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In the present study, we propose a new estimator for population mean using Kadilar 

and Cingi (2005) estimators using two auxiliary variables. The results for the mean 

square error of the introduced estimator in this article are find for the first order of 

approximation. The mean square error’s results have also been checked through 

numerical illustration. It is observed that our proposed estimator is having less mean 

square error than the other estimators.  

 

Keywords: Mean square error (MSE), Auxiliary variables, Ratio estimator and 
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1. Introduction 

In statistics, we are interested to know the behavior of the population based on a 

sample. Sample results cannot be accurate as the population results. Every time there 

is a difference between the results of sample and the results of population. 

Throughout this paper, we are trying to minimize this mean square error. For this we 

have proposed an estimator using auxiliary information for two variables. Our target 

is to find Mean square errors of some estimators which is already given in literature, 

is always more than our proposed estimator.  

The auxiliary variable’s information are effectively used to increase the efficiency of 

the estimator of the population mean. Ratio, product, and regression estimators are 

utilized in many conditions, see for example Cochran (1977) and Murthy (1967) 

Modified ratio estimators are developed to achieve further improvements on the ratio 

estimator with known parameters of the auxiliary variable, which include Sisodia & 

Dwivedi (1981) with known Co-efficient of Variation, Singh et. (2004) with the 

known Skewness, Subramani and Kumarapandiyan (2012) with the known median 

and its linear combinations with the other known parameters. The given article is 
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dealing with an improved regression estimator with known correlation coefficient 

and skewness for two auxiliary variables. 

We have Ratio estimator and regression estimators for two auxiliary variables 

respectively given in (1) and (2). Kadilar and Cingi (2005) introduced an estimator 

given in (3). 

t1 = y̅ (
X̅

x̅
) (

Z̅

z̅
)                                     (1) 

t2 = y̅ + b1(X̅ − x̅) + b2(Z̅ − z̅)                            (2) 

t3 = y̅ (
X̅

x̅
)

α1

(
Z̅

z̅
)

α2

+ b1(X̅ − x̅) + b2(Z̅ − z̅)                                                             (3) 

The mean squared error of t1, t2, and t3 after taking first order of approximation is 

hereby 

MSE(t1) = Y̅2 (
1−f

n
)[Cx

2 + Cy
2 + Cz

2 − 2ρxyCxCy − 2ρyzCyCz + 2ρxzCxCz] 

MSE(t2) = (
1−f

n
) [Y̅2Cy

2 + b1
2X̅2Cx

2 + b2
2Z̅2Cz

2 + 2b1b2X̅Z̅ρxzCxCz −

2X̅Y̅b1ρxyCxCy − 2Y̅Z̅b2ρyzCyCz] 

MSE(t3) = (
1−f

n
) [α1

2(Y̅2Cx
2) + α2

2(Y̅2Cz
2) + 2α1α2(Y̅2ρxzCxCz) −

2α1(Y̅2ρxyCxCy −   Y̅B1X̅Cx
2 − Y̅B2Z̅ρxzCxCz) − 2α2(Y̅2ρyzCyCz − Y̅B2Z̅Cz

2 −

Y̅B1X̅ρxzCxCz)   +  (B1
2X̅2Cx

2 + B2
2Z̅2Cz

2 + 2𝐵1B2X̅Z̅ρxzCxCz) + (Y̅2Cy
2 −

2Y̅B1X̅ρxyCxCy −  2Y̅B2Z̅ρyzCyCz)] 

 

2. The proposed estimator 

Using (1), (2) and adapting Kadilar and Cingi’s (3) estimator for two auxiliary 

variables 

takm = y̅ (
X̅+θ1

x̅+θ1
)

α1

(
Z̅+θ2

z̅+θ2
)

α2

+ b1(X̅ − x̅) + b2(Z̅ − z̅)                      (4) 

