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This article discusses the problem of estimating the unknown model parameters as 

well as prediction of future observations from inverse power Maxwell distribution. 

The maximum likelihood method is applied for estimating the model parameters 

using Newton-Rapson iterative procedures. The existence and uniqueness of 

maximum likelihood estimates are established using Cauchy-Schwartz inequality. 

Approximate confidence intervals are constructed using Fisher information matrix. 

Using independent gamma informative priors, the Bayes estimates of unknown 

model parameters are obtained under squared error and Linex loss functions. Two 

approximation techniques namely: Lindley’s approximation and Metropolis-Hastings 

within Gibbs sampler algorithm have been employed to derive the Bayes estimators 

and also to construct the associate highest posterior density credible intervals. Based 

on the informative (observed) sample, Bayesian prediction, predictive density, and 

predictive intervals are derived for future observation and decision. The performance 

of proposed methods are evaluated though a Monte Carlo simulation experiment. 

Two real-life datasets related to tax revenue and heath are incorporated to show the 

practical utility of proposed methodology in real phenomenon.  

 

Keywords: Inverse power Maxwell distribution; Bayesian estimation; Lindely’s 

approximation; Metropolis-Hasting algorithm; Bayes prediction; Coverage 

probability; Goodness-of-fit. 

 

  

1. Introduction 

The Maxwell distribution was first investigated by James Clerk Maxwell (1860) for 

describing the speed distribution of gas particles in a gas or gas mixture at a specific 

temperature. This distribution plays a fundamental role in understanding the kinetic 

theory of gases. The Maxwell distribution is an essential concept in statistical 

physics, as it forms the basis for understanding gas properties, including the 
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distribution of particle velocities, kinetic energy, and pressure in a gas. While the 

primary application of the Maxwell distribution is in the physics of gases, it has also 

found uses in statistical modeling outside of physics. For example, it can be used as a 

model for certain types of random variables where the spread of data has a bell-

shaped curve. However, its broader application in survival analysis contexts is less 

common compared to other probability distributions like the normal, gamma and 

Weibull distribution. 

The Inverse Maxwell distribution is a probability distribution used in statistics, 

particularly in modeling extreme value data. It is a specialized distribution that arises 

from the Maxwell distribution. The Inverse Maxwell distribution is valuable in 

situations where we want to understand extreme values and rare events. It is 

particularly useful when dealing with data that exhibits a propensity for extreme 

values or outliers. It allows statisticians and data analysts to model and understand 

the behavior of these extreme values in a probabilistic manner. Statistically, the 

distribution is relevant in various applications where the focus is on the tails of 

distributions and understanding rare events. This distribution is part of the larger 

family of extreme value distributions and plays a crucial role in extreme value 

theory, which is concerned with the statistical analysis of extreme events. 

The power transform is a very flexible and widely used method for improving the 

goodness of fit. It is specially used to stabilize the variance and reduce the skewness 

and kurtosis of the parent distribution. Recently, Al-Kzzaz and EL-Monsef [4] 

(2021) initiated the inverse power Maxwell distribution (IPMD) with some statistical 

characteristics and goodness of fit. The following are the main features of IPMD. 

• It exhibits an alternative life time sub-models. 

• It indicates an upside-down bathtub-shaped hazard rate, a phenomenon that is 

common to most real-life systems and is highly helpful in survival analysis. 

• It can be applied in a variety of domains, including survival analysis and 

biomedical investiga- tions, and is thought to have a smooth growing failure rate. 

It is particularly ideal for fitting positive data with a longer right tail. 

The cumulative distribution function (cdf) and probability distribution function (pdf) 

of two parameter inverse power Maxwell distribution (IPMD) are respectively given 

by 

                                                    (1) 

and 

                       (2) 
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where θ is scale parameter and η is shape parameter of distribution and 

is the incomplete gamma function in upper. The hazard 

rate function of IPMD is given by 

                                 (3) 

where  represents the lower incomplete gamma function. The plot of pdf 

and hazard rate function of IPMD are depicted in the figures 1 and 2 respectively. It 

is observed that the IPMD has an upside-down bathtub-shaped hazard rate function 

that occurs in the majority of real-world scenarios and is extremely helpful in 

reliability theory. As a result, it is appropriate for fitting the positively skewed data 

and applicable to numerous study areas, such as biomedical engineering and survival 

analysis. 

Estimation of parameters is very challenging problems in statistical inference. There 

are two primary approaches to the estimation of parameters: classical (frequentist) 

and Bayesian. These approaches differ in their underlying philosophies and 

methodologies for parameter estimation. In classical statistics, maximum likelihood 

estimation (MLE) is a commonly and wildly used method for estimating parameters. 

MLE seeks to find the parameter values that maximize the likelihood function, which 

measures the goodness of fit of a statistical model to observed data. MLE is unbiased 

and asymptotically efficient, making it a popular choice for point estimation. On the 

other hand, Bayesian parameter estimation is a modern approach to statistical 

inference that combines prior knowledge with observed data to make informed 

decisions about model parameters. Unlike traditional frequentist methods that rely 

solely on data, Bayesian estimation incorporates prior beliefs or information into the 

analysis, allowing for a more robust and flexible modeling framework. At its core, 

Bayesian parameter estimation operates on the principle of conditional probability. It 

calculates the probability of model parameters given both prior knowledge and 

observed data. The central idea is to update our beliefs about parameters as we 

collect more information, allowing for dynamic and continuous learning. 

