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A Power Comparison of Robust Test Statistics Based On Adaptive Estimators 
 

    H. J. Keselman                           Rand R. Wilcox                                  James Algina 
University of Manitoba                   University of Southern California                 University of Florida 
 
                                Katherine Fradette                                        Abdul R. Othman 
                                University of Manitoba                               University of Sains Malysia   
 
 
 
 
Seven test statistics known to be robust to the combined effects of nonnormality and variance 
heterogeneity were compared for their sensitivity to detect treatment effects in a one-way completely 
randomized design containing four groups. The six Welch-James-type heteroscedastic tests adopted either 
symmetric or asymmetric trimmed means, were transformed for skewness, and used a bootstrap method 
to assess statistical significance. The remaining test, due to Wilcox and Keselman (2003), used a 
modification of the well-known one-step M-estimator of central tendency rather than trimmed means. The 
Welch-James-type test is recommended because for nonnormal data likely to be encountered in applied 
research settings it should be more powerful than the test presented by Wilcox and Keselman. However, 
the reverse is true for data that are extremely nonnormal. 
 
Key words: Trimmed estimators, symmetric and asymmetric trimming, heterosedastic test statistic,  
nonnormality, variance heterogeneity 
 
 

Introduction 
 
Keselman, Wilcox, Othman and Fradette (2002) 
demonstrated the benefit of testing for 
symmetry, applying a transformation for 
skewness, adopting robust estimators and using 
bootstrapping methodology with a Welch-
James-type heteroscedastic statistic in order to 
obtain a  robust test of  treatment  group equality  
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when data are nonnormal, heterogeneous and 
unbalanced in one-way completely randomized 
designs. In particular, they applied a test for 
symmetry due to Hogg, Fisher and Randles 
(1975), modified by Babu, Padmanaban and Puri 
(1999), in order to determine whether data 
should be trimmed from each tail of the data 
distribution (symmetric trimming) per group or 
whether data should only be trimmed from one-
tail of the data distribution (asymmetric 
trimming) per group prior to applying the 
Johansen (1980) test for treatment group 
equality. Furthermore, they investigated the 
utility of transforming the statistic, to 
circumvent the biasing effects due to skewness, 
with methods presented by Johnson (1978) and 
Hall (1992). Lastly, they assessed statistical 
significance with and without bootstrapping 
methodology and concluded that critical values 
obtained through bootstrapping provided an 
additional benefit against the deleterious effects 
of nonnormality and variance heterogeneity. 

These authors concluded by 
recommending that researchers test for treatment 
group equality by adopting the aforementioned 
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modifications to the Johansen test with 10% 
symmetric trimming or 20% asymmetric 
trimming based on a preliminary test for 
symmetry. They noted as well that other 
percentages of symmetric/asymmetric trimming 
worked quite well with respect to Type I error 
control (e.g., 15%/30%). 

Othman, Keselman, Padmanabhan, 
Wilcox, and Fradette (2003) compared a number 
of recently developed adaptive robust methods 
with respect to their ability to control Type I 
errors and their sensitivity to detect differences 
between groups when data were nonnormal, 
heterogeneous, and the design was unbalanced. 
In particular, two new approaches to comparing 
the typical score across treatment groups due to 
Babu et al. (1999) were compared to two new 
methods presented by Wilcox and Keselman 
(2003) and Keselman et al. (2002). The 
procedures examined exhibited very good Type 
I error control and the power results clearly 
favored one of the methods (a method they 
referred to as MOMT) presented by Wilcox and 
Keselman; indeed, in the vast majority of the 
cases investigated, this most favored approach 
had substantially larger power values compared 
to the other procedures. 

Based on the findings of these two 
studies an important research question remains. 
Namely, how does the power of the robust and 
powerful procedure investigated by Othman et 
al. (2003)  (i.e., MOMT) compare to the 
sensitivity of the Johansen (1980) Welch-James-
(WJ)-type procedure for detecting treatment 
effects in one-way completely randomized 
designs? This question is important because 
other investigators have recommended the WJ 
test due to its sensitivity to detect effects for 
other designs [See e.g., Algina & Keselman 
(1998)] and neither Keselman et al. (2002) or 
Othman et al. investigated the power of the WJ 
test. 

