is Logarithm transformed Exponential (LTE) Model: 

x ∼ LTE(λ), 

where λ = exp(Xβ) a linear combination of explanatory variables, log is the natural 

log for the time to failure event. The Bayesian system requires the determination and 

specification of prior distributions for the parameters. Here, we stick to subjectivity 

and thus introduce weakly informative priors for the parameters. Priors for the βj are 

taken to be normal as follows: 
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βj ∼ N (0, 5); j = 1, 2, 3, ...J 

library(rstan) 

model_code1=" functions{ 

//defined survival 

vector log_s(vector t, vector lambda){ vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(1-(1-((log(1+exp(-(t[i]/lambda[i]))))/log(2)))); 

} 

return log_s; 

} 

//define log_ft 

vector log_ft(vector t, vector lambda){ vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){ log_ft[i]=log(((1/lambda[i])* 

exp(-(t[i]/lambda[i])))/((1+exp(-(t[i]/lambda[i])))*log(2))); 

} 

return log_ft; 

} 

//define log hazard 

vector log_h(vector t, vector lambda){ vector[num_elements(t)] log_h; 

vector[num_elements(t)] logft; vector[num_elements(t)] logs; 

logft=log_ft(t,lambda); logs=log_s(t,lambda); 

log_h=logft-logs; return log_h; 

} 

//define the sampling distribution 

real surv_LTE_lpdf(vector t, vector d, vector lambda){ vector[num_elements(t)] 

log_lik; 

real prob; 

log_lik=d .* log_h(t,lambda)+log_s(t,lambda); prob=sum(log_lik); 

return prob; 

} 

} 
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In this manner, we acquire the survival and hazard of the Logarithm Transformed 

Exponential (LTE) Model. 

8.1.2 Logarithm Transformed Weibull (LTW) Model 

The second model is Logarithm Transformed Weibull (LTW) Model: 

x ∼ LTW (λ, θ), 

where λ = exp(Xβ). The Bayesian framework requires the specification of prior 

distributions for the parameters. Here, one sticks to subjectivity and thus introduces 

weakly informative priors for the parameters. Priors for the β and θ are taken to be 

normal and half-Cauchy as follows: 

βj ∼ N (0, 5); j = 1, 2, 3, ...J 

θ ∼ HC(0, 25). 

To fit this model in Stan, one first writes the Stan model code and saves it in a 

separated text-file with name ”model code2”.: 

library(rstan)  

model_code2="  

functions{ 

//defined survival 

vector log_s(vector t, real k, vector lambda){  

vector[num_elements(t)] log_s; 

for(i in 1:num_elements(t)){ 

log_s[i]=log(1-(1-((log(1+exp(-(t[i]/lambda[i])^k)))/log(2)))); 

} 

return log_s; 

} 

//define log_ft 

vector log_ft(vector t, real k, vector lambda){  

vector[num_elements(t)] log_ft; 

for(i in 1:num_elements(t)){  

log_ft[i]=log(((k/lambda[i])*(t[i]/lambda[i])^(k-1)* 

exp(-(t[i]/lambda[i])^k))/((1+exp(-(t[i]/lambda[i])^k))*log(2))); 

} 

return log_ft; 

} 
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//define log hazard 

vector log_h(vector t, real k, vector lambda){  

vector[num_elements(t)] log_h;  

vector[num_elements(t)] logft;  

vector[num_elements(t)] logs; logft=log_ft(t,k,lambda);  

logs=log_s(t,k,lambda); 

log_h=logft-logs; return log_h; 

} 

//define the sampling distribution 

real surv_LTW_lpdf(vector t, vector d, real k, vector lambda){ 

vector[num_elements(t)] log_lik; 

real prob; 

log_lik=d .* log_h(t,k,lambda)+log_s(t,k,lambda); prob=sum(log_lik); 

return prob; 

} 

} 

Therefore, we obtain the survival and hazard of the Logarithm Transformed Weibull 

(LTW) Model. 

8.2 Build the Stan 

The first necessary component of a Stan model is the data block, in which a 

researcher specifies the relevant data information and the data itself, in which one 

includes the number of the observations, observed times, censoring indicator 

(1=observed, 0=censored), number of covariates, and build the matrix of covariates 

(with N rows and M columns). Following the data block is the parameters block in 

which model parameters are specified. The model block, where the priors and the 

model are specified, is the most essential component of a Stan program. The 

generated quantities block is an optional component of the Stan code, and it is 

usually used when there is a need to compute new variables  and obtain their 

corresponding posterior distributions. We save this work in a file to use it in rstan 

package.(see, e.g., [2] and [1]). 