Although a lot of literature is available on the Bayes estimation for different lifetime 

models including [10], [30] and [5] obtained the Bayes estimates of Binomial 

parameters using asymmetric loss function. Tyagi and Bhattacharya (1989) [26] first 

studied the estimation of Maxwell’s velocity distribution function under the Bayes 

approach. Bekker and Roux (2005) [6] discussed the reliability characteristics of 

Maxwell distribution under the Bayesian approach. Under various loss functions. 

Ahamad and Fahad (2008) [2] discussed the Bayes estimates of Rayleigh distribution 

using record value. Dey and Maiti (2010) [8] proposed Bayesian estimation for the 

parameters of the Maxwell distribution. Dey et al. (2013) [7] discussed Maxwell 

distribution in Bayesian context under conjugate prior. Sultan and Ahmad (2015) 

[24] estimated the parameters of Topp-Leone distribution using Bayesian approach. 
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Ratogi and Meroci (2018) [20] obtained the Bayes estimators of three parameters 

Weibull-Rayleigh distribution. Sindhu et al. (2019) [22] have estimated the 

parameters and reliability of the inverted Maxwell mixture model using Bayesian 

approach. Tomaer and Panwar (2020) [25] reviewed the inverse Maxwell 

distribution and obtained the Bayes estimates under Jeffery and conjugate prior. Rao 

and Pandey (2021) [20] investigate the Bayes estimator for exponentialted 

transmuted Rayleigh distribution. Fuad S. Al-Duais [11] (2022) introduced a new 

weighted general loss function and derived the Bayes estimators for Weibull model 

under complete sample. Yilmaz and Kara [29] (2022) derived Bayes estimators of 

parameters and reliability characteristics of inverse Weibull distribution under 

different loss functions. Nasir Abbas (2023) [1] discussed the Bayesian and non 

Bayesian estimation for Bivariate geometric distribution. 

Statistical prediction for future observation based on some known prior information 

is treated as a generic problem in various branches including bio-medical, economic 

data, finance and industrial experiment, etc. Many authors have discussed the 

Bayesian prediction under the complete sampling, including Upadhyay and Pandey 

(1989) [27] for the exponential distribution, Pradhan and Khundu (2012) [18], Dey 

and Dey (2012) [9] for Rayleigh distribution. 

In this study our primary aim is to focused on the parametric inference of the IPMD 

using both classical and Bayesian techniques under complete sample. First, the 

maximum likelihood estimation method is applied to obtain the unknwon model 

parameters using Newton-Rapson iterative procedures. Using the asymptotic 

normality criteria of the MLEs, approximate confidence intervals (ACIs) have been 

constructed. Bayes estimator have been derived under Lindley’s and Markov Chain 

Monte Carlo techniques. In addition, highest posterior density (HPD) credible 

intervals are obtained using MCMC samples. Based on the informative (observed) 

sample, Bayesian prediction, predictive density and predictive interval are derived 

for future observation and decision. Further, a Mote Carlo simulation experiment has 

been carried out to judge the impact of different estimation procedures based on 

mean square error (MSE). 

The rest of the this paper is arrange as follows. In Section 2, the Maximum 

likelihood estimators (MLEs) of the unknown parameters including approximate 

confidence interval and Bayesian estimation together with highest posterior density 

(HPD) credible interval are derived. Section 3 devoted to point prediction and 

interval prediction for future failure based on observed sample. To judge the 

efficiency of the estimation techniques, a simulation study is performed in section 4. 

In section 5, two real data sets are analysed and the results are compared with inverse 

power Maxwell distribution (IPMD). At last, the paper is concluded in section 6. 
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Figure 1: Probability density function of IPMD with different combinations of 
parameters 

 

 

Figure 2: Hazard rate function of IPMD with different combinations of 
parameters 

 

 

2. Estimation of the model parameters 

In this section, the unknown model parameters and associated confidence intervals of 

IPMD are obtained using MLE method and Fisher information matrix respectively. 

2.1 Maximum likelihood estimation 

Let x1, x2, ..., xn be the random sample of size n drawn from the inverse power 

Maxwell distribution (IPMD) with probability density function (2) then the 
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likelihood function, L(η, θ|x) is the joint density of the random sample x1, x2, ..., xn is 

given by 

                                 (4) 

Then the log likelihood function of L say l can be expressed as follows 

      (5) 

The existence and uniqueness of MLEs of the parameters η and θ are provided by the 

subsequent theorem. 

Theorem 2.1. Suppose that observation xi, (1 < i < n) comes from IPMD (2). Then 

the MLE of θ given η is obtained as 

                                                                                            (6) 

Proof. Taking the derivative of l(η, θ) with respect to θ and equating to zero, we have 

                                                                                     (7) 

On solving for θ we get 

                                                                                                (8) 

Moreover, since , which implies that θˆ is the local maximum of 

l(η, θ) for given η. Since there is no singular point of l(η, θ) and it consists of single 

critical point therefore, θ is the maximum of l(η, θ). Hence the MLE of θ given η is 

exists and unique. 

