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The probability model of a quality characteristic is assumed to follow the 

exponentiated inverted weibull distribution. The technique of analysis of means for a 

skewed population is applied with respect to exponentiated inverted weibull 

distribution. The subgroup means are used to develop control charts to assess 

whether the population from which these subgroups are drawn is operating with 

admissible quality variations. The results are illustrated by examples on live data.  
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1. Introduction 

The probability density function (pdf) of the exponentiated inverted Weibull 

distribution is 

𝑓(x) =  𝜃βx-(β+1) (𝑒−x−𝛽
)𝜃 ; x > 0, β > 0, 𝜃 > 0.                           (1) 

The cumulative distribution function (cdf) is  

F(x) =  (𝑒−x−𝛽
)𝜃 ,  x > 0, β > 0, θ > 0.                                      (2) 

The exponentiated inverted Weibull distribution's hazard function is  

h(x) = 
𝜃𝛽𝑥−(𝛽+1) (𝑒−x−𝛽

)𝜃

1− (𝑒−x−𝛽
)𝜃

 .                                                               (3) 

A skewed, unimodel distribution on the positive real line is the exponentiated 

inverted Weibull distribution. The median and kth moment of EIWD are: 

E (xk) = 𝜃
𝑘

𝛽 𝛤 (1 - 
1

𝛽
 ).                                                                (4) 

Flaih et al. (2012) [18] have examined the other distributional features in depth. 
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Figure 1. Pdfs of the EIWD for various θ and β=2 

 

 

Many practitioners use the Shewhart control chart as a statistical quality control tool. 

If the remedy is known, the process is adjusted when these charts show the presence 

of an assignable cause. Otherwise, the presence of assignable cause is interpreted as 

an indication of heterogeneity in the subgroup statistic for which the control chart is 

generated. For example, if the statistic is sample mean, the process mean will be 

heterogeneous, reflecting departures from the target mean. Such an analysis is 

commonly carried out with the use of means to separate a collection of a given 

number of subgroup means into categories such that means within a category are 

homogeneous and those between categories are heterogeneous and the method is 

known as analysis of means(ANOM) given by Ott (1967)[33]. The concept of a 

control chart for means is regarded differently when applying the ANOM technique: 

grouping of plotted means to fall inside the control limits or some outside the control 

limits. All of the means must fall inside the control limits in order for all of them to 

be homogeneous. If we use (1 – α) as the confidence coefficient, the probability of 

all subgroup means falling under the control limits should be (1 – α). Assuming that 

subgroups are independent, the above probability statement becomes the nth power of 

the probability that a subgroup mean will fall within the limits. Specifically, the 

confidence interval for �̅� to lie between two specified limits in the sampling 

distribution �̅� should be equal to (1 – α)1/n. Through EIWD, the same approach is 

applied throughout the rest of this chapter. We have only studied the control chart 

components of ANOM in this study because it aims to explore ANOM using control 

limits of extreme value statistics. We have not explored any recently created ANOM 

tables or approaches. However, a detailed literature about ANOM is available in 

Rao(2005) [11] and some related works in this direction are Ramig(1983) 

[10],Bakir(1994) [1], Bernard and Wludyka(2001) [2], Montgomery(2001) [6], 

Nelson and Dudewicz(2002) [8], Rao and Prankumar(2002) [12], Farnum(2004) 

[3], Guirguis and Tobias(2004) [5], Rao and Kantam(2012) [14], Rao et al (2012) 

[13], Rao et al (2012) [16], Rao and Sricha- rani(2018) [15] and references there in. 

The rest of the paper is organized as follows. ANOM applied to EIWD using 
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extreme value control charts of EIWD is given in Sec tion 2 followed by 

numerical examples. Illustration of the application of the values in ANOM tables 

are given in Section 3. Summary and conclusions are given in Section 4. 

 

2. Analysis of means (ANOM) - EIWD 

Assume �̅�1,  �̅�2, . . . �̅�k are the arithmetic means of k subgroups of size 'n' each 

chosen from an EIWD model where the data variate follows EIWD. If these 

subgroup means are used to construct control charts, it will be possible to determine 

whether the population from which these subgroups are generated is performing with 

acceptable quality variations. We may utilise our control chart constants or the 

popular Shewart constants found in any SQC textbook, depending on the underlying 

population model. If all of the subgroup means fall inside the control limits, we say 

the process is under control. Otherwise, we would argue the process is 

uncontrollable. We can get the following probability assumptions if α is the level of 

significance of the above decisions. 