Test Statistics 
 
The WJ Statistic 

Lix and Keselman (1995) showed how 
the various Welch (1938, 1951) statistics that 
appear in the literature for testing omnibus main 
and interaction effects as well as focused 
hypotheses using contrasts in univariate and 
multivariate independent and correlated groups 

designs can be formulated from a general linear 
model perspective, thus allowing researchers to 
apply one statistical procedure to any testable 
model effect. Their approach is adopted in this 
article and is presented in abbreviated form. 
 A general approach for testing 
hypotheses of mean equality using an 
approximate degrees of freedom solution is 
developed using matrix notation. The 
multivariate perspective is considered first; the 
univariate model is a special case of the 
multivariate. Consider the general linear model:  

 
                            Y X β ξ= + ,                        (1) 
 
where Y is an N p×  matrix of scores on p 
dependent variables or p repeated 
measurements, N is the total sample size, X is an 
N r×  design matrix consisting entirely of zeros 
and ones with rank ( )X r= , β  is an r p×  
matrix of nonrandom parameters (i.e., 
population means), and ξ  is an N p×  matrix of 
random error components. Let  ( 1, , )jY j r= …  
denote the submatrix of Y containing the scores 
associated with the n subjects in the jth group 
(cell) (For the one-way design considered in this 
paper jn n= ). It is typically assumed that the 
rows of Y are independently and normally 
distributed, with mean vector jβ  and variance-
covariance matrix jΣ  [i.e., (  , )j jN β Σ ], where 
the jth row of β , 1[ ]j j jpβ µ µ= … , and 

( )j j j j′ ′Σ ≠ Σ ≠ . Specific formulas for 
estimating β  and jΣ , as well as an elaboration 
of Y are given in Lix and Keselman (1995, See 
their Appendix A). 

The general linear hypothesis is  
 

0 : 0 ,H Rµ =                         (2) 
 
where TR C U= ⊗ , C is a Cdf r×  matrix which 
controls contrasts on the independent groups 
effect(s), with rank ( ) CC df r= ≤ , and U is a 

Up df×  matrix which controls contrasts on the 
within-subjects effect(s), with rank 
( ) UU df p= ≤ , ‘⊗ ’ is the Kronecker or direct 
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product function, and ‘ T ’ is the transpose 
operator. For multivariate independent groups 
designs, U is an identity matrix of dimension p 
(i.e., pI ). The R contrast matrix has C Udf df×  
rows and r p×  columns. In Equation 2, 

1( ) [ ]T T
rvecµ β β β= = … . In other words, µ  is 

the column vector with r p×  elements obtained 
by stacking the columns of Tβ . The 0 column 
vector is of order C Udf df×  [See Lix & 
Keselman (1995) for illustrative examples]. 
 The generalized test statistic given by 
Johansen (1980) is 

 
1ˆˆ ˆ( ) ( ) ( ) T T

WJT R R R Rµ µ−= Σ             (3) 
 
where µ̂  estimates µ , and 

1 1
ˆ ˆ ˆ[ / / ]r rdiag n nΣ = Σ Σ… , a block matrix with 

diagonal elements ˆ /j jnΣ .  
This statistic, divided by a constant, c 

(i.e., /WJT c ), approximately follows an F 
distribution with degrees of freedom 

1 C Udf dfν = × , and 2 1 1( 2) /(3 )Aν ν ν= + , where 

1 12 (6 ) /( 2)c A Aν ν= + − + . The formula for the 
statistic A is provided in Lix and Keselman 
(1995).  
 When 1p = , that is, for a univariate 
model, the elements of Y are assumed to be 
independently and normally distributed with 
mean jµ  and variance 2

jσ  [i.e., N 2(  , )j jµ σ ]. To 
test the general linear hypothesis, C has the same 
form and function as for the multivariate case, 
but now 1ˆ ˆ ˆ1, [ ]T

rU µ µ µ= = …  and 
2 2
1 1

ˆ ˆ ˆ[ / / ]r rdiag n nσ σΣ = … , (See Lix & 
Keselman’s 1995 Appendix A for further details 
of the univariate model.). 
 
Robust Estimation 

In this article robust estimates of central 
tendency and variability are applied to the WJT  
statistic. That is, heteroscedastic ANOVA 
methods are readily extended to the problem of 
comparing trimmed means. The goal is to 
determine whether the effect of a treatment 
varies across J ( 1, , )j J= …  groups; that is, to 

determine whether a typical score varies across 
groups. When trimmed means are being 
compared the null hypothesis pertains to the 
equality of population trimmed means, i.e., the 

t sµ . That is, to test the omnibus hypothesis in a 
one-way completely randomized design, the null 
hypothesis would be 0 1 2: t t tJH µ µ µ= = =" . 
 Let (1) (2) ( )jj j n jY Y Y≤ ≤ ≤"  represent the 

ordered observations associated with the jth 
group. Let [ ]j jg nγ= , where γ  represents the 
proportion of observations that are to be 
trimmed in each tail of the distribution and [ x ] 
is the greatest integer x≤ . The effective sample 
size for the jth group becomes 2j jh n g= − . 
The jth sample trimmed mean is   
 

( )
1

1ˆ  .
j j

j

n g

tj i j
i gj

Y
h

µ
−

= +

= ∑                     (4) 

 
Wilcox (1995) suggested that 20% trimming 
should be used. (See Wilcox, 1995, and the 
references cited for a justification of the 20% 
rule.) 
 The sample Winsorized mean is 
necessary and is computed as  
 

1

1ˆ  ,
jn

wj ij
ij

X
n

µ
=

= ∑                     (5) 

 
where 
 

( 1) ( 1)  
j jij g j ij g jX Y if Y Y+ += ≤  

               ( 1) ( ) if 
j j jij g j ij n g jY Y Y Y+ −= < <  

          ( ) ( ) if 
j j j jn g j ij n g jY Y Y− −= ≥ . 