Furthermore, plugging into equation (5) one has a profile log-likelihood 

function of η i,e. l(η) as 

   (9) 

The MLE for the parameters η is established from the theorem below 
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Theorem 2.2. Suppose that observation xi, (1 < i < n) comes from IPMD (2). Then 

the MLE of η obtained from equation (9) uniquely exists which is derived from the 

following equation: 

                                                                   (10) 

Where  

Proof. On differentiating equation (9) and equating to zero we have the likelihood 

equation as follows 

                     (11) 

On simplifying we get 

                                     (12) 

In order to prove the existence of the MLE of η we must show the equation (12) has 

unique with respect to η. 

Let 

                                          (13) 

From the equation (13) it is observed that ϕ1(η) is decreasing function in η and 

and . On the other hand for the function ϕ2(η) using 

Cauchy-Schwartz inequality we have 

                                                        (14) 

 

which implies that ϕ2(η) increasing function of η. Moreover, since 

                                                                                                        (15) 

and 
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                                                                 (16) 

From equations (13), (14), (15) and (16) it is clear that the functions ϕ1(η), and ϕ2(η) 

have a unique intersection point; therefore, the MLE of η, as the root of the equation 

ϕ1(η) = ϕ2(η), exists and unique. 

2.2 Approximate confidence interval (ACI) 

This subsection focused on the construction of frequentest confidence intervals. The 

confidence interval 100(1 - τ )% can be derived for unknown parameters η and θ 

based on the asymptotic behavior of the MLEs ηˆ and θˆ. The MLEs (ηˆ, θˆ) 

asymptotic normal distribution with mean (η, θ) and variance-covariance matrix 

I−1(ηˆ, θˆ) under the certain regularity conditions, that is 

 

where  is the observed information matrix and defined as 

                                                    (17) 

and the second derivative of l(η, θ) can be obtained from the equation (5) as 

 

The expression of the equation (17) is known as variance and covariance matrix 

whose diagonal ele- ments represents the variance of ηˆ and θˆ while non-diagonal 

elements represent the covariance between the ηˆ and θˆ. Thus, the 100(1 - τ )% ACI 

of η and θ are obtained as  and  

, 

where  represents the upper th quantile for standard normal distribution. 

 

3. Bayesian estimation 

In this section, Bayesian approach is used to estimate the unknown parameters of 

IPMD using two different approximation techniques namely Lindley’s and 

Metropolis-Hastings algorithm under squared error loss functions (SELF) and linex 

loss functions (LLF). 
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3.1 Loss functions 

In Bayesian estimation, loss function plays a crucial role in decision-making and 

model selection. It quantifies the cost or loss associated with the choice of different 

models, parameter values, or decision actions. The goal is to select models or 

parameters that minimize the expected loss, making the decision process more 

rational and well-informed. The two main loss functions viz. squared error loss 

function (SELF) and linex loss function (LLF) functions are considered. The SELF is 

symmetric and LLF is asymmetric. If the ζˆ is the estimator of the parameters ζ then 

the SELF is given by 

                                                                                      (18) 

which provide equal penalty for overestimation as well as under estimation. This loss 

function may not be the best tool to utilise in certain situations. For instance, in stock 

market underestimation of market risk is worse than overestimation for investors. 

Furthermore, overestimation is more harmful than underestimation when evaluating 

the cure rate based on a particular treatment. In these situations the linex loss 

function (see, Varian (1975) [28]) is useful and given by 

                                                               (19) 

Under the loss functions (18) and (19) the Bayes estimates can be expressed as 

follows 

                                                                                                 (20) 

and 

                                                                       (21) 

3.2 Prior information 

In Bayesian estimation, prior distribution play a dominant role. Note that if a suitable 

prior available regarding the unknown parameters, the informative priors are an 

appropriate way of incorporating the information into the model. In this study, the 

model parameters are not known, and also joint conjugate prior does not exist. 

Therefore independent gamma prior is suitable for this study because the gamma 

distribution is log concave function in the interval (0, ∞). Let the η and θ have two 

independent gamma prior distribution which are as follows 

                                                          (22) 

and 
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                                                 (23) 

where a1, b1, a2, b2 > 0 are hyper parameters. 

The joint prior density of η and θ can be expressed as follows 

                                                        (24) 

3.3 Posterior analysis 

The posterior distribution is obtained by combining (4) and (24), it is possible to 

express the joint posterior density function of η anf θ as 

    (25) 

Bayes estimators of η and θ under square error loss function (SELF) and LINEX loss 

function are given as follows 

                                                          (26) 

                                                   (27) 

                                                              (28) 

and 

                                                         (29) 

Since the aforementioned equations cannot be analytically solved, therefore, 

Lindley’s approximation is employed for further analysis. 

3.4 Lindely approximation 

The Lindley’s approximation was first introduced by Lindley’s (1980) [13], which 

plays a significant role in Bayesian estimation. The beauty of this approximation is 

that it computes the Bayes estimate quite accurately without doing any numerical 

integration. 