8.2.1 Logarithm Transformed Exponential (LTE) Model 

//data block data { 

int N; // number of observations 

vector<lower=0>[N] y; // observed times 
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vector<lower=0,upper=1>[N] censor;//censoring indicator (1=observed, 0=censored) 

int M; // number of covariates 

matrix[N, M] x; // matrix of covariates (with N rows and M columns) 

} 

parameters { 

vector[M] beta; // Coefficients in the linear predictor (including intercept) 

} 

transformed parameters { vector[N] linpred; vector[N] lambda; linpred = x * beta; 

for (i in 1:N) { 

lambda[i] = exp(linpred[i]); 

} 

} 

model { 

beta ~ normal(0, 1000); 

~ surv_LTE (censor, lambda); 

} 

generated quantities{ vector [N] log_lik; for(n in 1:N) 

log_lik[n]=log(((1/exp(x[n,]*beta))* 

exp(-(y[n]/exp(x[n,]*beta))))/((1+exp(-(y[n]/exp(x[n,]*beta))))*log(2))); 

} 

" 

8.2.2 Logarithm Transformed Weibull (LTW) Model 

//data block 

data { 

int N; // number of observations 

vector<lower=0>[N] y; // observed times 

vector<lower=0,upper=1>[N] censor;//censoring indicator (1=observed, 0=censored) 

int M; // number of covariates 

matrix[N, M] x; // matrix of covariates (with N rows and M columns) 

} 

parameters { 

vector[M] beta; // Coefficients in the linear predictor (including intercept) 

real<lower=0> k; // shape parameter 
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} 

transformed parameters { vector[N] linpred; vector[N] lambda; linpred = x * beta; 

for (i in 1:N) { 

lambda[i] = exp(linpred[i]); 

} 

} 

model { 

k ~ cauchy(0,5); beta ~ normal(0, 1000); 

y ~ surv_LTW (censor,k, lambda); 

} 

generated quantities{ vector [N] log_lik; for(n in 1:N) 

log_lik[n]=log(((k/exp(x[n,]*beta))*(y[n]/exp(x[n,]*beta))^(k-1)* 

exp(-(y[n]/exp(x[n,]*beta))^k))/((1+exp(-(y[n]/exp(x[n,]*beta))^k))*log(2))); 

} 

" 

8.3 Creation of Data for Stan 

The function Stan requires data that are specified in a list. For illustrative purpose, a 

real survival data set called veteran that is provided with the survival package is 

used. The survival data, called, veteran contains six regressor variable i.e celltype, 

karno, diagtime, age, prior and trt, and its vector have been defined by objects names 

x1, x2, x3, x4, x5 and x6, respectively, using an extraction operator $. 

library(survival) data(veteran) 

y<-veteran$time  

x1<-veteran$karno 

x2<-veteran$celltype  

x3<-veteran$diagtime  

x4<-veteran$age 

x5<-veteran$prior  

x6<-veteran$trt 

censor<-veteran$status  

N<-137 

x<-cbind(1,x1,x2,x3,x4,x5,x6)  

M<-7 
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N = nrow(x) M = ncol(x) event=censor 

dat <- list( y=y, x=x, event=event, N=N, M=M) 

Total number of observations is 137, censoring is taken into account, where 0 stands 

for censored and 1 for uncensored values. Finally, all these things are combined in a 

list of dat. 

8.4 Runing the Model Using Stan for Logarithm Transformed Exponential 

(LTE) Model 

Now we run Stan with 2 chains for 5000 iterations and display the results 

numerically and graphically: 

regression coefficient with log(y) as a guess to initialize 

beta1=solve(crossprod(x),crossprod(x,log(y))) #convert matrix to a vector 

beta1=c(beta1) 

M1<-stan(model_code=model_code1,init=list(list(beta=beta1),list(beta=2*beta1)) 

,data=dat,iter=5000,chains=2) 

