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Under classical test theory the paper presents a method to find test reliability (𝑟𝑡𝑡) as 

per theoretical definition from a single administration of the test, involving 

dichotomization of a test in parallel halves. The method helps to find point and 

interval estimations of test reliability, individual true score, true score variance, error 

variance and testing 𝐻𝑜: 𝑟𝑡𝑡 = 1. Dichotomization of a test in parallel halves requires 

simultaneous testing of equality of mean, variance and correlation for two parallel 

sub-tests (𝑋𝑔 and 𝑋ℎ) which can be done by testing (i) equality of regression line of 

observed score 𝑋 on 𝑋𝑔 and 𝑋 on 𝑋ℎ (ii) equality of correlations between 𝑋 and 𝑋𝑔 

and 𝑋 and 𝑋ℎ, (iii) Normality of (𝑋𝑔 − 𝑋ℎ )  or (iv) Cosine similarity (without 

assuming normal distribution of 𝑋𝑔 and 𝑋ℎ). Reporting of theoretically defined 

reliability along with SD of true score/error score is recommended for a test. 
 

Keywords: True score variance, Error variance, Reliability, Estimation and testing, 

Parallel tests. 

 

  

1. Introduction 

In classical test theory, observed test score of an individual is assumed to be sum of 

true score (error free score) and random error score. The additive model is Observed 

Score (X) = True Score (T) + Error Score (E) assuming error is randomly distributed 

around 0 i.e. average of error score (�̅�)= 0; correlation between true score and error 

score (𝑟𝑇𝐸) = 0; correlation between two series of error scores (𝑟𝐸1𝐸2
) = 0. True 

score refers to the fraction of the score which is replicable or reliable. Statistic to 

summarize a phenomenon is concerned with how much of the statistic represents the 

true score and how much is error. Thus, it is critical to estimate accurately the true 

score component for each examinee along with variance of error scores (𝑆𝐸
2) and 

reliability (𝑟𝑡𝑡) as ratio of true score variance (𝑆𝑇
2) and observed score variance 

(𝑆𝑋
2). Standard deviation (SD) of errors of measurement (𝑆𝐸) that are associated 

with test scores from a particular group of examinees is known as standard error of 

measurement (SEM), which reflects the extent of variation or spread in the 

measurement errors for a test and is frequently used to find bands around observed 
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test scores in the form 𝑋 ± 𝑆𝐸𝑀. Two important relationships involving error 

variance, true score variance and reliability are  𝑆𝑋
2 = 𝑆𝑇

2 +  𝑆𝐸
2 and  𝑟𝑡𝑡 =

𝑆𝑇
2

𝑆𝑋
2 = 

1 −
𝑆𝐸

2

𝑆𝑋
2 . Thus, 𝑆𝑇

2, 𝑆𝐸
2 and 𝑟𝑡𝑡 are inter-related and proper estimation of any of 

these may help to find estimates of the other two since, by definition  𝑆𝑇
2 = 𝑟𝑡𝑡. 𝑆𝑋

2.  

Webb et al.(2006); Rudner & Schafes (2002) were of the view that reliability as per 

theoretical definition is not practical or impossible to compute since true scores of 

individuals taking the test are not known.. In addition, reliability coefficients are not 

perfectly precise (Zimmerman, 2007).The imprecision may be carried over into the 

estimation of 𝑆𝑇
2, 𝑆𝐸

2 and thus affect estimation of true scores of the examinees.  

Meaningful comparison of groups demands error variance is invariant across groups. 

The assumption of constant error variance across individuals, irrespective of learning 

or other variables influencing the latent traits of the test may not be taken as a rule 

(Kline, 2005). Generalizability theory (G-theory) also makes similar assumption of 

constant error variance for all individuals with different true scores (Shavelson  & 

Webb, 2012). Such assumption is not consistent with findings of Hedge et al. (2018) 

who demonstrated that test reliability decreases as within group variance increases. 

Williams et al. (2022) also found substantial individual variation in the error 

structure of cognitive tasks and hence different reliabilities for different groups.  

SEM is different at various score levels, and 𝑆𝐸 for the entire test does not 

adequately summarize the error propensity of most examinees (Feldt et al. 1985). 

Thus, SEM could be a test characteristic and also a score characteristic which varies 

within a group. Empirically, Lord (1959) determined that 𝑆𝐸 is directly proportional 

to the square root of the number of items (√𝑛 ) and found high 𝑟𝑆𝐸,√𝑛 at the level of 

0.99. However, the general relationship between 𝑆𝐸  and √𝑛 depends on type of 

reliability considered.  

The existing methods of finding test reliability use a variety of ways and none of 

them is isomorphic to the definition of  𝑟𝑡𝑡 =
𝑆𝑇

2

𝑆𝑋
2. Thus, there is potency for 

confusion over the trustworthiness of a test, emanating out of inconsistencies 

amongst different available methods to compute reliability coefficient. 