To find the Mean square error (MSE) of  takm up to the first order of approximation, 

we have 

y̅ = Y̅(1+e0), x̅ = X̅(1+e1), z̅ = Z̅(1+e2) 

e0 =  
y̅

Y̅
− 1, e1 =  

x̅

X̅
− 1, e2 =  

z̅

Z̅
− 1 

E(e0) = 0, E(e1) = 0, E(e2) = 0 

E(e0
2) = (

1−f

n
) Cy

2, E(e1
2) = (

1−f

n
) Cx

2, E(e2
2) = (

1−f

n
) Cz

2, 

 E(e0e1) = (
1−f

n
) ρxyCxCy, E(e0e2) = (

1−f

n
) ρyzCyCz, E(e1e2) = (

1−f

n
) ρxzCxCz 
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b1 =
syx

sx
2  and b2 =

syz

sz
2  , where syx and syz are the sample covariances between y and 

x and between z respectively. 

Using above notations, we get 

takm = Y̅(1+e0) (
X̅+θ1

X̅(1+e1)+θ1
)

α1

(
Z̅+θ2

Z̅(1+e2)+θ2
)

α2

+ b1(X̅ − X̅ − X̅e1) + b2(Z̅ − Z̅ −

Z̅e2) 

takm= Y̅(1+e0) (
X̅+θ1

X̅+X̅e1+θ1
)

α1

(
Z̅+θ2

Z̅+Z̅e2+θ2
)

α2

− b1X̅e1 − b2Z̅e2 

takm  = Y̅(1+e0) (
X̅+θ1

X̅+θ1[1+
X̅e1

X̅+θ1
]
)

α1

(
Z̅+θ2

Z̅+θ2[1+
Z̅e2

Z̅+θ2
]
)

α2

− b1X̅e1 − b2Z̅e2 

Let k1 =
X̅

X̅+θ1
 and k2 =

Z̅

Z̅+θ2
 , θ1and θ2are known parameters. 

takm= Y̅(1+e0) (
1

1+k1e1
)

α1

(
1

1+k2e2
)

α2

− b1X̅e1 − b2Z̅e2 

takm  = Y̅(1+e0) (1 + k1e1)−α1(1 + k2e2)−α2 − b1X̅e1 − b2Z̅e2 

takm= Y̅(1+e0) [1 − α1k1e1 +
α1(α1+1)

2!
k1

2e1
2] [1 − α2k2e2 +

α2(α2+1)

2!
k2

2e2
2] −

b1X̅e1 −  b2Z̅e2 

takm  = Y̅(1+e0) [1 − α1k1e1 +
α1(α1+1)

2!
k1

2e1
2 − α2k2e2 + α1α2k1k2e1e2 +

α2(α2+1)

2!
k2

2e2
2] −   b1X̅e1 − b2Z̅e2 

takm  = Y̅ [1 − α1k1e1 +
α1(α1+1)

2!
k1

2e1
2 − α2k2e2 + α1α2k1k2e1e2 +

α2(α2+1)

2!
k2

2e2
2 +

e0 − α1k1e0e1−α2k2e0e2] − b1X̅e1 − b2Z̅e2 

Subtracting �̅� from both sides, 

(takm  − Y̅) = Y̅[e0 − α1k1e1 − α2k2e2] − [b1X̅e1 − b2Z̅e2] 

Squaring both sides and taking expectation, we get 

E(takm − Y̅)2 = E{Y̅[e0 − α1k1e1 − α2k2e2] − [b1X̅e1 − b2Z̅e2]}2 

MSE(takm) = E{Y̅2[e0 − α1k1e1 − α2k2e2]2 + [b1X̅e1 − b2Z̅e2]2 − 2Y̅[e0 −
α1k1e1 −  α2k2e 2][b1X̅e1 − b2Z̅e2]} 

MSE(takm) = E[Y̅2(e0
2 + α1

2k1
2e1

2 + α2
2k2

2e2
2 − 2α1k1e0e1 + 2α1α2k1k2e1e2 −

 2e0α2k2e2) + (b1
2X̅2e1

2 + b2
2Z̅2e2

2 + 2b1b2X̅Z̅e1e2) − 2Y̅(b1X̅e0e1 +  b2Z̅e0e2 −
b1α1k1X̅e1

2 − b2α1k1Z̅e1e2 − b1α2k2X̅e1e2 − b2α2k2Z̅e2
2)] 