 
The sample Winsorized variance, which is 
required to get a theoretically valid estimate of 
the standard error of a trimmed mean, is then 
given by 
 

2 2

1

1ˆ ˆ( )
1

jn

wj ij wj
ij

X
n

σ µ
=

= −
− ∑ .           (6) 
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The standard error of the trimmed mean is 
estimated with 2ˆ( 1) /[ ( 1)] .j wj j jn h hσ− −  

 Under asymmetric trimming, and 
assuming, without loss of generality, that the 
distribution is positively skewed so that 
trimming takes place in the upper tail, the jth 
sample trimmed mean is  

( )
1

1ˆ  
j jn g

tj i j
ij

Y
h

µ
−

=

= ∑  

 
and the jth sample Winsorized mean is  
 

1

1ˆ  ,
jn

wj ij
ij

X
n

µ
=

= ∑  

 
where 

( )  
j jij ij ij n g jX Y if Y Y −= ≤  

             ( ) ( ) if 
j j j jn g j ij n g jY Y Y− −= ≥ . 

 
The sample Winsorized variance is again 
defined as (given the new definition of ˆwjµ ) 

2 2

1

1ˆ ˆ( )
1

jn

wj ij wj
ij

X
n

σ µ
=

= −
− ∑  

 
and the standard error of the mean again takes its 
usual form (given the new definition of  ˆwjµ ). 
 Thus, with robust estimation, the 
trimmed group means ( ˆ tj sµ ) replace the least 
squares group means ( ˆ j sµ ), the Winsorized 

group variances estimators 2ˆ( )wj sσ  replace the 

least squares variances 2ˆ( )j sσ , and jh  replaces 

jn  and accordingly one computes the robust 

version of WJT , WJtT  (See Keselman, Wilcox, & 
Lix, 2003; and Rocke, Downs & Rocke, 1982, 
for another justification for adopting robust 
estimates). 
 
Bootstrapping 

Now considered is how extensions of 
the ANOVA method just outlined might be 
improved. In terms of probability coverage and 
controlling the probability of a Type I error, 
extant investigations indicate that the most 

successful method, when using a 20% trimmed 
mean (or some M-estimator), is some type of 
bootstrap method. 
 Following Westfall and Young (1993), 
and as described by Wilcox (1997), let 

ˆij ij tjC Y µ= − ; thus, the ijC  values are the 
empirical distribution of the jth group, centered 
so that the sample trimmed mean is zero. That is, 
the empirical distributions are shifted so that the 
null hypothesis of equal trimmed means is true 
in the sample. The strategy behind the bootstrap 
is to use the shifted empirical distributions to 
estimate an appropriate critical value. For each j, 
obtain a bootstrap sample by randomly sampling 
with replacement jn  observations from the ijC  

values, yielding 1 , ,
jnY Y∗ ∗… . Let WJtT ∗  be the value 

of Johansen’s (1980) test based on the bootstrap 
sample. Now randomly sample (with 
replacement), B bootstrap samples from the 
shifted/centered distributions each time 
calculating the statistic WJtT ∗ . The B values of 

WJtT ∗  are put in ascending order, that is, 

(1) ( )WJt WJt BT T∗ ∗≤ ≤" , and an estimate of an 

appropriate critical value is ( )WJt aT ∗ , where 
(1 )a Bα= − , rounded to the nearest integer. 

One will reject the null hypothesis of location 
equality (i.e., 0 1 2: t t tJH µ µ µ= = =" ) when 

( )WJt WJt aT T ∗> , where WJtT  is the value of the 
heteroscedastic statistic based on the original 
non-bootstrapped data. Keselman et al. (2002) 
illustrate the use of this procedure for testing 
both omnibus and sub-effect (linear contrast) 
hypotheses in completely randomized and 
correlated groups designs. 
 
Transformations for the Welch-James Statistic 

Guo and Luh (2000) and Luh and Guo 
1999 found that Johnson’s (1978) and Hall’s 
(1992) transformations improved the 
performance of several heteroscedastic test 
statistics when they were used with trimmed 
means, including the WJ statistic, in the 
presence of heavy-tailed and skewed 
distributions.  
 In this study both approaches are 
compared for removing skewness when applied 
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to the WJtT  statistic. Let 1 2( , , , )
jij j j n jY Y Y Y= … be 

a random sample from the jth distribution. Let 
2

 ˆ ˆ ˆ,   and tj wj wjµ µ σ be, respectively, the trimmed 
mean, Winsorized mean and Winsorized 
variance of group j. Define the Winsorized third 
central moment of group j as 