Based on the general (congeneric) model for reliability, Cho, (2016) defined 

reliability of a test with n-items as  
∑ 𝜆𝑖

2𝑛
𝑖=1

𝑆𝑋
2  where 𝜆𝑖 is the loading on the i-th item 

such that variance of the i-th item’s score is 𝜆2 + 𝑆𝐸𝑖
2 where 𝑆𝐸𝑖

2denotes error 

variance of the i-th item. The model  𝑟𝑡𝑡 =
𝑆𝑇

2

𝑆𝑋
2 = 

𝑆𝑋
2 −𝑆𝑇

2
 

𝑆𝑋
2 

 gets reduced to general 

congeneric if  ∑ 𝜆𝑖
2𝑛

𝑖=1  is replaced by  𝑆𝑋
2  − 𝑆𝑇

2
. 

Trafimow, (2014) found that estimate of true core variance (𝜎𝑇
2̂) of a test may be 

different for Experimental group and Control group even if  𝑟𝑡𝑡 is fixed and 

interpretation of low value of resulting error variance in one group (say experimental 

group) over another group (say control group) becomes problematic. In addition, test 
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reliability (𝑟𝑡𝑡) can be measured in different ways giving different values. Thus, true 

score variance as the product of observed score variance and test reliability would 

take different values depending on the method of computing test reliability.  

Kristof, (1969) derived maximum-likelihood estimators of true score variance and 

error variance for mental tests under six different hypotheses of equivalent 

measurements. Estimation of true score variance using analysis of variance was dealt 

with by Jackson, (1973)  where persons corresponds to "treatments" and scores on 

number of parallel tests to replications and observed need to have point estimation 

and interval estimation of true score from a single administration of a test. An 

empirical Bayes method for true score estimation involving a set of assumptions was 

suggested by Cressie, (1979). 

Usual methods of computing test reliability aiming to indicate consistency, 

repeatability, precision, trustworthiness are test-retest reliability, parallel test 

reliability, split half method and the method of internal consistency. The test-retest 

method and the parallel method need two administrations of the test or parallel tests 

to the same sample and test reliability is computed by correlation between the two 

test scores, without making any assumption about the relationship between the items 

in the test or  tau-equivalence or uncorrelated measurement errors of the items, etc. 

Test–retest reliability of a single test may have different values depending on time-

gap between administrations. For parallel forms of the test, it is necessary to test that 

the two parallel forms are actually parallel ensuring equality of true score of i-th 

person in g-th sub-test and in h-th sub-test.  

Reliability from single administration of the test is usually obtained as split-half 

reliability or internal consistency in terms of Cronbach alpha. The former considers 

dichotomization of the test score in parallel halves and reliability is expressed as 

correlation between two parallel sub-tests. However, split-half reliability is not 

unique and depends heavily on procedure of dichotomization ensuring that subtests 

are parallel. Frequent use of Cronbach alpha without checking the underlying 

assumptions have resulted in confusions regarding its proper use and interpretations 

(Schmitt, 1996; Cortina, 1993), Violation of assumptions like unidimensionality of 

the test, essentially tau-equivalent, etc. often lowers  the value of alpha (Green, 2005; 

Graham et al. 2006). In practice, data satisfying all assumptions of alpha may not be 

viable (Teo and Fan, 2013). Cortina, (1993) found that Cronbach’s alpha is a lower-

bound estimate of reliability. Higher value of alpha may indicate higher measure of 

unidimensionality of the test but, alpha for multi-dimensional tests may be more than 

the same of one-dimensional tests (Cortina, 1993). Lord and Novick, (1968) showed 

that coefficient α equals the reliability if and only if the items in the tests are 

mutually essentially τ –equivalent and in all other cases, coefficient α is 

underestimated. Cronbach alpha is equivalent to Guttman’s 𝜆3 which is ≤ Gutman’s 

𝜆2 and is not the best estimate (Guttman, 1945). Attempts to have better lower 

bounds culminated in the theory of the greatest lower bound (glb), discussed 

thoroughly by Ten Berge et al. (1981). However, computation of the glb is not 

simple and may be seriously biased. Alpha cannot simply be interpreted as an index 

for the internal consistency of a test (Green, 2005). Limitations of Cronbach’s alpha 
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have been extensively addressed by researchers like Verhelst, (2000); Sijtsma, 

(2009); Ritter, (2010); Eisinga, et al. (2013); Panayides, (2013), etc. Thus, no 

popular method of finding reliability uses the theoretical definition of reliability 

resulting in different values of error variance and reliability for the same test even if 

the sample remains unchanged. 

The paper proposes a method of computing test reliability as per theoretical 

definition from single administration along with point estimation and interval 

estimation of true score, true score variance, SEM and discuss properties of such 

estimates to see how these facilitate to have population estimates and testing of 

hypothesis. 

The paper is organized as follows. Point estimation of true score for a given value of 

observed score using linear regression analysis and properties of such estimation are 

discussed in the following Section. This is followed by estimation of true score using 

theoretical definition of test reliability. The method of finding population estimates 

𝜎𝑋
2, 𝜎𝑇

2, 𝜎𝐸
2 and testing statistical hypothesis of population reliability is equal to one 

are expounded upon. Confidence interval of true score and test reliability are 

discussed in the following section along with prediction interval of future value of 

true score. Methods of testing parallelism are presented in next section. The paper is 

rounded up by recalling the salient outcomes of the work. 