Let v(η, θ) be the function of η and θ, then using the equation (12) the average value 

of v(η, θ) is given by 
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                                          (30) 

The Bayes estimator v(η, θ) is the solution of the above equation. Unfortunately, the 

Bayes estimator can not be obtained analytically because it involves the ratio of two 

integrals. In order to go through these challenges it is used Lindley’s approximation 

then E(u(θ, λ x)) can be approximated by vˆ(η, θ) (say) as 

    (31) 

where ρ(η, θ) is the logarithm of joint prior density, vηη is the second derivative of 

the function v(η, θ) with respect to η, which vˆηη  is the same expression as 

evaluated for v(ηˆ, θˆ).  Other notations are defined in similar way as 

 

where σij is the (i, j)th element of matrix  

The Bayes estimates under square error loss function (SELF) are obtained as If v(η, 

θ) = η, then vη = 1, vθθ = vθ = vηη = vθη = vηθ = 0. Thus, the Bayes estimator of η is 

expressed as follows 

    (32) 

If v(η, θ) = θ, then vθ = 1, vθθ = vθ = vηη = uθη = uηθ = 0. So, the Bayes estimator of θ 

is found as follows: 

    (33) 

If u(η, θ) = exp(−hη), vη = −h exp(−hη), uηη = h2 exp(−hη), uθ = vθθ = vηθ = vθη = 0. 

Hence, the Bayes estimator of θ under LINEX loss function is obtained as 
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                                                           (34) 

where 

 

If v(η, θ) = exp(−hθ), then uθ = −h exp(−hθ), vθθ = h2 exp(−hθ), vη = vηη = vηθ = 

uθη = 0. Thus, 

                                                            (35) 

where 

 

It is not possible to determine the credible interval using Lindley’s approximation.  

Therefore it is introduced the Metropolis-Hasting algorithm to acquired the credible 

interval in the next subsection. 

3.5 Metropolis-Hastings algorithm 

The Metropolis-Hastings within Gibbs (MH-within-Gibbs) sampler is a powerful 

Markov chain Monte Carlo (MCMC) algorithm used for drawing samples from 

complex probability distributions, especially in Bayesian statistics and statistical 

modeling. It combines elements of two important MCMC techniques: the 

Metropolis-Hastings algorithm and the Gibbs sampler. For more detail see 

Metropolis et al. (1953) [17], and Smith and Robert (1993) [23]. 

From equation (25), up-to normalising constant, the marginal posterior density of η 

given θ and data can be obtained as 

                (36) 

Similarly, up-to normalising constant, the full conditional distribution for θ given η 

and data is given by 

                                        (37) 
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It can be observed that, equation (37) follows a gamma density with shape parameter 

and scale parameter  Therefore, it is simple to create the 

sample of θ by gamma generating technique. Furthermore, the full conditional 

posterior distribution for η does not follows any well known distribution and it is 

difficult to sample directly by standard methods. Therefore, to compute Bayes 

estimates and associated HPD credible intervals, the M-H within Gibss sampler 

algorithm is used for this purpose. The following steps are considered for generating 

the sample from unknown posterior distribution based on the Metropolis-Hasting 

within Gibbs sampler approach 

Step 1: Set j = 1 and assume that η0 = η̂ and θ0 = θ̂. 

Step 2: Generate θj from π(θ|η, x) using Gibbs sampler algorithm. 

Step 3: Using the M-H algorithm, generate a posterior sample for ηj and from 

the conditional distributions π(ηj−1|θj, x) with normal proposal distribution N 

(ηj, var(η)). 

 

Step 4: Set j = j+1. 

Step 5: Repeat the steps 2-4, N times to extract samples (η1, θ1), (η2, θ2), ..., 

(ηN , θN ). 

Step 6: The Bayes estimator of the parameters η and θ under square error loss 

function (SELF) and LINEX loss function can be obtained form the following 

formula as 

                                                                                         (38) 

                                                                                        (39) 

                                           (40) 

and 
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− 

                                                 (41) 

where M is the burn-in period. 

Step 7: In order to build the HPD credible interval of η, first arrange η1, η2, ..., ηN 

in increasing order, as η(1), η(2), ..., η(N), then for arbitrary 0 < τ < 1, the 100(1 τ 

)% credible interval of η can be obtained as (η̂[k], η̂[k+N−(τN+1)) where k = 1, 2, ..., 

[Nτ ] and [z] represents the greatest integer less or equal to z. Hence, the credible 

interval is computed such that 

 

Similarly, the HPD credible interval of θ can be also derived. 

 

4. Prediction of future observation 

In this section, it is addressed point as well as interval prediction of future 

observation from IPMD under Bayesian paradigm. The Bayes prediction of unknown 

observable belongs to informative sample. Let z be the future observation 

independent of the given data x1, x2, ..., xn. Then the posterior predictive density of 

z for the given observed data, is defined as 

                                                            (42) 

Let us assume a future sample z1, z2, ..., zs with size s, independent of the observed 

sample x1, x2, ..., xn and let z(1) < z(2), ..., < z(r) <, ..., z(s) be the sample order statistics. 