After solving up to the first order of approximation the MSE of tak is given below 

(takm) ==  Y̅2fCy
2 + α1

2A1 + α2
2A2 + 2α1α2A3 − 2α1A4 − 2α2A5 + A6                 (5) 

where, A1 = Y̅2k1
2fCx

2 
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A2 = Y̅2k2
2fCz

2 

A3 = Y̅2k1k2fρxzCxCz 

A4 = Y̅2k1fρxyCxCy − Y̅B1k1X̅fCx
2 −  Y̅B2k1fZ̅ρxzCxCz 

A5 = Y̅2k2fρyzCyCzY̅B2k2Z̅fCz
2 − Y̅B1k2X̅fρxzCxCz 

A6 = B1
2X̅2fCx

2 + B2
2Z̅2fCz

2 + 2B1B2X̅Z̅fρxzCxCz + Y̅2fCy
2 − 2Y̅B1X̅fρxyCxCy −

2Y̅B2Z̅fρyzCyCz  

Differentiating with respect to α1 and α2  

2α1A1 + 2α2A3 = 2A4                                                                                              (6) 

2α2A2 + 2α1A3 = 2A5                                                                                              (7) 

On solving equation (6) and (7), we get 

α1 =
A2A4 − A3A5

A1A2 − A3
2  and α2 =

A3A4 − A1A5

A3
2 − A1A2

 

 

3. Application 

The performance of the proposed improve regression estimator through ratio 

estimator are assessed with that of the sample mean and the existing ratio estimators 

for two different populations. The population 1 is taken from Singh & Chaudhary 

(1986) given in page 177 and population 2 is taken from taken from the Cingi & 

Kadilar (2009) given in page 117 is shown in Table 1. In first population area under 

wheat (1974) is our study variable, area under wheat (1971) is first variable and area 

under wheat (1973) is the second auxiliary variable. For the second population the 

population mean of the height of the fish is our study variable, the population mean 

of the length of the head is first variable and the population mean of the length of the 

fin is the second auxiliary variable. The results MSE values of different estimators is 

shown in Table 2. 

 

Table 1. Data Statistics 

Population I Population II 

N = 34 N = 25 

n = 20 n = 10 

�̅� = 208.88 �̅� = 14.3 

�̅� = 856.41 �̅� = 75.28 

�̅� = 199.44 �̅� = 6.82 

𝑆𝑥 = 150.22 𝑆𝑥 = 3.17 

𝑆𝑦 = 733.14 𝑆𝑦 = 17.27 

𝑆𝑧 = 150.22 𝑆𝑧 = 1.53 

𝜌𝑦𝑥= 0.45 𝜌𝑦𝑥= 0.99 

𝜌𝑦𝑧= 0.45 𝜌𝑦𝑧= 0.89 
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𝜌𝑥𝑧 = 0.98 𝜌𝑥𝑧 = 0.92 

𝐵1 = 2.19 𝐵1 = 2.60 

𝐵2 = 2.19 𝐵2 = 10.04 

𝛽21 = 2.91 𝛽21 = 4.26 

𝛽22 = 3.73 𝛽22 = 4.35 

𝛽12 = 1.28 𝛽12 = 0.86 

𝛽11 = 0.87 𝛽11 = 1.24 

 

Table 2. Results MSE values of different estimators 

Estimators 𝜽𝟏 𝜽𝟐 MSE 

(Population I) 

MSE 

(Population II) 

t1   25154.60 8.12 

t2   10976.42 4.87 

t3   8802.54 4.38 

 

takm 

𝜌𝑥𝑧 𝜌𝑥𝑧 8792.02 4.10 

𝛽22 𝛽22 8769.16 2.04 

 

4. Conclusion 

In the present paper, we have introduced an estimator for finding the population 

mean of study variable using available information of two auxiliary variables. From 

the results given in Table 2 we can have an idea that the introduced estimator takm is 

performing better than other estimators in literature under correlation coefficient and 

coefficient of skewness of auxiliary variables.  
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