P (LCL < �̅�i , Ɐi = 1, 2 … k < UCL) = 1 – α                                       (5) 

The concept of independent subgroups (3.2.1) is applied. 

P (LCL < �̅�i  < UCL) = (1 – α)1/k                                                   (6) 

We can determine two constants, L* and U*, for each subgroup mean using equi-

tailed probability. 

P (�̅�i < L*) = P (�̅�I > U*) = 
1−(1−𝛼)

1
𝑘

2
                                                                           (7) 

L* and U* satisfy U* = -L* in the case of a normal population. We must calculate 

L* and U* separately from the sample distribution of �̅�𝑖 for skewed populations like 

EIWD. As a result, these are dependent on the number of subgroups 'k' and the size 

of the subgroups 'n'. L* and U* for α = 0.01, 0.05, and 0.10 are obtained using the 

equation (7) for given 'n' and 'k'. Tables 1, 2 and 3 include this information. A control 

chart for averages with an 'In Control' conclusion shows that, while subgroup means 

differ, they are all homogeneous in some way. In an analysis of variance technique, 

this is the null hypothesis. As a result, the constants in Tables 1, 2 and 3 can be 

applied instead of the analysis of variance method. For a normal population one can 

use the tables of Ott (1967) [33]. Our tables can be utilised for an EIWD. As a result, 

we've included several instances below in which the EIWD model's goodness of fit 

was evaluated using the Q-Q plot technique (the strength of linearity between 

observed and theoretical quantities of a model) and the homogeneity of means was 

examined in each case. 

 

 

 



 

 

Table 1. EIWD constants for analysis of Means (1-α) = 0.99 

n 2 3 4 5 6 7 8 9 10 

K=1 0.758 8.7071 0.7898 7.7384 0.8112 6.3133 0.80272 6.2277 0.8404 6.3852 0.8547 5.4749 0.8628 5.4506 0.8762 5.4096 0.8815 4.9718 

2 0.7515 12.1252 0.7772 10.4534 0.7936 8.047 0.8146 8.1949 0.8026 8.0197 0.8428 6.5779 0.847 6.6057 0.8652 7.0007 0.8683 5.8563 

3 0.747 13.7673 0.7719 12.8322 0.7876 9.5541 0.8008 9.4769 0.8015 9.0739 0.8367 7.2749 0.8409 7.6173 0.8589 7.7852 0.8615 7.0708 

4 0.7444 15.3688 0.7703 14.6718 0.7847 11.7961 0.8004 10.587 0.8009 10.0064 0.8274 7.5231 0.8382 8.1438 0.8551 8.525 0.8594 7.7041 

5 0.7435 16.0388 0.7686 15.0332 0.784 12.1866 0.7994 11.6186 0.8008 10.6796 0.8019 7.895 0.8343 8.3396 0.8519 8.9115 0.8552 7.762 

6 0.7423 16.7814 0.7664 15.7381 0.7835 13.6194 0.7983 12.4435 0.7978 11.6238 0.8014 8.2747 0.8332 8.5494 0.848 9.8047 0.5529 8.0099 

7 0.7423 17.0339 0.7649 16.3523 0.7834 14.2467 0.7981 13.6032 0.7972 11.8114 0.8012 8.6193 0.8327 8.6157 0.8474 10.0953 0.852 10.7706 

8 0.741 17.802 0.7615 18.1839 0.7794 14.2643 0.7977 13.7637 0.7892 12.7831 0.8011 9.0149 0.832 8.7076 0.8422 10.2345 0.8508 11.8338 

9 0.7381 18.2054 0.7612 20.3299 0.7791 14.283 0.7974 15.1283 0.7882 13.4542 0.8007 9.2995 0.82299 8.9213 0.8417 10.4616 0.8487 15.1821 

10 0.7381 18.2054 0.7612 20.3299 0.7791 14.283 0.7974 15.1283 0.7882 13.4542 0.8005 9.2995 0.8299 8.9213 0.8417 10.4616 0.8487 15.1821 

15 0.7379 18.9099 0.7571 21.964 0.7739 15.8422 0.7955 17.6079 0.7717 17.6998 0.8001 10.7151 0.819 9.988 0.8376 11.6139 0.8459 15.244 

20 0.7215 19.4074 0.7515 23.3729 0.7688 16.0428 0.7935 20.8849 0.7126 18.0746 0.7983 13.7151 0.8179 9.9895 0.8315 12.1173 0.8322 15.2724 

25 0.7215 19.4074 0.7515 23.3729 0.7688 16.0428 0.7935 20.8849 0.7126 18.0746 0.7983 13.7151 0.8179 9.9895 0.8315 12.1173 0.8322 15.2724 