 

2. Point Estimation of True Score: 

2.1 Using linear regression: 

Consider an aptitude or achievement test consisting of 𝑛 – items (“1” for correct 

answer and “0” otherwise) have been administered to N subjects. For a given 

observed score X, point estimation of the true score (�̂�) may be obtained as a linear 

regression on the observed score. The model is �̂�= 𝛼 + 𝛽𝑋+ ϵ   where the regression 

coefficients are  

𝛽 = 𝑟𝑋𝑇
𝑆𝑇

𝑆𝑋
  and 𝛼 = �̅�(1 − 𝛽) 

Thus, the regression line is 

 �̂� = �̅�(1 − 𝛽) + 𝛽𝑋 + 𝜖 = 𝑋 ̅+𝑟𝑡𝑡(𝑋 −�̅�) + 𝜖                 (1) 

where 𝜖 denotes the error in prediction of true score; clearly, 𝜖 ̅ = 0 

The model represented in (1) helps to estimate true score of a subject as a linear 

function of his/her observed score using reliability of the test. 

2.2 Observations: 

As per the model, 

i) Mean of estimated true scores i.e. mean of  �̂� = 𝑋 ̅ = �̅� 

ii) 𝑉𝑎𝑟 (�̂�) = 𝛽2(𝑋) = 𝑟𝑡𝑡
2 (𝑋)        (2) 
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since 
Var (�̂�)

𝑉𝑎𝑟(𝑇)
=

𝑟𝑡𝑡
2 Var(𝑋) 

𝑟𝑡𝑡𝑉𝑎𝑟(𝑋)
 = 𝑟𝑡𝑡 < 1 which implies 𝑉𝑎𝑟 (�̂�) < 𝑉𝑎𝑟(𝑇) 

Thus, distribution of  �̂�  is more homogeneous than the same for 𝑇. If 𝑆𝑇
2 is replaced 

by𝑆�̂�
2, test reliability will be less. 

iii) Proposition 1: Variance of error on estimation of true score (𝑆ϵ
2) is less than the 

error variance of the test (𝑆𝐸
2) 

Proof: Here, the residual variance 𝑆ϵ
2= 

1

𝑁
∑(𝛼 + 𝛽𝑋𝑖 − 𝑇𝑖)

2 = 𝑆𝑇
2(1 − 𝑟𝑡𝑡) 

But, 𝑆𝐸
2 = 𝑆𝑋

2(1 − 𝑟𝑡𝑡) by definition which implies 
𝑆𝐸

2

𝑆ϵ
2 =

𝑆𝑋
2

𝑆𝑇
2 =

1

𝑟𝑡𝑡
> 1 

In other words, variance of error in prediction of true score from a linear regression 

model is less than the test error variance 𝑆𝐸
2. This may be taken as goodness of the 

chosen model of estimating true score from a linear regression equation. 

Clearly, higher value of reliability will result in lower value of  𝑆ϵ
2 and better 

estimates of   �̂� 

iv)  Proposition 2: Correlation between T and �̂�  as per the model is higher than test 

reliability 

Proof: Let 𝑍𝑇   and 𝑍 �̂� are the standardized variables obtained from 𝑇 and �̂�. 

Here,  𝑍𝑇 =  
𝑇−�̅�

𝑆𝑇
  and  𝑍 �̂� = 

𝑇−�̅̂�

𝑆�̂�

   since mean of �̂� = 𝑋 ̅ = �̅� 

⟹ 𝑍 �̂� = 
𝑋−�̅�

𝑆𝑋
  using (1) and (2)                   (3) 

Now  𝑉𝑎𝑟(𝑍𝑇 −   𝑍 �̂�) = 𝑉(𝑍𝑇) + 𝑉( 𝑍 �̂�) − 2𝐶𝑜𝑣(𝑍𝑇 , 𝑍 �̂�) 

              = 2[1− 𝐶𝑜𝑣(𝑍𝑇 , 𝑍 �̂�)]                 (4) 

Here,  𝐶𝑜𝑣(𝑍𝑇 , 𝑍 �̂�) =  
1

𝑁
∑ 𝑍𝑇𝑖

𝑍�̂�𝑖
 since mean of  𝑍𝑇 = Mean of 𝑍 �̂� = 0 

                                     = 
1

𝑁
∑(

𝑋𝑖−�̅�

𝑆𝑋
)(

𝑇𝑖−�̅�

𝑆𝑇
 )  using (3) 

              = 
𝐶𝑜𝑣(𝑇,𝑋)

𝑆𝑇𝑆𝑋
 = 𝑟𝑋𝑇 = √𝑟𝑡𝑡 > 𝑟𝑡𝑡 

It is well known that correlation between two standardized variables 𝑍𝑋 and 𝑍𝑌 is 

given by  𝑟 = 1 −
𝑆(𝑍𝑋−𝑍𝑌)

2

2
  (Rodgers & Nicewander, 1988)  

