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Smoothing of Estimators of Population mean
using Calibration Technique with Sample Errors

Matthew Iseh Mbuotidem Bassey
Department of Statistics, Akwa Department of Statistics, Akwa
Ibom State University, Nigeria Ibom State University, Nigeria

The challenges bedeviling the performance of estimators of population parameters in
survey samples as a result of measurement and nonresponse errors are of great
concern to researchers and users of statistics. This study suggests new estimators and
adopts the calibration approach in smoothing the existing and proposed estimators
for optimal performance. We have proposed improved estimators for estimating the
finite population mean under stratified random sampling in three different situations:
first, the properties of the estimators are considered under nonresponse, then the
study of the estimators for measurement errors and in the last case, the estimators are
examined in the presence of both measurement and nonresponse errors
simultaneously. Expressions for mean square errors are obtained for the suggested
estimators. Empirical study has been carried out with two real datasets to validate the
theoretical underpinnings of this study.

Keywords: Auxiliary variable; calibration; nonresponse; optimization; mean square
error.

1. Introduction

While conducting sample survey, statistician often come across non-sampling errors
like measurement errors, coverage errors and nonresponse errors. The measurements
that we get on the units for estimating the characteristics under study are seldom
correct. And in practical situations the observations on this units are not correctly
measured and differ from true values of the observations. This difference between
the observation values and true values on the characteristics under study are called
measurement errors or observational errors and is quite frequent in survey sampling.
It is a kind of non- sampling errors and may arise due to the following reasons, that:

> the respondent may not provide the required information. However, the question
was meant for the proper respondent. Example many families in Africa do not
record a birth in the family and hence no birth certificate is made as the birth was
not registered. hence, in this case it may be possible that the respondent included
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in the sampling may be given an approximate figure for the age which may not be
the actual age, as the birth was not registered

» sometime it may happen that the observation may be on the closely related
substitutes called proxies, although the variable is well defined. As an example ; if
we are interested to know the economic status of a person and supposed the
person is not willing to answer this question, then we may pool out the desired
information by modifying the question, for instance instead of asking his
economic status directly; we can ask about his educational level. However this
will be only a guess as it is not necessary that a highly educated man/woman is
economically well established and vice-versa

» it may also be due to respondent has misunderstood a particular question and
hence supplied the information accordingly, (Tabssum 2021).

Several authors like Singh and Karpe (2009), Shalabh (1997), Manisha (2001) and
Sud and Srivastava (2000) have discussed the problem of measurement errors.

One more error that arises frequently during survey sampling are the nonresponse
errors. This errors are also part of non-sampling errors and arise due to the following
reason; the absence of the respondent at the time of survey/refusal to answer the
question or inability to recall the answer. Authors such as Hansen and Hurwitz
(1946), Rao, P.S.R.S. (1986), Khare and Srivastava (1993), Khara and Srivastava
(1997), Tabasum, R. and Khan, I. A. (2006), Singh and Kumar (2008), Singh and
Kumar (2010), Kumar, Singh and Gupta (2011), Singh, Kumar and Kozak (2012),
Iseh and Bassey (2021a, 2021b), Iseh and Bassey (2022) and have studied the
problem of nonresponse to a large extent, however, the challenges are still enormous
and call for further research to enhance efficiency.

2. Methodology/Existing Estimators

% The Hansen and Hurvitz (1946) estimator in stratified random sampling under
measurement errors and nonresponse for estimating population mean is given by.

—%

Ysm)=xk_, Pn v,

The expression for the variance of gy is given by:
V(¥ mmy) = L=t PP AR 1)

where y, = (T;—l:) Yin + (%:l) Yon, and Py = %

2 2 2 2 1 1
An = don (Siy. + Shy) +6n (Sivey + Shucz))s Aon = — O
_ Pp(gn—1)
Ny

where, y;, and y,, are the sampling means based on nonresponse and Kj, units of
sub- sample from n,; nonresponding groups respectively.
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% The separate ratio estimator for stratified random sampling under measurement
error and nonresponse is given by:

— % y* v
Ysir) = Zﬁ=1 th—g Xn

The expressions for the Bias and MSE of y;, are given by

P N P
Bias(ysgy) = %1:1)?_’; (RpBp — Cp)
MSE(Vsry) = Xhz1Pi (An + REBy — 2RiCy) (2)

Y

Ch = A2n Prxy ShySnx T OnPrxy2)Shy(2) Snx(2)

% The separate difference estimator in stratified random sampling under
measurement error and nonresponse is given by:

Yoy = Zhe1 Pulyh + dn(Xy — x3)]

—« _NpXp—npx; .
where xj, ==E—2R - and d, is a constant.
h h

The expression for minimum variance of y ., is given by:

2
V(FipyJmin =Ly PE [An - o 3)

Nh

: . B ch 3
where the optimum value of d;, is dpopr) = — N and t, = =
%+ Azeem and Hanif (2016) estimator under stratified random sampling is given by
_x — (TN (%

Ys(am) = Yh=1Pun (Y_’;) (ﬁ)

The expressions for both Bias and MSE of the estimator of ¥, are as follows

Bias (3_’;(,411)) = Z%z:d% (t7 RnBr — qnCr)

MSE (Vicam) = Xhe1Pn (An + a7 R3 By — 2q, Ry Cp) 4)
where g, = —x”:z:

+¢+ Zahid and Shabbir (2018) proposed an estimator for population mean in stratified
random sampling as:

Vs = Zh=1Pn [mh Vi + man (X — x1,") (;—,:) exp (1 —o) (xh_ﬁl)]

Xp+xp

where m,, and m,; are constants whose values are to be determine and «,, is the
scalar chosen arbitrarily.
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The expression for the bias and MSE of the estimator .,y are