30 0.7129 20.9358 0.7511 24.3175 0.531 21.2428 0.7931 20.8979 0.706 24.7401 0.7966 15.4405 0.8178 11.5769 0.8315 13.1644 0.831 15.5478 

35 0.7129 20.9358 0.7511 24.3175 0.7531 21.2428 0.7931 20.8979 0.706 24.7401 0.7966 15.4405 0.8178 11.5769 0.8315 13.1644 0.831 15.5478 

40 0.7129 20.9356 0.7511 24.3175 0.7531 21.2428 0.7931 20.8979 0.706 24.7401 0.7966 15.4405 0.8178 11.5769 0.8315 13.1644 0.831 15.5478 

45 0.7129 20.9358 0.7511 24.3175 0.7531 21.2428 0.7931 20.8979 0.706 24.7401 0.7966 15.4405 0.8178 11.5769 0.8315 13.1644 0.831 15.5478 

50 0.7129 20.9358 0.7511 24.3175 0.7531 21.2428 0.7931 20.8979 0.706 24.7401 0.7966 15.4405 0.8178 11.5769 0.8315 13.1644 0.831 15.5478 
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Table 2. EIWD constants for Analysis of Means (1-α) = 0.95 

n 2 3 4 5 6 7 8 9 10 

K=1 0.7941 4.0607 0.8263 3.921 0.8527 3.7232 0.8656 3.5441 0.8781 3.5663 0.8902 3.2467 0.899 3.2957 0.9112 3.1422 0.9152 3.0465 

2 0.775 5.4802 0.8072 5.1646 0.8323 4.689 0.8476 4.4461 0.8594 4.5305 0.8738 4.1083 0.8815 4.112 0.892 3.9531 0.8978 3.7166 

3 0.7674 6.329 0.8008 6.1087 0.8226 5.3041 0.8388 5.0572 0.8529 5.2558 0.8677 4.678 0.8756 4.6904 0.8837 4.5594 0.8906 4.3053 

4 0.7632 7.3312 0.7947 6.8763 0.8178 5.8916 0.8329 5.6529 0.8458 6.0606 0.8606 5.0266 0.867 5.1182 0.8798 4.9701 0.8862 4.6426 

5 0.7586 8.5868 0.7909 7.6462 0.8115 6.2971 0.8297 6.2063 0.8418 6.362 0.8564 5.4593 0.8635 5.4436 0.8763 5.2858 0.8829 4.9564 

6 0.7558 9.3438 0.7871 8.3216 0.8076 6.7624 0.8248 6.9417 0.8364 6.7428 0.8514 5.7172 0.859 5.721 0.8745 6.0099 0.8807 5.2709 

7 0.7545 10.2224 0.7832 8.8086 0.8046 7.4056 0.8225 7.2909 0.8333 7.2214 0.8474 5.8261 0.855 5.9438 0.8718 6.2709 0.8769 5.5379 

8 0.7537 10.7829 0.7804 9.2031 0.8016 7.5626 0.8188 7.5891 0.8314 7.5664 0.8451 6.0968 0.8527 6.2275 0.8698 6.5247 0.8075 5.7217 

9 0.7529 11.8022 0.7796 9.4659 0.7082 7.7623 0.8153 7.8844 0.8297 7.6355 0.8442 6.3142 0.8493 6.4051 0.8663 6.7763 0.8726 5.7512 

10 0.7515 12.1252 0.7772 10.4534 0.7936 8.047 0.8146 8.1949 0.8264 8.0197 0.8428 6.5779 0.847 6.6057 0.8652 7.0007 0.8683 5.8563 

15 0.7477 13.5328 0.7742 12.3753 0.7882 8.959 0.8102 9.4166 0.8165 8.7222 0.8372 7.1838 0.8418 7.3313 0.8599 7.7311 0.8638 6.9381 

20 0.7444 15.3688 0.7703 14.6718 0.7847 11.7961 0.8014 10.587 0.8095 10.0064 0.8274 7.5231 0.8382 8.1438 0.8551 8.525 0.8594 7.7041 

25 0.7435 16.0388 0.7686 15.0332 0.784 12.1866 0.8994 11.6186 0.8009 10.6796 0.819 7.895 0.8343 8.3396 0.8519 8.9115 0.8552 7.762 

30 0.7423 16.7814 0.7664 15.7381 0.7835 13.6194 0.7983 12.4435 0.7978 11.6238 0.8143 8.2747 0.8332 8.5494 0.848 9.8047 0.8529 8.0099 