3
3

1

1ˆ ˆ( )  .
jn

j ij wj
ij

X
n

µ µ
=

= −∑  

 
Let 

 
2 2( 1)

ˆ  ,
1

j
wj wj

j

n
h

σ σ
−

=
−

�  

 

3ˆ  , j
wj j

j

n
h

µ µ=�  

2

 ,wj
j

j

q
h
σ

=
�

 

1  ,tj
j

w
q

=  

1
 ,

J

t tj
j

U w
=

=∑  

and 
 

1

1ˆ ˆ  .
J

t tj tj
jt

w
U

µ µ
=

= ∑  

 
 
Luh and Guo (2000) defined a trimmed mean 
statistic with Johnson’s transformation  as 

2
ˆ ˆ( )

6j

wj
Johnson tj t

wj j

T
h

µ
µ µ

σ
= − +

�
�

 

                             2
4 ˆ ˆ( ) . 

3
wj

tj t
wj

µ
µ µ

σ
+ −
�
�

             (7)  

From Guo and Luh (2000) one can deduce that a 
trimmed mean statistic with Hall’s (1992) 
transformation would be 

2
2 4ˆ ˆ ˆ ˆ( ) ( )

6 3j

wj wj
Hall tj t tj t

wj j wj

T
h

µ µ
µ µ µ µ

σ σ
= − + + −

� �
� �

 

                      
2

3
8 ˆ ˆ+ ( )  .

27
wj

tj t
wj

µ
µ µ

σ
−

�
�

 (8) 

 Keselman et al. (2002) indicated that 
sample trimmed means, sample Winsorized 
variances and trimmed sample sizes can be 
substituted for the usual sample means, 
variances and sample sizes in the WJT  statistic. 
That is,   

2

1

ˆ ˆ( )  ,
J

WJ tj tj t
j

T w µ µ
=

= −∑  

 
which, when divided by c, is distributed as an F 
variable with df of 1J −  and 

12
2

1

(1 / )
( 1) 3

1

J
tj t

j j

w U
J

h
ν

−

=

⎡ ⎤−
= − ⎢ ⎥

−⎢ ⎥⎣ ⎦
∑  

  
where 
 

2

2
1

(1 / )2( 2)( 1) 1  .
1 1

J
tj t

j j

w UJc J
J h=

⎡ ⎤−−
= − +⎢ ⎥

− −⎢ ⎥⎣ ⎦
∑  

 
 Now we can define 

2

1
( )  ,

Johnson j

J

WJ tj Johnson
j

T w T
=

=∑            (9) 

and 

  2

1

( )  .
Hall j

J

WJ tj Hall
j

T w T
=

=∑  (10) 

 
Then 

JohnsonWJT  and 
HallWJT , when divided by c, are 

also distributed as F variates with no change in 
degrees of freedom. 
 
A Preliminary Test for Symmetry 

A stumbling block to adopting 
asymmetric versus symmetric trimming has been 
the inability of researchers to determine when to 
adopt one form of trimming over the other. 
Work by Hogg et al. (1975) and Babu et al. 
(1999), however, may provide a successful 
solution to this problem. The details of this 
method are presented in Othman et al. (2002). 

 
The One-Step Modified M-(MOM) Estimator  

For J independent groups (this estimator 
can also be applied to dependent groups) 
consider the MOM estimator introduced by 
Wilcox and Keselman (2003). They suggested 
modifying the well-known one-step M-estimator  
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2

1

2 1 ( )
1

1 2

1.28( )( )
,

jn i

j i j
i i

j

MADN i i Y

n i i

−

= +

− +

− −

∑
    (11) 

 
by removing 1.28 2 1( )( )jMADN i i− , where 

/ .6745j jMADN MAD= , jMAD = the median of 

the values ˆ ˆ| |, ,| |
jij j n j jY M Y M− −… , ˆ

jM  is the 

median of the jth group, 1i = the number of 
observations where ˆ 2.24( )ij j jY M MADN− <  

and 2i = the number of observations where 
ˆ 2.24( )ij j jY M MADN− > . Thus, the modified 

M-estimator suggested by Wilcox and Keselman 
is  

2

1

( )

1 j 1 2

ˆ  .
jn i

i j
j

i i

Y
n i i

θ
−

= +

=
− −∑              (12) 

 
 
The MOM estimate of location is just the 
average of the values left after all outliers (if 
any) are discarded. The constant 2.24 is 
motivated in part by the goal of having a 
reasonably small standard error when sampling 
from a normal distribution. Moreover, detecting 
outliers with Equation 12 is a special case of a 
more general outlier detection method derived 
by Rousseeuw and van Zomeren (1990). 
 