Suppose it is interested in the predictive density of the future order statistic z(r) given 

the observed sample x1, x2, ..., xn. Then the probability density function of the rth 

order statistic in the future sample is represented by y(r)(z|η, θ) and expressed as 

                           (43) 

 

Let the predictive density of z(r) denoted as y∗(r)(z|η, θ), then 

                                         (44) 

Using the equation (43) we get 



 

BAYESIAN ESTIMATION AND PREDICTION FOR INVERSE POWER 

MAXWELL DISTRIBUTION WITH APPLICATIONS TO TAX REVENUE AND 

HEALTH CARE DATA 

 

16 

 

   (45) 

On simplifying 

    (46) 

Since the analytical solution of (46) is not possible. Therefore it is again used the 

Metropolis-Hasting within Gibbs sampler algorithm to approximate the solution. 

Suppose that {(ηi, θi), i = 1, 2, ..., N} is an MCMC sample obtained from π(ηi, θi|x) 

using M-H algorithm within Gibbs sampler algorithm described in the subsection 3.5 

then a simulation consistent estimator of y*
(r)(z|x) can be found as 

                                                           (47) 

Now, it is facile to obtained the predictive mean of the future r − th order lifetime, 

which is given by 

                                                         (48) 

Further the predictive density of z(r) is assumed to be represented as Y*
(r)(z|η, θ) and 

given by 

            (49) 

The simulation consistent estimator of Yr
∗(.|x) is found as follows 
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                                                                    (50) 

It is derived the two sided predictive interval of the rth order statistic Zr from the future 

observations Z(1), Z(1), ..., Z(s) of size s, independent of the observed sample {x1, x2, 

..., xn}. The two sided 100τ % symmetric predictive interval for Z(r), computed by 

solving the following two nonlinear equation equations for lower bound l and 

upper bound u. 

                                                                 (51) 

                                                                 (52) 

Since, the analytical solution is not possible therefore, it is proposed the following 

algorithm to obtain the solution to the equations (51) and (52). 

Step 1: Set an initial guess of v, say v˜, and set v = v˜. 

Step 2: Compute  using MCMC and sample 

obtained from the equations (23) and (24). 

Step 3: If then increase the value of v  by a fixed small number, say ϵ, 

otherwise, decrease the value of v by ϵ. 

Step 4: Repeat the steps 2 and 3, until  

where v may be l or u, and  

 

5. Simulation study 

In this section we investigate a comprehensive numerical simulation to assess the 

effectiveness of the proposed estimation procedures using R statistical software. The 

quality of the different estimators are evaluated based on the following measures. 

• Absolute bias (AB): The AB is defined as  where, ζi denotes 

parameters (η and θ) and ζˆi  denotes their estimates and N is the number of 

replications. The smaller value of AB indicate that the correlation between 

experimental data and prediction model is more precise. 

• Mean square error (MSE): The MSE is defined as . The lower 

value of the MSE indicates the better performance of the estimates. 

• Average length (AL): Average length of 100(1 - τ )% confidence intervals has 

been judged. The thinner length of AL represents the high performance of the 

intervals estimates. 
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• Coverage probability (CP): The probability of containing the true values of the 

parameters in between the intervals estimates. 

To generate the sample from IPMD we used inverse transformation technique. It is 

well known that in inverse transformation method, random numbers from a 

particular distribution are generated by solving the non-linear equation x = F−1(p) 

where F (x) is the cumulative distribution function of IPMD and p follows the 

uniform distribution in the interval (0,1) i.e. p ∼ u(0, 1). Following the same 

procedure for generation of random number from IPMD using inverse 

transformation technique 

                                                                    (53) 

In both the frequentest and Bayes methods, the sample sizes n = (30, 60, 90, 120) 

and the true value of shape parameter η = 0.5, 1 and scale parameter θ = 1.2, 2 are 

taken. In order to compute Bayes estimates two different loss functions namely; 

SELF and LLF have been used. Two independent the gamma distributions are 

considered for the prior distributions of η and θ. Here, the hyper- parameters for the 

combinations (η, θ) = (0.5, 1.2) and (η, θ) = (1, 2) are (a1, b1, a2, b2) = (1, 2, 6, 5) 

and (a1, b1, a2, b2) = (2, 2, 10, 5) respectively. To derive Bayes estimates Lindley 

approximation method and MCMC algorithm are simulated with 1000 replications. 

The 95% ACIs and HPD credible intervals for unknown parameters are also 

computed. The numerical results of different point and intervals estimates are 

presented in Tables 1-4. Further, prediction results of z4, z7 and z9 in future sample 

with sample size 10 based on the informative samples from IPMD are derived under 

the similar situation. In addition, the predictive mean, prediction intervals also 

constructed and tabulated in Table 5. The following interpretation may be read out 

from these tables: 

• As the effective sample size n grows the AB and MSE of all estimates decrease. 

This trends indicates that the estimated results are more precise when sample size 

become larger. 

• In terms of ABs and MSEs, Bayes estimates have superior performance than the 

MLEs. 