Accordingly, 𝑟𝑇�̂� = 𝑟𝑋𝑇 = √𝑟𝑡𝑡 > 𝑟𝑡𝑡 

High correlation between 𝑇 and �̂� indicates another measure of goodness of the 

model chosen. 
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Point estimation of true scores will help to find frequency distribution of observed 

scores and same for estimated true scores and also for estimated error scores 

satisfying the following properties: 

• �̅� = �̅� = �̅̂�   

• 𝑉𝑎𝑟 (�̂� ) < 𝑉𝑎𝑟(𝑇)  

• Correlation between 𝑇 and �̂� exceeds reliability i. e. 𝑟𝑇�̂�  > 𝑟𝑡𝑡 

• Mean of �̂� = 0 

• Var (E) > Var (�̂�) 

Using  �̂� of each individual taking the test, one may undertake computation of the 

probability that the percentile true score of the i-th examinee is t, given the observed 

percentile score of the examinee is x and reliability is  𝑟𝑡𝑡 , i.e. Prob.(T ≤ t| 𝑟𝑡𝑡= r. X 

≤ x). 

The pertinent question is which reliability to be used in (1) to estimate true scores? 

2.3 Reliability as per definition 

Since higher value of reliability implies lower value of 𝑆𝐸
2  i.e. better prediction of 

true score, question arises regarding choice of reliability for estimating true score of 

a subject with knowledge of his/her observed score. However, no existing method of 

finding test reliability uses directly its definition as 𝑟𝑡𝑡 =
𝑆𝑇

2

𝑆𝑋
2.  Chakrabartty (2021) 

suggested a method of obtaining test reliability as per the theoretical definition along 

with computation of error variance and true score variance from single 

administration of the test. Suppose a test with n-items administered among N-persons 

is dichotomized into parallel halves in the form of g-th and the h-th subtests. Item-

wise scores of the subtests can be represented respectively by vector 𝑿𝒈 =

(𝑋𝑔1, 𝑋𝑔2, … … . , 𝑋𝑔𝑛
2⁄ )𝑇 and 𝑿𝒉 = (𝑋ℎ1, 𝑋ℎ2, … … . , 𝑋ℎ𝑛

2⁄ )𝑇 where lengths of the 

parallel sub-tests are ‖𝑋𝑔‖ = √∑ 𝑋𝑔𝑖
2 and ‖𝑋ℎ‖ = √∑ 𝑋ℎ𝑖

2.  The cosine of the angle 

between the vectors 𝑿𝒈 and 𝑿𝒉 is given by 𝐶𝑜𝑠𝜃𝑔ℎ= 
𝑋𝑔

𝑇𝑋ℎ

‖𝑋𝑔‖ ‖𝑋ℎ‖
 

Here, the error variance of the entire test is  

𝑆𝐸
2 =

1

𝑁
[‖𝑋𝑔‖

2
+ ‖𝑋ℎ‖2 − 2‖𝑋𝑔‖ ‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ]      (5) 

and the test reliability as per theoretical definition is  

𝑟𝑡𝑡 = 1 −
𝑆𝐸

2

𝑆𝑋
2 = 1 −

‖𝑋𝑔‖
2

+‖𝑋ℎ‖2−2‖𝑋𝑔‖ ‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ

𝑁𝑆𝑋
2       (6) 

In case of ‖𝑋𝑔‖ =‖𝑋ℎ‖ since 𝑿𝒈 and 𝑿𝒉 are parallel, (6) and (7) can be written 

respectively as  

𝑆𝐸
2 = 

2‖𝑋𝑔‖
2

𝑁
(1− 𝐶𝑜𝑠 𝜃𝑔ℎ)           (7) 
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and  𝑟𝑡𝑡 = 1 −  
2‖𝑋𝑔‖

2
 

𝑁𝑆𝑋
2  (1− 𝐶𝑜𝑠 𝜃𝑔ℎ)        (8)  

2.4 Properties: 

1. Equation (5) helps to find value of error variance of the test and hence true score 

variance 𝑆𝑇
2 as (𝑆𝑋

2 − 𝑆𝐸
2) and use them directly to find reliability of the test as 

per the theoretical definition of reliability from a single administration, in terms of 

length of score vectors of two parallel tests and angle between such vectors. Thus, 

it is possible to find true score variance from the data and to calculate reliability 

co-efficient that conforms to the theoretical definition even if true scores of 

individuals taking the test are not known.  

2. Assuming normal distribution of X, computed value of sample 𝑆𝐸
2 may be used to 

find rough estimate of the true score of an examinee for a given observed score as 

𝑋 ± 𝑆𝐸𝑀. Better will be to estimate of reliability from (6) and use it in (1) to 

find �̂�. 

3. Relationship can be verified between 𝑆𝑇
2  obtained as difference between 

𝑆𝑋
2 and 𝑆𝐸

2  where 𝑆𝐸
2  is computed using (5) and  𝑉𝑎𝑟 (�̂�) from model (1) where 

𝑟𝑡𝑡 is as per (6) 

4. Value of correlation between two parallel sub-tests 𝑟𝑔ℎ, as an estimate of Split-half 

reliability is different from theoretical value of 𝑟𝑡𝑡 obtained by (6). It can be 

proved that if the parallel tests satisfy equality of means and variances, the split-

half reliability 𝑟𝑔ℎ will be maximum. 