8.4.1 Summarizing Output 

A summary of the parameter distributions can be obtained by using print(M1), which 

provides pos- terior estimates for each of the parameters in the model. Before any 

inferences can be made, however, it is critically important to determine whether the 

sampling process has converged to the posterior distri- bution. The column named n 

eff lists the effective number of simulation draws, which can be viewed as the 

effective sample for a posterior distribution on which inferences are based. The last 

column Rhat lists the Gelman and Rubin’s convergence diagnostic [6], a popular 

statistic that computes the potential scale reduction factor (PSRF). A PSRF value 

close to 1 usually indicates model convergence, [7], both of which are outputs in the 

summary statistics with print(M1). The function rstan approximates the posterior 

density of the fitted model and posterior summaries can be seen in the following 

tables. Table (1), which contains summaries for all chains merged and individual 

chains, respectively. Included in the summaries are (quantiles),(means), standard 

deviations (sd), effective sample sizes (n eff), and split (Rhats) (the potential scale 

reduction derived from all chains after splitting each chain in half and treating the 

halves as chains). For the summary of all chains merged, Monte Carlo standard 

errors (se mean) are also reported. 

The function rstan for this regression model, simulates the data from the posterior 

density with Hamiltonian Monte Carlo algorithm and summaries of results are 

reported in the following table:  
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Table 1. Summary of the simulated results using rstan function with Mean stands for 

posterior mean, se mean, sd for posterior standard deviation, LB, Median, UB are 

2.5%, 50%, 97.5% quantiles, n eff for 

 mean se 
mean 

sd 2.5% 25% 50% 75% 97.5% n eff Rhat 

beta[0] 3.15 0.01 0.67 1.88 2.70 3.14 3.61 4.50 2383 1 

beta[1] 0.03 0.00 0.00 0.02 0.03 0.03 0.04 0.04 3436 1 

beta[2] -0.14 0.00 0.07 -0.29 -0.19 -0.14 -0.10 -0.01 3764 1 

beta[3] 0.00 0.00 0.01 -0.02 -0.01 0.00 0.00 0.02 3274 1 

beta[4] 0.00 0.00 0.01 -0.02 -0.01 0.00 0.01 0.02 2702 1 

beta[5] 0.01 0.00 0.02 -0.03 0.00 0.01 0.03 0.05 3497 1 
beta[6] -0.19 0.00 0.17 -0.53 -0.31 -0.20 -0.08 0.15 3630 1 

 

The inference of the posterior density after fitting the (Logarithm Transformed 

Exponential Model) for (Veteran’s Administration Lung Cancer Data) using stan are 

reposted in Table 1. It may noted that posterior mean of parameters β0, β1, β2, β3, 

β4, β5 and β6 are 3.15 ± 0.67, 0.03 ± 0.00, −0.14 ± 0.07, 0.00 ± 0.01, 0.00 ± 0.01, 

0.01 ± 0.02 and −0.19 ± 0.17 respectively. According to 95% credible intervals, β0, 

β1 and β2 are found to statistically significant. Rhat is close to 1.0, indication of 

good mixing of the three chains and thus approximate convergence. The effective 

sample size given an indication of the underlying autocorrelation in the MCMC 

samples values are close to the total number of iterations. The selection of 

appropriate regressor variables can also be done by using a caterpillar plot. 

Caterpillar plots are popular plots in Bayesian inference for summarizing the 

quantiles of posterior samples. one can see in this (Figure 4). 

library(coda) 

conflict.fit.coda<-mcmc.list(lapply(1:ncol(M2),function(X) 

mcmc(as.array(M2)[,X,]))) plot(conflict.fit.coda[,c(1:3)]) 

This (Figure 4) shows the traces of the parameters on the left, each color represent a 

different chain, we had 2 chains (the default) and you want all chain to converge to 

similar values (ie no divergence in the values on the right side of the plot). On the 

right side of the plot are the posterior distributions of the parameters. 

8.5 Runing the Model Using Stan for Logarithm Transformed Weibull (LTW) 

Model 

Now we run Stan with 2 chains for 5000 iterations and display the results 

numerically and graphically: 

M3<-stan(model_code=model_code2,data=dat,iter=5000, 

chains=2, control = list(adapt_delta = 0.99))  

print(M3, c("beta","alpha","b"),digits=2) 
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Figure 4: Checking model convergence using rstan,through inspection of the 
traceplots or the autocorrelation plot 

 