• For the shape parameter η, the performance of LLF (h = 0.5) under Lindely 

method outperform than the MCMC approach and following mathematical 

relation can be establish for ABs and MSEs: 

MLEη > MCMCη > Lindleyη. 

• For the scale parameter θ, the performance of LLF (h = 0.5) under MCMC 

technique is better than the Lindely method and following mathematical relation 

can be establish for ABs and MSEs: 
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MLEθ > Lindleyθ > MCMCθ. 

• With the increase of effective sample size n, the AL of the confidence intervals 

decreases, which suggests that the estimation is more precise. However, no 

specific trends of CP have been seen throughout these numerical experiment. 

• HPD intervals are preferable to ACIs in terms of ALs and CPs. 

• From Table 5, it has been investigated that the interval lengths of future 

observation become wider as the r increases. 

 

Table 1. The average estimates (AEs) (First row), absolute biases (ABs), and mean 

square errors (MSEs) (third row) of the MLEs and Bayes estimators under SELF and 

LLF. The true values of η and θ are 0.5 and 1.2. 

   Lindley MCMC 

 n MLE SELF LLF SELF LLF 

    h = -0.5 h = 0.5  h = -0.5 h = 0.5 

 

η 

 

 

θ 

 0.5246 0.4998 0.5009 0.4987 0.5185 0.5192 0.5179 

 0.05915 0.04820 0.04829 0.04814 0.05335 0.05359 0.05312 

30 0.006141 0.003892 0.003920 0.003869 0.004948 0.004996 0.004900 

1.206 1.303 1.310 1.296 1.200 1.204 1.196 

 0.1655 0.1341 0.1409 0.1270 0.1209 0.1210 0.1210 

 0.04332 0.02931 0.03210 0.02661 0.02283 0.02297 0.02274 

 

η 

 

 

θ 

 0.5097 0.4993 0.4999 0.4987 0.5079 0.5082 0.5076 

 0.04183 0.03830 0.03836 0.03826 0.03998 0.04005 0.03991 

60 0.002857 0.002326 0.002336 0.002318 0.002590 0.002602 0.002579 

1.204 1.254 1.258 1.249 1.202 1.204 1.199 

 0.10883 0.09869 0.10107 0.09634 0.09215 0.09224 0.09211 

 0.01826 0.01550 0.01625 0.01478 0.01305 0.01310 0.01301 

 

η 

 

 

θ 

 0.5097 0.5068 0.5002 0.5000 0.5056 0.5072 0.5065 

 0.03463 0.03248 0.03252 0.03244 0.03350 0.03355 0.03346 

90 0.001894 0.001646 0.001652 0.001641 0.001776 0.001782 0.001771 

1.204 1.237 1.240 1.234 1.202 1.204 1.201 

 0.09201 0.08703 0.08840 0.08571 0.08210 0.08222 0.08200 

 0.01326 0.01183 0.01219 0.01149 0.01056 0.01060 0.01054 

 

η 

 

 

θ 

 0.5047 0.4998 0.5001 0.4995 0.5063 0.5065 0.5061 

 0.02883 0.02767 0.02769 0.02766 0.02834 0.02838 0.02830 

120 0.001316 0.001191 0.001194 0.001188 0.001277 0.001282 0.001273 

1.204 1.229 1.231 1.226 1.195 1.197 1.192 

 0.08282 0.07882 0.07961 0.07805 0.07522 0.07496 0.07553 

 0.010676 0.009778 0.009986 0.009579 0.008727 0.008683 0.008786 

 

Table 2. The average estimates (AEs) (First row), average Biases (ABs), and mean 

square errors (MSEs) (third row) of the MLEs and Bayes estimators under SELF and 

LLF. The True values of η and θ are 1 and 2. 

   Lindley MCMC 

 n MLE SELF LLF SELF LLF 

    h = -0.5 h = 0.5  h = -0.5 h = 0.5 

 

η 

 

 1.049 1.035 1.041 1.030 1.037 1.040 1.035 

 0.1251 0.1159 0.1178 0.1142 0.1169 0.1178 0.1160 

30 0.02666 0.02245 0.02333 0.02167 0.02286 0.02329 0.02246 
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θ 

2.056 2.021 2.043 1.999 2.023 2.033 2.013 

 0.2459 0.1797 0.1857 0.1771 0.1933 0.1955 0.1914 

 0.10564 0.05210 0.05586 0.05047 0.06203 0.06395 0.06035 

 

η 

 

 

θ 

 1.028 1.023 1.026 1.020 1.023 1.025 1.022 

 0.08426 0.08140 0.08212 0.08073 0.08153 0.08188 0.08120 

60 0.01191 0.01102 0.01126 0.01080 0.01108 0.01119 0.01097 

2.041 2.028 2.040 2.017 2.026 2.031 2.021 

 0.1760 0.1534 0.1563 0.1513 0.1556 0.1567 0.1546 

 0.05281 0.03915 0.04092 0.03783 0.04040 0.04116 0.03971 

 

η 

 

 