MOMT 

MOM estimators, like trimmed means, 
can be applied to test statistics to investigate the 
equality of this measure (θ ) of the typical score 
across treatment groups.  The null hypothesis is  

 
  0 1 2:  JH θ θ θ= = =" , (13) 

 
where jθ  is the population value of MOM 
associated with the jth group. Of the two 
statistics that can be used to test this hypothesis, 
Othman et al. (in press) found that the one based 
on the work of Liu and Singh (1997) was most 
powerful. To obtain the test, let 
 
                ( ) . jj j j j jδ θ θ′ ′ ′= − <                    (14)  
 

Thus, the sjjδ ′  are the all possible pairwise 
comparisons among the J treatment groups. 
Now, if all groups have a common measure of 
location (i.e., 1 2 Jθ θ θ= = =" ), then 

0 12 13 1 , : 0J JH δ δ δ −= = = =" . A bootstrap 
method can be used to assess statistical 
significance. Bootstrap samples are obtained for 
the ijY  values and one rejects if the zero vector 
is sufficiently far from the center of the 
bootstrap estimates of the delta values. Thus, 
bootstrap samples are obtained from the ijY  
values rather than the sijC . For each bootstrap 
replication ( 599B =  is recommended) one 
computes the robust estimators (i.e., MOM) of 
location (i.e., ˆ , 1, , ;  1, ,jb j J b Bθ ∗ = =… … ) and 
the corresponding estimates of 

ˆ ˆ ˆ( )jj b jj b jb j bδ δ θ θ∗ ∗ ∗
′ ′ ′= − . The strategy is to 

determine how deeply 0 (0 0  0)= …  is nested 
within the bootstrap values ˆ

jj bδ ∗
′ , where 0 is a 

vector having length ( 1) / 2K J J= − . This 
assessment is made by adopting a modification 
of Mahalanobis’s distance statistic. 
 For notational convenience, the K 
differences ˆ

jjδ ′  can be rewritten as 

1
ˆ ˆ, , K∆ ∆… and their corresponding bootstrap 

values as ˆ ( 1, , ;  1, , )kb k K b B∗∆ = =… … . Thus, let 

1

1 ˆ  ,
B

k kb
bB

∗ ∗

=

∆ = ∆∑  

and 
ˆ ˆ  .kb kb k kZ ∗ ∗= ∆ − ∆ + ∆  

 
(Note the skbZ  are shifted bootstrap values 
having mean ˆ

k∆ .) Now define 

      
1

1 ( )( ) ,
1

B

kk kb k k b k
b

S Z Z Z Z
B′ ′ ′

=

= − −
− ∑       (15)  

where 

1

1  .
B

k kb
b

Z Z
B =

= ∑  

 
(Note: The bootstrap population mean of k

∗∆  is 

known and is equal to ˆ
k∆ .) 
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 With this procedure, next compute 
 

1ˆ ˆ ˆ ˆ( ) ( )  b b bD S∗ − ∗ ′= ∆ − ∆ ∆ − ∆ ,        (16) 
 
where 1

ˆ ˆ ˆ( , , )b b Kb
∗ ∗ ∗∆ = ∆ ∆…  and 1

ˆ ˆ ˆ( , , )K∆ = ∆ ∆… . 
Accordingly, bD  measures how closely ˆ

b∆  is 
located to ∆̂ . If the null vector (0) is relatively 
far from ∆̂  one rejects 0H . Therefore, to assess 
statistical significance, put the bD  values in 
ascending order (1) ( )( )BD D≤ ≤" and let 

(1 )a Bα= −  (rounded to the nearest integer). 
Reject 0H  if 

( )  aT D≥ ,                       (17) 
 
where 

1ˆ ˆ(0 ) (0 )  T S − ′= − ∆ − ∆ .            (18) 
 
It is important to note that 1 2 Jθ θ θ= = =" can 
be true iff 0 1 2 1: 0J JH θ θ θ θ−− = = − ="  
(Therefore, it suffices to test that a set of K 
pairwise differences equal zero.) However, to 
avoid the problem of arriving at different 
conclusions (i.e., sensitivity to detect effects) 
based on how groups are arranged (if all MOMs 
are unequal), it is recommended that one test the 
hypothesis that all pairwise differences equal 
zero. 

 
Methodology 

 
Seven tests for treatment group equality were 
compared for their sensitivity to detect treatment 
effects under conditions of nonnormality and 
variance heterogeneity in an independent groups 
design with four treatments. The procedures 
investigated, based on the findings and 
recommendations of Keselman et al. (2002)  and 
Othman et al. (in press), were: 
 
WJ with preliminary testing for symmetry (Babu 
et al., 1999)/Symmetric and Asymmetric 
Trimming: 

1.-3. WJJB1020(1530)(2040)-WJ with 
Johnson’s (1978) transformation and 
bootstrapping. If data are symmetric use 10% 
(15%) (20%) symmetric trimming, otherwise 

use 20% (30%) (40%) one sided trimming. 
4.-6. WJHB1020(1530)(2040)-WJ with 

Hall’s (1990) transformation and bootstrapping. 
If data are symmetric use 10% (15%) (20%) 
symmetric trimming, otherwise use 20% (30%) 
(40%) one sided  trimming. 