Proposition 3: If splitting a test results in sub-tests g and h with 𝑋𝑔
̅̅ ̅ = 𝑋ℎ

̅̅̅̅  and 𝑆𝑔
2 =

𝑆ℎ
2, then split-half correlation 𝑟𝑔ℎ is maximum. 

Proof: Let the regression line of 𝑋𝑔 on 𝑋ℎ be 𝑋𝑔 =  𝛼1 + 𝛽1𝑋ℎ where 𝛽1 = 𝑟𝑔ℎ
𝑆𝑔

𝑆ℎ
 

and the regression line of 𝑋ℎ on 𝑋𝑔 be 𝑋ℎ =  𝛼2 + 𝛽2𝑋𝑔 where 𝛽2 = 𝑟𝑔ℎ
𝑆ℎ

𝑆𝑔
 

Now, 𝑆𝑔
2 = 𝑆ℎ

2  ⟹  𝛽1 = 𝛽2  this implies 𝛼1 = 𝑋𝑔
̅̅ ̅ − 𝑟𝑔ℎ𝑋ℎ

̅̅̅̅  and  𝛼2 = 𝑋ℎ
̅̅̅̅ − 𝑟𝑔ℎ𝑋𝑔

̅̅ ̅ 

Since  𝑋𝑔
̅̅ ̅ = 𝑋ℎ

̅̅̅̅ ,  it follows 𝛼1 = 𝛼2 = 𝑋𝑔
̅̅ ̅(1 − 𝑟𝑔ℎ) 

Thus, the regression line of 𝑋𝑔 on 𝑋ℎ and that of  𝑋ℎ on 𝑋𝑔 are coincident with equal 

regression coefficients if 𝑟𝑔ℎ = 1 

Equivalently, departure from  𝑟𝑔ℎ = 1 ⟺  departure from 𝑆𝑔
2 = 𝑆ℎ

2 ⟺departure from 

parallelism 

5. It can be proved that using  𝑟𝑔ℎ to estimate true scores will be in excess than 

𝑟𝑡𝑡 obtained by using the classically defined reliability, for high values of the 

observed scores and under-estimated for low values of X. 

Proposition 4: Let �̂�𝑀  𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡𝑟𝑢𝑒 𝑠𝑐𝑜𝑟𝑒  for finding reliability. 

Then   �̂�𝑠𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓 ≥ �̂�𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙  for 𝑋 ≥ 𝑋 ̅ and  �̂�𝑠𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓 ≤ �̂�𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 for 𝑋 ≤ �̅� 
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Proof: For 𝑟𝑔ℎ ≥ 𝑟𝑡𝑡, 𝑤𝑒 ℎ𝑎𝑣𝑒 

  �̂�𝑠𝑝𝑙𝑖𝑡−ℎ𝑎𝑙𝑓 − �̂�𝐶𝑙𝑎𝑠𝑠𝑖𝑐𝑎𝑙 = [�̅� + 𝑟𝑔ℎ(𝑋 − �̅�)] − [�̅� + 𝑟𝑡𝑡(𝑋 − �̅�)] 

                                        =  (𝑋 − �̅�) (𝑟𝑔ℎ − 𝑟𝑡𝑡) ≥ 0 𝑓𝑜𝑟 𝑋 ≥ �̅� and 

         ≤ 0 𝑓𝑜𝑟 𝑋 ≤ �̅�                                

It is suggested to use reliability as per (6) primarily because of its theoretical 

advantages without involving any assumptions of distributions of the observed or 

underlying variables. 

2.5 Estimation and test of reliability 

For a given data set, it is possible to find sample value of  𝑆𝐸
2,  𝑆𝑇

2,  𝑆𝑋
2 , and 𝑟𝑡𝑡  using 

(5) and (6) and 𝑆𝑇
2 =  𝑆𝑋

2 −  𝑆𝐸
2 . However, these values are likely to differ for 

different samples. Hence, it may be useful to have population estimates of these 

parameters. Unbiased and consistent estimate of variance of observed score is  𝜎𝑋
2 = 

1

𝑁−1
∑(𝑋𝑖 − �̅�)2 and can be written as 

𝑁

𝑁−1
𝑆𝑋

2. The estimate follows Gamma 

distribution with parameters (𝑁 − 1) and 
(𝑁−1)

𝑁
𝜎2  (Weisstein, 2003). Following 

similar approach, one can find  𝜎𝑇
2 and 𝜎𝐸

2  with the sample estimate of  𝑆𝐸
2  from (5) 

and 𝑆𝑇
2 as (𝑆𝑋

2 − 𝑆𝐸
2).  

However, 
𝜎𝑇

2

𝜎𝑋
2  may not be a good estimate of population reliability since distribution 

of two correlated Gama variables will be too complex and beyond the scope of the 

paper. Confidence interval of test reliability is discussed at a later section.  