θ 

 1.013 1.010 1.012 1.009 1.011 1.011 1.010 

 0.06150 0.06025 0.06057 0.05998 0.06040 0.06054 0.06026 

90 0.006234 0.005957 0.006034 0.005886 0.005983 0.006021 0.005948 

2.025 2.019 2.027 2.011 2.016 2.020 2.013 

 0.1444 0.1325 0.1341 0.1312 0.1331 0.1337 0.1325 

 0.03370 0.02813 0.02895 0.02749 0.02830 0.02870 0.02805 

 

η 

 

 

θ 

 1.011 1.009 1.010 1.008 1.009 1.010 1.008 

 0.05611 0.05534 0.05554 0.05516 0.05539 0.05549 0.05529 

120 0.005272 0.005105 0.005154 0.005059 0.005124 0.005147 0.005101 

2.014 2.010 2.016 2.005 2.006 2.009 2.003 

 0.1254 0.1178 0.1186 0.1171 0.1180 0.1183 0.1177 

 0.02569 0.02254 0.0229 0.02220 00.02256 0.02273 0.02241 

 

Table 3. Average lengths (ALs) and coverage probabilities (CPs) of the 95% 

approximate confidence interval (ACI) and highest posterior density (HPD) credible 

interval. The true values of η and θ are 0.5 and 1.2. 

Parameters n ACI CP HPD CP 

η 

θ 
30 0.2861 

0.7847 

0.9500 

0.9400 

0.2740 

0.7208 

0.9640 

0.9910 

η 

θ 
60 0.1967 

0.5531 

0.9420 

0.9590 

0.1936 

0.5491 

0.9550 

0.9840 

η 

θ 
90 0.1593 

0.4513 

0.9410 

0.9520 

0.1582 

0.4611 

0.9420 

0.9760 

η 

θ 
120 0.1374 

0.3907 

0.9470 

0.9400 

0.1553 

0.5787 

0.9740 

0.9970 

 

Table 4. Average lengths (ALs) and coverage probabilities (CPs) of the 95% 

approximate confidence interval (ACI) and highest posterior density (HPD) credible 

interval. The true values of η and θ are 1 and 2. 

Parameters n ACI Als HPD Als 

η 

θ 
30 0.5736 

1.2150 

0.9520 

0.9510 

0.5528 

1.0790 

0.9630 

0.9790 

η 

θ 
60 0.3962 

0.8479 

0.9490 

0.9470 

0.3870 

0.7966 

0.9500 

0.9640 
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η 

θ 
90 0.3206 

0.6825 

0.9420 

0.9570 

0.3150 

0.6551 

0.9480 

0.9660 

η 

θ 
120 0.2751 

0.5901 

0.9410 

0.9310 

0.2711 

0.5723 

0.9410 

0.9460 

 

Table 5. Point prediction and 95% confidence interval with s = 10. 

n r Point Prediction Interval Prediction 

30 4 

7 

0.959 

2.172 

(0.380, 1.91) 

(0.80, 5.21) 

 9 5.734 (1.430, 19.61) 

60 4 

7 

0.8173 

1.694 

(0.39, 1.57) 

(0.721, 3.75 ) 

 9 3.914 (1.18, 11.97) 

90 4 

7 

0.813 

1.714 

(0.367, 1.483) 

(0.722, 3.80) 

 9 4.036 (1.190, 6.66) 

120 4 

7 

0.8265 

1.625 

(0.391, 1.57) 

(0.710, 3.15) 

 9 3.949 (1.20, 5.90) 

 

6. Study on real data sets 

6.1 Data set I (taxes revenue data) 

The data set I depicts Egypt’s real monthly tax receipts between January 2006 and 

November 2010 (in 1000 million Egyptian pounds). The information was taken from 

Nassar and Nada (2011) [14]. IPMD was found to be a better fit to this data set than 

some other models by  Al-Kzzaz  and EL-Monsef (2021) [4] after studying this data 

set. The MLEs, Bayes estimates and associated confidence intervals of the unknown 

model parameters η and θ are presented in the following Tables 6 and 7. In order to 

compute Bayes estimates all the hyper-parameters are assumed as 0.001 because no 

prior information is available. To derive the Bayes estimates an MCMC samples of 

size 5000 are generated. Further, the prediction results for future observable is also 

obtained under similar situations. 

 

Table 6. Estimated values of η and θ based on the real data set I. 

  Lindley MCMC 

 MLE SELF LLF SELF LLF 

   h = -2 h = 2  h = -2 h = 2 

η 0.891 0.895 0.896 0.887 0.892 0.892 0.8867 

θ 83.7 82.03 86.22 81.15 84.41 130 53.42 
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Table 7. The 95% confidence interval and HPD credible interval of the parameters θ 

and λ based on the real data set I. 

Parameters ACI HPD 

θ (0.72, 1.06) (0.842, 0.939) 

λ (21.6, 145.8) (61.8, 109.7) 

 

Table 8. Point prediction and 95% confidence interval for s = 10 based on the real 

data set I. 

r Point Prediction Interval Prediction 

4 9.34 (6.54, 13.4) 

7 13.8 (9.0, 21.9) 

9 19.4 (8.95, 32.7) 

 

The following observation can point point form the above tables: 

• The MLE and Bayes estimates are quite near to each other for the shape 

parameters η. However, the HPD credible intervals is narrower than the ACI. 