8.5.1 Summarizing Output 

The function rstan approximates the posterior density of the fitted model, and 

posterior summaries can be seen in the following tables. Table (2) contains 

summaries for for all chains merged and individual chains, respectively. Included in 

the summaries are (quantiles), (means), standard deviations (sd), effective sample 

sizes (n eff), and split (Rhats) (the potential scale reduction derived from all chains 

after splitting each chain in half and treating the halves as chains). For the summary 

of all chains merged, Monte Carlo standard errors (se mean) are also reported. The 

inference of the posterior density after fitting the (Logarithm Transformed Weibull 

Model) for (Veteran’s Administration Lung Cancer Data) using stan are reposted in 

Table (2). It may noted that posterior mean of parameters β0, β1, β2, β3, β4, β5, β6 

and k are 3.01±0.73, 0.03±0.01, −0.14±0.08, 0.00±0.01, 0.00±0.01, 0.01±0.02, 

−0.18±0.19 and 0.90 0.06 respectively. According to 95% credible intervals, β0, β1 

and k are found to statistically significant. Rhat is close to 1.0, indication of good 

mixing of the three chains and thus approximate convergence,. The effective sample 

size given an indication of the underlying autocorrelation in the MCMC samples 

values are close to the total number of iterations. The selection of appropriate 

regressor variables can also be done by using a caterpillar plot. Caterpillar plots are 

popular plots in Bayesian inference for summarizing the quantiles of posterior 

samples. one can see in this (Figure 5). 
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Table 2. Summary of the simulated results using rstan function with Mean stands for 

posterior mean, se mean, sd for posterior standard deviation, LB, Median, UB are 

2.5%, 50%, 97.5% quantiles, n eff for number effective sample size, and Rhat, 

respectively 

 mean se 

mean 

sd 2.5% 25% 50% 75% 97.5

% 

n eff Rhat 

beta[0] 3.01 0.02 0.73 1.59 2.52 3.02 3.51 4.43 2228 1 

beta[1] 0.03 0.00 0.01 0.02 0.03 0.03 0.04 0.04 3015 1 

beta[2] -0.14 0.00 0.08 -0.29 -0.19 -0.14 -0.09 0.01 3777 1 

beta[3] 0.00 0.00 0.01 -0.02 -0.01 0.00 0.00 0.02 3192 1 

beta[4] 0.00 0.00 0.01 -0.02 -0.01 0.00 0.01 0.02 2775 1 

beta[5] 0.01 0.00 0.02 -0.03 0.00 0.01 0.03 0.06 3450 1 

beta[6] -0.18 0.00 0.19 -0.56 -0.31 -0.18 -0.06 0.18 4007 1 

k 0.90 0.00 0.06 0.78 0.86 0.90 0.95 1.03 3412 1 

 

library(coda) 

conflict.fit.coda<-mcmc.list(lapply(1:ncol(M3),function(X) 

mcmc(as.array(M3)[,X,]))) plot(conflict.fit.coda[,c(1:3)]) 

stan_plot(M3,c("beta","alpha","b")) 

 

Figure 5: Checking model convergence using rstan,through inspection of the 
traceplots or the autocorrelation plot 
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9. Using Leave-One-Out Cross-Validation and WAIC From Stan 

We have set up a code to implement LOO, WAIC the widely applicable or 

Watanabe-Akaike information criterion (WAIC; [24]) can be viewed as an, 

improvement on the deviance information criterion (DIC) for Bayesian models, in R 

and Stan so that users will have a quick and convenient way to assess and compare 

model fits. Implementation is not automatic, though, because of the need to compute 

the separate factors p(yi θ) in the likelihood, stan works with the joint density and in 

its usual computations does not know which parts come from the prior and which 

from the likelihood. Sample code for carrying out this procedure using Stan and the 

LOO R package [20] and [21]. We have defined the log likelihood as a vector named 

log lik in the generated quantities block so that the individual terms will be saved by 

Stan. After running Stan, log lik can be extracted (using the extract log lik function 

provided in the LOO package). 

9.1 Computing Approximate Leave-one-out cross-Validation Usig PSIS-LOO 

and WAIC 

We can use the R package LOO provides the functions LOO() and waic() for 

efficiently computing PSIS-LOO and WAIC for fitted Bayesian models. Below, we 

provide R code for preparing and running the Logarithm Transformed Exponential 

Distribution(LTE) and Logarithm Transformed Weibull Distribution (LTW) for the 

(Veteran’s Administration Lung Cancer Data) in Stan. After fitting the model we 

then use the LOO package to compute LOO and WAIC. 