 Reliability as per equation (6) also helps to test whether the population reliability is 

equal to one. Since 𝑟𝑡𝑡 =
𝑆𝑇

2

𝑆𝑋
2   as per the definition, the test is equivalent to testing 

𝐻0: 𝜎𝑋
2 = 𝜎𝑇

2  against 𝐻1: 𝜎𝑋
2 > 𝜎𝑇

2  which can be tested using usual F-test where test 

statistic 𝐹 =  
𝑆𝑋

2

𝑆𝑇
2  and reject  𝐻0 if the test statistic F is too large i.e. if  𝐹 >

𝐹 𝛼,(𝑁−1,𝑁−1).  

Error variance of the test computed from (5) or 𝜎𝐸
2  may be mentioned along with 

Test reliability using (6) while reporting a test.  

 

3. Confidence Interval: 

3.1 Confidence Interval of True Score: 

Confidence interval of true score represents a range of score that is likely to contain 

the true score for a given value of the observed score with a specified probability. 

Popular approach of confidence interval for true score corresponding to an observed 

score (𝑋0) using SEM of the test is given by  𝑋0 ± 𝑍95%𝑆𝐸 where  𝑍95%  is the 𝑍-

score from a normal distribution table corresponding to a 𝑍-score below which 95 % 

of the area of the standard normal distribution falls and 𝑆𝐸 denotes SD of error of 

https://mathworld.wolfram.com/about/author.html
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measurement of the test. Thus, a confidence interval using  𝑆𝐸 helps to estimate (with 

a certain level of confidence) underlying true score corresponding to a given value of 

the observed score. 

Note that as test reliability increases (which means 𝑆𝐸
2 decreases), length of 

confidence intervals get narrower. Smaller confidence interval for any given Z % 

implies more accuracy. For 𝑟𝑡𝑡 = 1,  the observed score would equal the true score. 

However, Leininger, (2013) suggested to find confidence interval of true score using 

SD of error of prediction i.e. SD of residual(𝑆𝜖 ).  A confidence interval for 

𝐸(𝑇 𝑋0⁄ ), the expected value of 𝑌 for a given observed score𝑋0, is 

�̂�  ± 𝑡𝑁−2𝑆𝜖√
1

𝑁
+

(𝑋0−�̅�)2

(𝑁−1)𝑆𝑋
2                                                              (9) 

Note that the width of the confidence interval for 𝐸(𝑇) increases as 𝑋0  moves away 

from the center. In other words, as (𝑋0 − �̅�)2 increases the margin of error of the 

confidence interval.  Conceptually, we are more certain of our predictions around the 

center of the data i.e. �̅� than at the edges. 

But to predict an interval of future values of 𝑇 for a given 𝑋0, Leininger, (2013) 

suggested prediction interval as   

�̂�  ± 𝑡𝑁−2𝑆𝜖√1 +
1

𝑁
+

(𝑋0−�̅�)2

(𝑁−1)𝑆𝑋
2                  (10) 

The formula is similar to (9), except the variability is higher since there is an added 1 

in the formula. If we repeat the study of obtaining a regression data set many times, 

each time forming a X% prediction interval at 𝑋0  and see what the future value of  𝑇 

is at 𝑋0 , then roughly X% of the prediction intervals will contain the corresponding 

actual value of  𝑇 

The following may be noted: 

i) A prediction interval is similar to a confidence interval, except that the prediction 

interval is designed to cover a “moving target”, the random future value of  𝑇, 

while the confidence interval is designed to cover the “fixed target”, the average 

(expected) value of 𝑇, 𝐸(𝑇), for a given 𝑋0.  

ii) Since, prediction intervals deal with the individual observations in a population as 

well as the parameter estimates, prediction intervals are wider than the confidence 

interval calculated for the same data set. Hence, prediction intervals are also more 

susceptible to the assumption of normality than are confidence intervals. 

iii) The prediction interval takes into account tendency of  �̂�  to fluctuate from its 

mean value, while the confidence interval simply needs to account for the 

uncertainty in estimating the mean value.  

iv) For a given data set, the error in estimating true score increases as 𝑋0  moves 

away from �̅�. In other words, length of both confidence and prediction intervals 

will increase with increase of  |𝑋0 − �̅�|  or (𝑋0 − �̅�)2.  
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3.2 Confidence Interval of Test reliability: 

For a given data set, we have estimated values of  𝑟𝑡𝑡, �̅� and 𝑆𝜖  which are used to 

find point estimates or interval estimates of true score.  A different data set is likely 

to result in different values of the above. So, a need could be felt to have a measure 

of the accuracy of estimate, such as a confidence interval of test reliability. The 

model at (1) may be used to find such confidence interval of  𝑟𝑡𝑡.  