35 0.7423 17.0339 0.7649 16.3532 0.7834 14.2467 0.7981 13.6032 0.9972 11.8114 0.8128 8.6193 0.8327 8.6157 0.8474 10.0953 0.852 10.7706 

40 0.741 17.802 0.7615 18.1839 0.7794 14.2653 0.7077 13.7637 0.7892 12.7831 0.8127 9.0419 0.832 8.7076 0.8422 10.2345 0.8508 11.8338 

45 0.7381 18.2054 0.7612 20.3299 0.7791 14.283 0.7074 15.1283 0.7882 13.4542 0.8074 9.2995 0.8299 8.9213 0.8417 10.4616 0.8487 15.1821 

50 0.7381 18.2054 0.7612 20.3299 0.7791 14.283 0.7074 15.1283 0.7882 13.4542 0.8074 9.2995 0.8299 8.9213 0.8417 10.4616 0.8487 15.1821 
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Table 3. EIWD contants for Analysis of Means (1-α) = 0.90 

n 2 3 4 5 6 7 8 9 10 

K=1 0.8207 3.1439 0.8507 3.0643 0.8747 2.8686 0.8884 2.8081 0.9009 2.8144 0.9106 2.6946 0.9203 2.683 0.9333 2.6097 0.9393 2.5452 

2 0.7948 4.0405 0.8273 3.8662 0.8535 3.7037 0.8669 3.5245 0.8797 3.5473 0.8916 3.231 0.8996 3.2644 0.9122 3.1322 0.9166 3.0297 

3 0.7829 4.7446 0.8159 4.4776 0.8423 4.2086 0.8564 4.0456 0.8677 4.0249 0.8808 3.7055 0.8899 3.7427 0.8987 3.5165 0.9067 3.4153 

4 0.7751 5.3889 0.8081 5.1046 0.8334 4.6523 0.848 4.4284 0.8597 4.5185 0.8744 4.0891 0.8816 4.0871 0.8924 3.9403 0.8983 3.6651 

5 0.7722 5.9092 0.8036 5.5382 0.8276 5.0065 0.8431 4.719 0.8555 4.7805 0.8711 4.3742 0.8792 4.3679 0.8879 4.272 0.8937 3.8818 

6 0.7679 6.2867 0.8012 6.0135 0.823 5.2593 0.8397 5.0092 0.8531 5.1531 0.8689 4.6361 0.8768 4.6151 0.8846 4.5122 0.8911 4.2533 

7 0.7651 6.6925 0.7975 6.3767 0.8206 5.6092 0.8359 5.365 0.8483 5.5318 0.864 4.8422 0.8722 4.9221 0.8823 4.7102 0.8886 4.4534 

8 0.7634 7.1949 0.7952 6.8338 0.8179 5.8424 0.8335 5.632 0.8462 6.0161 0.8609 4.9768 0.8672 5.0451 0.8813 4.8553 0.8864 4.6221 

9 0.7608 7.7843 0.7931 7.247 0.8152 6.0656 0.8321 5.8266 0.8447 6.1772 0.8595 5.1775 0.8655 5.2238 0.8784 5.0726 0.8858 4.7795 

10 0.759 8.5822 0.7911 7.6262 0.8115 6.2321 0.8299 6.184 0.8419 6.3334 0.8566 5.428 0.8636 5.3649 0.8765 5.2816 0.8829 4.9301 

15 0.7545 10.3936 0.7826 8.8886 0.8042 7.4629 0.8197 7.4193 0.8329 7.2451 0.846 5.8798 0.8546 6.1307 0.8709 6.3524 0.8762 5.5874 

20 0.7517 12.1146 0.7781 10.0787 0.7936 7.9694 0.8148 8.1128 0.8275 8.0021 0.8441 6.4113 0.8484 6.5167 0.8655 6.9735 0.8697 5.8004 

25 0.7498 12.3703 0.7749 11.5798 0.7898 8.6683 0.8117 8.8083 0.8214 8.4752 0.8406 6.8994 0.8451 6.7271 0.8629 7.0841 0.8657 6.304 

30 0.7477 13.5328 0.7742 12.3753 0.7882 8.959 0.8102 9.4166 0.8165 8.7222 0.8372 7.1838 0.8418 7.3313 0.8599 7.7311 0.8638 6.9381 

35 0.7464 14.1094 0.7714 13.2931 0.7855 9.6102 0.8061 9.8299 0.8141 9.2662 0.8366 7.2977 0.8403 7.9112 0.8588 8.048 0.8614 7.3499 