7. MOMT. 
 Four variables were manipulated in the 
study: (a) sample size, (b) degree of variance 
heterogeneity, (c) pairing of unequal variances 
and group sizes, and (d) population distribution. 

An unbalanced completely randomized 
design containing four groups was investigated 
since previous research has looked at this design 
(e.g., Keselman et al., 2002; Lix & Keselman, 
1998; Othman et al., in press; Wilcox, 1988). 
The two cases of total sample size and the group 
sizes were 70N =  (10, 15, 20, 25) and 90N =  
(15, 20, 25, 30). The values of jn  were selected 
from those used by Lix and Keselman (1998) in 
their study comparing omnibus tests for 
treatment group equality; their choice of values 
was, in part, based on having group sizes that 
others have found to be generally sufficient to 
provide reasonably effective Type I error control 
(e.g., see Wilcox, 1994). 

The unequal variances were either in a 
36:1:1:1 or 8:1:1:1 ratio. Though a ratio of 
36:1:1:1 may seem extreme, ratios similar to this 
case, and larger, have been reported in the 
literature. Keselman, et al. (1998) after 
reviewing articles published in prominent 
education and psychology journals noted that 
they found ratios as large as 24:1 and 29:1 in 
one-way and factorial completely randomized 
designs. Wilcox (2003) cited data sets where the 
ratio was 17,977:1! 

It is appropriate to compare the test 
statistics under this condition of variance 
heterogeneity -- the results under this condition 
will tell how the tests perform under conditions 
that either have been reported or may likely be 
encountered with actual data sets. Furthermore, 
even assuming that a 36:1:1:1 ratio of variances 
may be large, it nonetheless seems reasonable to 
see how well the tests perform under a 
potentially extreme condition. This will provide 
researchers with information regarding how well 
the tests hold up under any degree of 
heterogeneity they are likely to obtain in their 
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data, thus providing a generalizable result. 
Nonetheless, the tests were also compared under 
a less extreme condition of heterogeneity, i. e., 
when the variances were in a ratio of 8:1:1:1. 

Variances and group sizes were both 
positively and negatively paired. A positive 
pairing referred to the case in which the largest 

jn  was associated with the population having 
the largest variance; a negative pairing referred 
to the case in which the largest jn  was 
associated with the population having the 
smallest variance. These conditions were chosen 
since they typically produce conservative and 
liberal results, respectively. 

With respect to the effects of 
distributional shape on Type I error, we chose to 
investigate nonnormal distributions in which the 
data were obtained from a variety of skewed 
distributions. In addition to generating data from 
a 2

3χ  distribution, we also used the method 
described in Hoaglin (1985) to generate 
distributions with more extreme degrees of 
skewness and kurtosis. These particular types of 
nonnormal distributions were selected since 
educational and psychological research data 
typically have skewed distributions (Micceri, 
1989; Wilcox, 1994). Furthermore, Sawilowsky 
and Blair (1992) investigated the effects of eight 
nonnormal distributions, which were identified 
by Micceri on the robustness of Student’s t test, 
and they found that only distributions with the 
most extreme degree of skewness (e.g., 

1.64γ = ) affected the Type I error control of the 
independent sample t statistic. Thus, because the 
statistics investigated have operating 
characteristics similar to those reported for the t 
statistic, it was assumed that this approach to 
modeling skewed data would adequately reflect 
conditions in which those statistics might not 
perform optimally. 

For the 2
3χ  distribution, skewness and 

kurtosis values are 1 1.63γ =  and 2 4.00γ = , 
respectively. The other nonnormal distributions 
were generated from the g and h distribution 
(Hoaglin, 1985). Specifically, two g and h 
distributions were investigated: (a) .5g =  and 

0h =  and (b) .5g =  and .5h = , where g and h 
are parameters that determine the moments of a 

distribution. To give meaning to these values it 
should be noted that for the standard normal 
distribution 0g h= = . Thus, when 0g =  a 
distribution is symmetric, and the tails of a 
distribution will become heavier as h increases 
in value. Values of skewness and kurtosis 
corresponding to the investigated values of g and 
h are (a) 1 1.75γ =  and 2 8.9γ = , respectively, 
and (b) 1 2γ γ= = undefined. 

These values of skewness and kurtosis 
for the g and h distributions are theoretical 
values; Wilcox (1997, p. 73) reported computer 
generated values, based on 100,000 
observations; 1̂ 1.81γ =  and 2ˆ 9.7γ = for .5g =  
and 0h =  and 1̂ 120.10γ =  and 2ˆ 18,393.6γ =  
for .5g =  and .5h = . Thus, the conditions 
investigated could be described as extreme. 
They are intended to indicate the operating 
characteristics of the procedures under 
substantial departures from homogeneity and 
normality, with the premise that, if a procedure 
works under the most extreme of conditions, it is 
likely to work under most conditions likely to be 
encountered by researchers. 