Under the assumptions of the simple linear regression model, a two sided, (1−α) 

100% confidence interval for the slope parameter β suggested by Leininger, (2013) 

is: 

𝑏 ± 𝑡𝛼

2
,𝑁−2 (

√𝑁 �̂�

√𝑁−2√∑(𝑋𝑖−�̅�)
2
)                    (11) 

or equivalently: �̂� ± 𝑡𝛼

2
,𝑁−2√

𝑀𝑆𝐸

∑(𝑋𝑖−�̅�)
2 

where  𝑏 = �̂� =  
∑(𝑋𝑖−�̅�)𝑌𝑖

∑(𝑋𝑖−�̅�)
2     and  �̂�2 =

1

𝑁
∑(𝑌𝑖 − �̂�)2 

Using the above in our model �̂� =  𝛼 + 𝛽𝑋 

where  𝛽 = 𝑟𝑋𝑇
𝑆𝑇

𝑆𝑋
=  𝑟𝑡𝑡  and 𝛼 = �̅�(1 − 𝛽), confidence interval of the regression 

coefficient 𝛽 =  𝑟𝑡𝑡 is  

𝑟𝑡𝑡  ±𝑡𝛼

2
,𝑁−2 (

√∑(𝑇𝑖−�̂�)2

√𝑁−2√∑(𝑋𝑖−�̅�)
2
) = 𝑟𝑡𝑡  ±𝑡𝛼

2
,𝑁−2(

𝑆𝜖

√𝑁−2𝑆𝑋
)                (12) 

The above could be interpreted as follows: 

If large number of samples of 𝑁 persons are drawn from a population using simple 

random sampling and a confidence interval is calculated for each sample, the 

proportion of those intervals that will include the true population slope i.e.  𝑟𝑡𝑡 is 1 – 

α. 

3.3 Test of parallelism 

The method of computing reliability as per definition involves dichotomization of a 

test in parallel halves. Thus, it is necessary to test that g-th and h-th subtests are 

parallel. The hypotheses of equality of mean, variance and correlation of parallel 

tests can be tested separately or simultaneously as a single multidimensional 

hypothesis. Testing parallelism of only two tests, involving a single correlation—can 

be treated with a simultaneous testing of equality of means and variances which is 

equivalent to testing for null slope and intercept in the regression of D = 𝑋𝑔 −

𝑋ℎ on S =𝑋𝑔 + 𝑋ℎ.  Miguel & Garcia, (2013) recommended use of Bradley–

Blackwood test having adequate power to detect differences in means or variances 

because of its simplicity and its minimally better performance. Under the 

assumption of bivariate normal distribution of 𝑋𝑔, 𝑋ℎ, the test statistic F = 
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(∑ 𝐷𝑖
2−𝑆𝑆𝐸)/2

𝑆𝑆𝐸/(𝑛−2)
  is distributed F with 2 and (n – 2) degrees of freedom; where SSE is 

the residual sum of squares from the regression of D on S.  

In addition, following methods are proposed for statistically assessing parallelism of 

two tests: 

* Test equality of regression lines of 𝑋 on 𝑋𝑔and 𝑋 on 𝑋ℎ  by ANOVA (Rao, 1952) 

* Significance of the ratio of mean sum of squares due to deviation from the 

hypothesis to residual due to separate regression along with corresponding 

degrees of freedom may help to accept or reject the hypothesis. 

* Testing equality of two correlations 𝑋 & 𝑋𝑔 and 𝑋 & 𝑋ℎ i.e. 𝐻0: 𝜌𝑋𝑋𝑔
=

𝜌𝑋𝑋ℎ
 using Fisher r-to-z transformation or by studentized permutation test for 

testing equality of correlation coefficients in two populations 

* Test 𝑍 = 𝑋𝑔 − 𝑋ℎ fo l lows  Normal  d i s t r ibut ion  by  usual  t es t  o f  

normal i ty .  

* Cosine similarity: If a test with n-items (assume n is even) is administered to N-

individuals is dichotomizes to g-th and h-th parallel subtests, we get score vectors 

𝑿𝒈 = (𝑋𝑔1, 𝑋𝑔2, … … . , 𝑋𝑔𝑛
2⁄ )𝑇 and 𝑿𝒉 = (𝑋ℎ1, 𝑋ℎ2, … … . , 𝑋ℎ𝑛

2⁄ )𝑇 and maximum 

possible score vector for g-th and h-th sub-test is 𝑰 =  ( 
𝑛

2
,

𝑛

2
, … … . . ,

𝑛

2
)𝑇 since 

maximum possible score which can be obtained by an individual in a sub-test 

consisting of  
𝑛

2
  number of items is 

𝑛

2
 .  

Let 𝜃𝑋𝑔 be the angle between 𝑿𝒈  and 𝑰. Then, 𝐶𝑜𝑠𝜃𝑋𝑔=
∑ 𝑋𝑖𝑔

‖𝑋𝑔‖√𝑁
. Since length of the 

vector I is  ‖𝑰‖ =
𝑛√𝑁

2
,  Similarly, 𝐶𝑜𝑠𝜃𝑋ℎ= 

∑ 𝑋𝑖ℎ

‖𝑋ℎ‖√𝑁
 where 𝜃𝑋ℎ is the angle between 

𝑿𝒉  and  𝑰 . 