9.1.1 For Logarithm Transformed Exponential (LTE) Model 

WAIC and LOO are computed with the functions waic and loo, respectively 

library("loo") 

# Extract pointwise log-likelihood and compute LOO  

log_lik_1 <- extract_log_lik(M1, merge_chains = FALSE) 

# as of loo v2.0.0 we can optionally provide relative effective sample sizes  

# when calling loo, which allows for better estimates of the PSIS effective  

# sample sizes and Monte Carlo error 

r_eff1 <- relative_eff(exp(log_lik_1)) 

loo_1 <- loo(log_lik_1, r_eff = r_eff1, cores = 2)  

print(loo_1) 

# compare the waic 

waic1 <- waic(log_lik_1)  

print(waic1) 
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Table 3 

 Estimate SE 

elpd_loo -781.1 15.2 

p_loo 9.0 1.7 

Looic 1563.8 29.8 

elpd_waic -781.4 15.3 

p_waic 8.9 1.8 

waic 1562.8 30.5 

 

The printed output from the LOO function shows the estimates elpd loo (expected 

log predictive density), p loo (effective number of parameters), and looic=-2elpd loo 

(the LOO information criterion). 

9.1.2 For Logarithm Transformed Weibull (LTW) Model 

ibrary("loo") 

# Extract pointwise log-likelihood and compute LOO  

log_lik_3 <- extract_log_lik(M3, merge_chains = FALSE) 

# as of loo v2.0.0 we can optionally provide relative effective sample sizes  

# when calling loo, which allows for better estimates of the PSIS effective  

# sample sizes and Monte Carlo error 

r_eff <- relative_eff(exp(log_lik_3)) 

loo_3 <- loo(log_lik_3, r_eff = r_eff, cores = 2)  

print(loo_3) 

# compare the waic 

waic3 <- waic(log_lik_3)  

print(waic3) 

 

Table 4 

 Estimate SE 

elpd_loo -780.8 14.8 

p_loo 8.1 1.4 

Looic 1561.7 29.8 

elpd_waic -780.7 14.9 

p_waic 8.0 1.5 

waic 1561.5 29.8 

 

The printed output from the loo function shows the estimates elpd loo (expected log 

predictive density), p loo (effective number of parameters), and looic=-2elpd loo (the 

LOO information criterion). 
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In tables(4 & 5) above, the WAIC for each model as well as the difference of the 

WAICs each with its corresponding standard error SE is shown. Both, WAIC and 

LOO are approximately normal if the number of observations is large so that the 

standard errors can be very helpful in evaluating differences in the information 

criteria. However, for small sample sizes, standard errors should be interpreted with 

care [23]. 

 

10. Conclusion 

We can now compare the models on LOO using the compare function. This object, 

comp, contains the estimated difference of expected leave-one-out prediction errors 

between the two models, along with the standard error. 

# Compare 

comp1 <- compare(loo_1, loo_2)  

print(comp1) 

comp2 <-compare(waic1, waic2)  

print(comp2) 

 

Table 5. compare the different between Logarithm Transformed Exponential (LTE) 

Model and Logarithm Transformed Weibull (LTW) Model 

 elpd diff se 

Looic 0.7 1.5 

Waic 0.8 1.4 

 

The positive difference in elpd and its scale relative to the standard error, indicates a 

preference for the second model (Logarithm Transformed Weibull (LTW) Model). 

 

Table 6. Model comparison of Logarithm Transformed Exponential (LTE) Model 

and Logarithm Trans- formed Weibull (LTW) Model for the Intrauterine device 

(IUD) data. It is evident from this table that Logarithm Transformed Weibull (LTW) 

Model is much better than Logarithm Transformed Exponential (LTE) Model. 

Models Stan Deviance WAIC loo 

Logarithm Transformed Exponential (LTE) Model 1458.5 1562.8 1563.8 

Logarithm Transformed Weibull (LTW) Model 1457.1 1561.5 1561.7 

 

Table 6 lists the WAIC and LOO values for the two Logarithm Transformed (LT) 

models, both of which lead to the same conclusion that the Logarithm Transformed 

Weibull (LTW) model has the smallest values of LOO and WAIC. Consequently, it 
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was concluded that the Logarithm Transformed Weibull (LTW) model was the best-

fitting model among the Logarithm Transformed Exponential (LTE). 
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