In terms of the data generation 
procedure, to obtain pseudo-random normal 
variates, the SAS generator RANNOR (SAS 
Institute, 1989) was used. If ijZ  is a standard 
unit normal variate, then ij j j ijY Zµ σ= + ×  is a 
normal variate with mean equal to jµ  and 

variance equal to 2
jσ . To generate pseudo-

random variates having a 2χ  distribution with 
three degrees of freedom, three standard normal 
variates were squared and summed. 

To generate data from a g- and h-
distribution, standard unit normal variables were 
converted to random variables via 

 
2exp( ) 1

exp  ,
2

ij ij
ij

gZ hZ
Y

g
⎛ ⎞−

= ⎜ ⎟⎜ ⎟
⎝ ⎠

 

 
according to the values of g and h selected for 
investigation. To obtain a distribution with 
standard deviation jσ , each ijY  was multiplied 
by a value of jσ . It is important to note that this 
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does not affect the value of the mean when 
0g =  (see Wilcox, 1994, p. 297). However, 

when 0g > , the population mean for a g- and h-
distributed variable is  

2 / 2(1 )
1/ 2

1 ( 1)
(1 )

g h
gh e

g h
µ −= −

−
 

 
(see Hoaglin, 1985, p. 503). Thus, for those 
conditions where 0g > , tjµ  was first subtracted 
from ijY  before multiplying by jσ . When 
working with MOMs, jθ  was first subtracted 
from each observation (The value of jθ  was 
obtained from generated data from the 
respective distributions based on one million 
observations.). Specifically, for procedures using 
trimmed means, tjµ  was subtracted from the 
generated variates under every generated 
distribution. Correspondingly, for the procedure 
based on MOMs, jθ  was subtracted for all 
distributions investigated. 

The standard deviation of a g- and h-
distribution is not equal to one, and thus the 
values reflect only the amount by which each 
random variable is multiplied and not the actual 
values of the standard deviations (see Wilcox, 
1994, p. 298). As Wilcox noted, the values for 
the variances (standard deviations) more aptly 
reflect the ratio of the variances (standard 
deviations) between the groups. Five thousand 
replications of each condition were performed 
using a .05 statistical significance level. 
According to Wilcox (1997) and Hall (1986), B 
was set at 599; that is, their results suggest that it 
may be advantageous to choose B such that 
1 α−  is a multiple of 1( 1)B −+ . 

Lastly, the power of the tests were 
compared by selected constants to be added to 
the observations in each group, to avoid ceiling 
and floor effects; however, values were also 
selected based on the work of Cohen (1988, pp. 
270-272). Specifically, a range for the difference 
between the groups was selected and then 
specified this range according to a minimum-, 
equal-, or maximum-variability difference 
between the groups. Accordingly, the constants 
that were added (after centering the data) to the 
randomly generated data in the four groups were 

1,  0, 0, 1−  (minimum variability), 
1,  .5,  .5,  1− −  (equal variability), and 
1,  1,  1,  1− −  (maximum variability). 

 
Results 

 
Prior to the presentation of power results, the 
reader should be reminded that the tests  
examined, very effectively control Type I errors 
under the conditions studied in this 
investigation; the Type I error results have been 
reported in Keselman et al. (2002) and Othman 
et al. (in press).  

The preliminary analysis of the 
empirical power rates indicated that there were 
only relatively minor differences between the 
WJ tests due to type of transformation [i.e., 
Johnson (1978) or Hall (1992)] for skewness. 
Accordingly, in Table 1, which contains the 
empirical power rates, the values tabled for the 
WJ procedure are based on averaging over the 
two WJ tests employing the two different 
transformations for skewness. 

Furthermore, no differences existed 
between the procedures due to sample size and 
accordingly, the tabled values have been 
averaged over the two cases of sample size for 
each test investigated. As well, we note that 
power rates have been averaged over the type of 
range investigated (i.e., minimum-, equal- and 
maximum-variability). Researchers certainly 
would not be privy to this type of information 
and thus it seems most reasonable to collapse 
over this variable. 
 Based on the values contained in Table 
1 we note that: (1) either the WJ1530 and/or the 
WJ2040 procedure was always at least as 
powerful as the WH1020 test, (2) the WJ2040 
test was at least as powerful as the WJ1530 test 
for two of the nonnormal distributions 
investigated ( 2

3χ  and .5 and 0g h= = ), while it 
was marginally less powerful for the remaining 
nonnormal distribution investigated 
( .5 and .5g h= = ), and (3) the WJ tests were 
more powerful than the MOMT test for the 2

3χ  
and .5 and 0g h= =  nonnormal distributions, 
yet less powerful when the data were 

.5 and .5g h= =  distributed. 
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The table also includes values indicating 
the difference in powers between the WJ1530 
and WJ2040 tests and the MOMT test (notated 
as WJ1530-MOMT and WJ2040−MOMT). 
These difference scores indicate that power 
differences favoring the WJ tests were as large 
as 27 percentage points while those favoring 
MOMT were at times more powerful by 13 
percentage points. 