Now  𝑋𝑔
̅̅ ̅ =  𝑋ℎ

̅̅̅̅ ⟹ ‖𝑋𝑔‖ 𝐶𝑜𝑠𝜃𝑋𝑔 =  ‖𝑋ℎ‖ 𝐶𝑜𝑠𝜃𝑋ℎ or  
‖𝑋𝑔‖

‖𝑋ℎ‖
=  

𝐶𝑜𝑠𝜃𝑋ℎ

𝐶𝑜𝑠𝜃𝑋𝑔
 

Since parallel tests have equal mean and equal variance, 

𝑆𝑋𝑔
2 =  

‖𝑋𝑔‖
2

𝑁
− 𝑋𝑔

̅̅ ̅2
 =  𝑆𝑋ℎ

2 =  
‖𝑋ℎ‖2

𝑁
−  𝑋ℎ

̅̅̅̅ 2
 which implies  ‖𝑋𝑔‖

2
=  ‖𝑋ℎ‖2  

i.e. for parallel tests,  ‖𝑋𝑔‖
2

=  ‖𝑋ℎ‖2 ⟹  𝐶𝑜𝑠 𝜃𝑋𝑔 =  𝐶𝑜𝑠 𝜃𝑋ℎ ⟹ 𝜃𝑋𝑔 = 𝜃𝑋ℎ   

Thus, two vectors representing parallel tests are of equal length and makes equal 

angle with the Max. Possible vector.  The property may be used for testing whether 

two sub-tests are parallel in terms of equality of  𝐶𝑜𝑠 𝜃𝑋𝑔 and 𝐶𝑜𝑠 𝜃𝑋ℎ , i.e. cosine 

similarity. Spruill, (2007) has shown that under  𝐻0 distribution of dot product of two 

independent random vectors, each with unit length is well approximated by the 

Normal distribution for large N.  

https://en.wikipedia.org/wiki/Null_distribution
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The method based on Cosine similarity may not assume normal distribution of 
𝑋𝑔 and 𝑋ℎ and may offer a better solution to the problem of statistically assessing 

parallelism with prescribed accuracy. 

 

4. Discussions and Conclusions: 

The paper presented methods of computing sample estimates of 𝑆𝐸
2 , 𝑆𝑇

2 (even if true 

scores of individuals taking the test are not known) and test reliability as per the 

theoretical definition from a single administration in terms of length of score vectors 

of two parallel subtests and angle between such vectors. The method also helps to 

have unbiased and consistent estimates of  𝜎𝑇
2 and 𝜎𝐸

2 for the population. 

Computation of reliability as per theoretical definition helps to test reliability is equal 

to one which is equivalent to testing 𝐻0: 𝜎𝑋
2 =  𝜎𝑇

2.  Rejection of the hypothesis 𝐻0: 
𝜎𝑋

2 =  𝜎𝑇
2 indicates higher values of 𝜎𝐸

2 and poor quality of the test, Reporting of SD 

of true score or SD of error score and theoretically defined reliability is 

recommended for a test. 

Linear regression of T on X for estimating true score is found to have desirable 

properties. Using �̂� of each individual taking the test, one may undertake 

computation of the probability that the percentile true score of the i-th examinee is t, 

given the observed percentile score of the examinee is x and reliability is r, i.e. Pr.(T 

≤ t| 𝑟𝑡𝑡 =  r, X ≤ x). Confidence interval of true score using SD of residual (𝑆𝜖) and 

theoretical definition of test reliability, is likely to work better since 𝑆𝜖
2  is less than 

the test error variance 𝑆𝐸
2.  In addition, to predict an interval of future values of T for 

a given 𝑋0, a prediction interval in terms of 𝑆𝜖 can be used. Prediction interval is 

designed to cover a “moving target”, the random future value of T, while the 

confidence interval is designed to cover the “fixed target”, the average (expected) 

value of T for a given 𝑋0.  However, length of both confidence and prediction 

intervals will get increased as (𝑋0 −  �̅�)2 is increased. Confidence interval of test 

reliability was found in an innovative fashion using the fact the slope of regression 

equation of T on X is the test reliability as per theoretical definition. 

Simultaneous testing of single multidimensional hypothesis of equality of mean, 

variance and correlation can also be carried out by testing equality of regression line 

of  X on 𝑋𝑔 and X on 𝑋ℎ  by ANOVA or  by  testing equality of two correlations 

𝑟𝑋𝑋𝑔
  and 𝑟𝑋𝑋ℎ or by testing normality of Z= (𝑋𝑔 −  𝑋ℎ)  or  by Cosine similarity 

(without assuming normal distribution of 𝑋𝑔 and 𝑋ℎ).  Identification of items, 

deletion of which will improve parallality of two sub-tests and/or make the test 

reliability robust may be approached using MTS, by selecting suitably the Normal 

group.  

While in this work, the classically defined reliability of a test with binary items (one 

right and rest wrong) was discussed, a future study could be to find bias of the 

classically defined reliability with simulated reliabilities and compare with other 

methods of obtaining reliability. 

https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
https://en.wikipedia.org/wiki/Null_distribution
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