40 0.7454 15.0833 0.7708 14.4488 0.7851 11.4772 0.8032 10.4716 0.8096 9.3923 0.8282 7.5008 0.8385 8.0897 8.572 8.0866 0.8598 7.5338 

45 0.744 15.3698 0.7687 14.7708 0.7843 11.82 0.7995 10.735 0.8068 10.656 0.8206 7.5989 0.836 8.2019 0.8543 8.8393 0.8555 7.7421 

50 0.7435 16.0388 0.7686 15.0332 0.784 12.1866 0.7994 11.6186 0.8009 10.6796 0.819 7.895 0.8343 8.3396 0.8519 8.9115 0.8552 7.762 

 

 



 

 

3. Illustration 

Example 1: Consider the following data from 25 observations on metal product 

manufacturing that point to variances in iron content of raw materials supplied by 

five different vendors. Each of the five suppliers had five ingots chosen at random. 

The iron determinations on each ingot are listed in percent by weight in the table 

below. 

Supplier 

1 2 3 4 5 

3.46 

3.48 

3.56 

3.39 

3.40 

3.59 

3.46 

3.42 

3.49 

3.50 

3.51 

3.64 

3.46 

3.52 

3.49 

3.38 

3.40 

3.37 

3.46 

3.39 

3.29 

3.46 

3.37 

3.32 

3.38 

Example 2: Three battery bands are being investigated. The three brands' lifespan 

lives (in weeks) are thought to differ. The following are the findings of testing five 

batteries from each brand. At a 5% level of significance, see if the lifespan of these 

two brands of batteries differ. 

Weeks of 

Life 

Brand1 100 96 92 96 92 

Brand2 76 80 75 84 82 

Brand3 108 100 96 98 100 

Example 3: Four catalysts are being studied to see if they can influence the 

concentration of one component in a three-component liquid mixture. The 

concentrations below were obtained. At a 5% level of significance, see if the four 

catalysts have the same effect on the concentration. 

Catalyst 

1 58.2 57.2 58.4 55.8 

2 56.3 54.5 57 55.3 

3 50.1 54.2 55.4 54.9 

4 52.9 49.9 50 51.7 

The following table summarises the goodness of fit of data in all three situations as 

demonstrated by the Q-Q plot (correlation coefficient), which reveals that EIWD is a 

better model, displaying a significant linear relationship between sample and 

population quantiles. 

  Example 1 Example 2 Example 3 

EIWD 0.9167 0.8296 0.8223 

Normal 0.2067 0.4149 0.4447 

We estimated the decision limits for the Normal and EIWD populations using these 

observations in the data as a single sample and presented them in Tables 4 and 5, 

respectively. 
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Figure 2. QQ-plots for the data in the illustrated examples 
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Table 4. Normal Distribution 

 [LDL, UDL] 
No. of Counts 

In P = in/k Out Out/k 

Example 1 

n=5, k=5, α = 0.01 
[3.517,3.879] 3 0.6 2 0.4 

Example 2 

n=5, k=3, α = 0.05 
[87.82,95.52] 2 0.7 1 0.3 

Example 3 

n=4, k=4, α = 0.10 
[26.14,82.84] 2 0.5 2 0.5 

 

Table 5. EIWD 

 [LDL, UDL] 
No. of Counts 

In P = in/k Out Out/k 

Example 1 

n=5, k=5, α = 0.01 
[2.7560, 40.0562] 5 1 0 0 

Example 2 

n=5, k=3, α = 0.05 
[76.8900, 463.5768] 3 1 0 0 

Example 3 

n=4, k=4, α = 0.10 
[45.3994, 253.4340] 4 1 0 0 

 

4. Summary & Conclusions 

The number of homogeneous means for each data set is 3, 2, and 2, respectively, 

according to the normal distribution. The number of individuals that are not 

homogeneous is 2, 1, and 2. When the ANOM tables of our model (EIWD) are 

applied for the identical data sets, the number of homogeneous means is 5, 3, and 4, 

respectively, with no deviation of any mean from homogeneity. Thus, using the 

normal model resulted in homogeneity for some means and variance for others, 

indicating that those means may be rejected. This decision is valid if the data fits the 

Normal distribution effectively. As a comparison, the Q-Q plot has already proved 

that EIWD is a superior model than Normal, as evidenced by the Q-Q plot 

correlation coefficient of each data set with Normal as well as EIWD separately. As 

a result, we assumed that the decision process of the Normal distribution would be 

related with increased uncertainty. As a result, utilising EIWD (Table 5) to achieve 

homogeneity is a better option than using the Normal, ANOM technique to achieve 

heterogeneity. 
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