• For the scale parameters θ, the MLE is differ form the Bayes estimates using 

MCMC approach. However, the Bayes estimates using Lindley method provides 

similar results. The HPD credible intervals is more faithful than the ACI as 

expected. 

• The length of prediction intervals becomes wider as the size of r increases. 

6.2 Data set II (health data set) 

This data set describes the lifetime of relief (in minutes) of 20 patients receiving an 

analgesic, presented by Gross and Clark (1975) [12]. 

 

Table 9. The goodness-of-fit measures for the data set II. 

Model -2 log(l) AIC BIC HQIC AICC 

IPMD 30.837 34.837 36.828 35.226 35.543 

MD 40.355 42.355 43.351 42.550 42.577 

IMD 36.466 38.466 39.462 38.661 38.688 

ED 65.674 67.674 68.670 67.868 67.896 

WD 41.173 45.173 47.164 45.562 45.879 

IGD 32.783 36.783 38.774 37.172 37.489 
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In order to examine the data set II, the MLEs of unknown model parameters of 

IPMD are obtained together with different goodness-of-fit criteria such as Akaike 

information criterion (AIC), Bayesian information criterion (BIC), Hannan-Quinn 

information criterion (HQIC) and Akaike information criterion with correction 

(AICC). In addition, empirical and theoretical density, Q-Q plot, empirical and 

theoretical CDFs and P-P plot are also displayed in the Figure 3. For comparison 

purpose, some other lifetime models have been considered, including Maxwell 

distribution (MD), inverse Maxwell distribution (IMD), exponential distribution 

(ED), Weibull distribution (WD) and inverse Gompertz distribution (IGD). Their 

probability distribution function are given in the equations (6.1), (6.2), (6.3), (6.4) 

and (6.5) respectively. For goodness-of-fit test statistics the Kolmogrov-Smirnov (K-

S) distance is computed for each model together with p-values. From all of these, it 

has been observed that the IPMD fits more accurately than the other model. 

 

Table 10. The goodness-of-fit test statistics for the data set II. 

Model η θ K-S p-value 

IPMD 1.5785 6.6342 0.0929 0.9952 

MD - 0.3675 0.1720 0.5947 

IMD - 4.1411 0.1921 0.4516 

ED - 0.5263 0.43951 0.00089 

WD 2.12998 2.78703 0.18497 0.5006 

IGD 0.1103 6.1456 1.000 < 2.2e−16 

                                                      (54) 

                                              (55) 

                                                       (56) 

                                           (57) 

and 

                 (58) 

The maximum likelihood estimation (MLEs) and Bayes estimates of the parameters 

θ and λ are presented in the following table. 
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Figure 3: The estimated density and distribution plots of IPMD for the data 
set II. 

 

 

Table 11. Estimated values of η and θ based on the real data set II. 

  Lindley MCMC 

 MLE SELF LLF SELF LLF 

   h = -2 h = 2  h = -2 h= 2 

η 1.579 1.580 1.611 1.464 1.560 1.594 1.528 

θ 6.634 6.552 7.298 5.929 6.753 10.467 5.214 
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Table 12. The 95% confidence interval and HPD credible interval of the parameters 

θ and λ based on the real data set II. 

Parameters ACI HPD 

θ (1.049, 2.109) (1.205, 1.889) 

λ (3.070, 10.199) (4.060, 9.819) 

 

Table 13. Point prediction and 95% confidence interval with s = 10 based on the real 

data set II. 

r Point Prediction Interval Prediction 

4 1.579 (1.26, 1.93) 

7 1.98 (1.53, 2.56) 

9 2.51 (1.77, 3.68) 

 

The following interpretations may be read out from tables 11-13 

• The MLE and Bayes estimates are close to each other for the shape parameters η. 

However, the HPD credible intervals is narrower than the ACI. 

• For the scale parameters θ, the MLE is slightly differ form the Bayes estimates 

using MCMC approach. However, the Bayes estimates using Lindley method 

provides similar results. The HPD credible intervals is more faithful than the ACI 

as expected. 

• As the size of r grows, the length of the prediction intervals expands. 

 

7. Conclusions 

In this article, statistical inference for a IPMD based on the complete sample has 

been investi- gated. Point and intervals estimates are proposed based on frequentist 

and Bayesian approaches. Since the MLEs of the unknown model parameters cannot 

be deduced explicitly, this problem has been solved using Newton’s iterative 

technique. The existence and uniqueness of unknown parameters are also obtained. 

Similarly, due to complicated form of Bayes estimates, two approxi- mation 

techniques namely; Lindley and MCMC algorithm are implemented. To judge the 

quality of various estimation approaches, a Monte Carlo simulation experiment has 

been conducted. It has been explored that the Bayesian approach provides superior 

results to the classical approach. Moreover, in case of intervals estimations, HPD 

credible intervals shows the better results than the ACIs in terms of their average 

length. Two  real-life data set have  been analyzed to show  the practical utility of 

proposed estimation techniques. It is anticipated that economic profession- als and 

healthcare data analysts will benefit from the findings and approaches presented in 

this study. 
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