 
Conclusion 

 
Keselman et al (2002) noted that researchers 
could achieve robustness to nonnormality and 
variance  heterogeneity by using trimmed means 

 
 
 
 

 
 
 in a heteroscedastic test statistic [i.e., Johansen 
(1980)] when data were either trimmed 
symmetrically or asymmetrically based on a 
preliminary test for symmetry due to Hogg et al. 
(1975) and Babu et al. (1999) and when the test 
was modified by a transformation for skewness 
due either to Johnson (1978) or Hall (1992) and 
when statistical significance was assessed 
through a bootstrap method. 
 Othman et al. (in press) found that when 
treatment group equality was assessed with a test 
statistic suggested by Liu and Singh (1997) 
comparing across groups a measure of central 
tendency based on Wilcox and Keselman’s 
(2003) modification of the well-known one-step 

Table 1. Power Values 
 

 
Distribution  

 
Max 
σ2 

 
Pairing WJ1020 WJ1530 WJ2040 MOMT 

WJ1530-
MOMT 

WJ2040-
MOMT 

 
Chi-Squared 

 
8 

 
Pos 57 60 65 38 22 27 

Chi-Squared 
 

36 
 

Pos 52 55 59 34 21 25 

Chi-Squared 
 

8 
 

Neg 54 56 61 42 14 19 

Chi-Squared 
 

36 
 

Neg 49 50 54 38 12 16 
 

g=.5/h=0 
 

8 
 

Pos 93 94 94 87 07 07 
 

g=.5/h=0 
 

36 
 

Pos 88 90 90 81 09 09 
 

g=.5/h=0 
 

8 
 

Neg 95 95 93 92 03 01 
 

g=.5/h=0 
 

36 
 

Neg 92 92 89 89 03 0 
 

g=.5/h=.5 
 

8 
 

Pos 68 71 69 76 -05 -07 
 

g=.5/h=.5 
 

36 
 

Pos 62 65 64 68 -03 -04 
 

g=.5/h=.5 
 

8 
 

Neg 68 71 68 81 -10 -13 
 

g=.5/h=.5 
 

36 
 

Neg 63 67 65 76 -09 -11 
 

Average 70 72 73 67   
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M-estimator (i.e., MOM), Type I errors were 
very effectively controlled under very adverse 
conditions of nonnormality and variance 
heterogeneity. Furthermore, and most important 
to the motivation for the current investigation, 
they also found that the procedure was 
substantially more powerful than the other test 
statistics they investigated. 
 The purpose of this investigation 
therefore was to contrast the sensitivity of the 
test examined by Othman et al. (in press) with 
the Johansen (1980) Welch-James-type 
procedure investigated by Keselman et al. 
(2002) since both methods provide very good 
Type I error control and good power 
characteristics have been attributed to the WJ-
type test by other researchers (see e.g., Algina & 
Keselman, 1998), though it has not been 
compared to the MOMT test nor under 
conditions examined by Keselman et al. and 
Othman et al. 
 For the three nonnormal distributions 
investigated, it was found that the WJ-type tests 
were more powerful than the MOMT test when 
data were moderately to substantially nonnormal 
(i.e., 2

3χ  and .5 and 0g h= =  distributed); 
however, when the data were extremely 
nonnormal (i.e., .5 and .5g h= =  distributed), 
the MOMT test was more powerful than the WJ-
type tests. In the former case, the differences 
favored the WJ-type tests by as much as 27 
percentage points while in the latter case MOMT 
values, at times, exceeded the WJ values by as 
much as 13 percentage points. 
 Based on these findings, we 
recommend, in general, the WJ-type tests that 
utilize symmetric or asymmetric trimmed means 
(with the type of trimming based on the Babu et 
al., 1999, test for symmetry) with a 
transformation for skewness (due either to 
Johnson, 1978, or Hall, 1992) and where 
statistical significance is assessed through the 
bootstrap method defined in this article (or in 
Keselman et al., 2002). In particular, the 
WJ2040 method is recommended. That is, for 
most nonnormal distributions that researchers 
are likely to encounter in applied work it is not 
likely that their data will be as nonnormal as that 
characterized by the .5 and .5g h= =  
distribution, and thus they are likely to have 

greater sensitivity to detect treatment effects 
with the WJ-type test than with the MOMT test. 
However, when researchers suspect that their 
data is extremely nonnormal, in a manner 
similar to the characteristics of the 

.5 and .5g h= =  distribution, then clearly, it 
will be advantageous to adopt the MOMT test. 
Numerical results for MOMT can be obtained 
from Wilcox (2003, pp. 84, 314). 
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