. . _ _ Cntn RpC frRut? B
Bias (Vipy ) = Y _, P, [(mm = DY, + my, ( h ’;?hh hy Jh ;hh h) +
i (32529)]

— % ~ — A EZ +B Dz —2c D E
MSE (ys(P)): Zlfl=1P}% [Yhz— h1 Bh1™ Ph1 “Yh1 h1Dna h1] (5)

Ap1 Bp1—C2,
where Ap; =Y7? + Ay + eftiREBy + 4ept,RyCp + 2f4t?R:B, Bpy = t? By
Chi = tpCh + 2e, t? Ry, B,
Dpy =Yg + eptyRpCp + futh RiBy,
Eny = ep ti Ry B,

1+0Ch

, fp =i+ 4 o+ 3

énp =

% Rajest et al (2020) proposed an estimator for population mean in stratified
random sampling when nonresponse is observed for both study and auxiliary
variables as:

t*=Yr_1 Py [}7,’; + alog (;—’;)]

with bias and mse given as

Bias(t") = —-Zh 1X2 “hBhQ

MSE(t") = Xik_, P2 (AhQ + S+ 22 chQ) (6)
and

MSE(t") min = Sk_, P2 (AhQ C’lg) @)

2.1 Proposed Estimators

By adopting the Rajest et al (2020) estimator, we proposed the following estimator in
the presence of nonresponse

Tor = Ther P [F + (1 — @) log (22))] (®)

In order to obtain the expression for bias and MSE of the proposed estimator, we
assume that:

Mhy = Zity (Vi — )

ny o« -
Nhy _ Zieq Yni~"nYn

Np Np
Vh="Tn+ n,?; ©)
Similarly,
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Nhx = Z?ﬁl(xﬁi - Xh)

Tlh =
Mhx _ z:i=1 Xpi—nnXn

np np
=% v 77*
Xp = Xh + HL: (10)

Substuting Egs. 9 and 10 in Eq. 8, gives

*
)?h+—nhx

Yor = Xh=1Pn (Yh + %j) + (1 —-a)log thh

N ) A vV Nhy nh | _ np
= Y5=1Pn (Yh + nh) + log % a log A (11)
recall that
2 3
log(1 + x) =x—x7+x?—---for | x |< 1 we have for
| Mhx < q
Xpnp
* * * 2 * 3

log(l 4 hx ) _ nx _l( Mhx ) +1< Mhx > o

thh thh 2 thh 3 thh

7, +Thx . ,

Since Xht Moo XA _q oy Thx

Xn Xpnp Xpnp

Therefore, Eq. 11 becomes

- i [ ) g2 ) - ot i)

ny Xpnp Xpnp Xpnp Xpnp Xpnp
* 3
1( Nhx )
3 \Xpnp

By ignoring powers of ;’L: greater than 2, we have
h'th

—yL_. P, [yﬁn*ﬂw*ﬁ_z(n*&)z_a{n*&_z(n*&)z}]

np Xpnp 2 \Xpnp Xpnp 2 \Xpnp

* * * 2 * * 2
—x % % Nhy | Mhx 1( Npx Nhx 1/ Nnx
-Y = L_ P Y —_— _———(_—) - Qa _———(_—) -
Yopr h Zh—l h|Yh + ny, + Xpnp 2 \Xpnp Xpnp 2 \Xpnp
Yh]
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EGpr = 1) = Bhes P [ (22) 4 £ (25) -2 () - e () -
L (Zhc) Y] (12)
Since,

E(?hX ) =E(_77hy)= 0
Xnpnp Yhnp

. \2
E (nﬂ) = Yn2Shy + OnSiy(2) = Ang

Np

* N2
E (nﬂ) = Yn2Shx + OnShx(2) = Bno

np
E (m) E (nhy) YrPrxyShxShy T QnPrxy2)Shx2)Shy2) = Cho

Np Np

Thus Eg. 12 becomes
2 * 2
Bir) = Sher P [~ 28 () + {2 ()]

= __Zh 1X2 [{Yhzshx + Qhth(z)} a{thth + ghth(z)}]

L
1 h )
Ez )?_ [VhoSie(1— ) + OnShx2)(1 — )]
h=1
L
1 h
Ez 70— et + nSivca
= 3 Zher [~ @By (13)
The expression for MSE is derived as follows
2
A Nhy Nhx 1 ( Mhx 2 _ Mhx Nhx 2}]
(ypr Yh) - =1 Ph [nh ol Xpnp 2 ()?hnh> a {thh (thh)
* * 2 *
L Nhy |, Mhx _ 1( Nhx _ Nhx 77hX Uhy NMhx
= i1 P {[ np + Xpnp 2 (thh) a{)?hnh Xpnp }] [ Xpnp

2 * 2
() i 3 () Y]}
* * * * 2
() () (22) - () () + () () + () -
2

2 *
) o) o) e
Xpnp np / \Xpnp Xpnp Xpnp
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5 _7)° =YL_ p? My My (Mhx ) _ Mh ) (Mhy
E(ypr Yh) - h=1 Ph {E (Tlh ) + ZE (Tlh ) ()?hnh) Z(ZE ()?hnh) (Tlh) +
. 2
Nhx Nhx 2 Nhx
E ()?hnh) — 20E (thh) ta’k (thh) } (14)
Substituting for the individual expectations in Eq.14 gives
2
= Y1 Pi {thsﬁy + 0Shy) + % (YnPhxySnxSny + QuPrxy@)Shx(2)Shy(2)) —
2 1
—_a(yhphxyshxshy + thhxy(Z)th(Z)Shy(Z)) + —_2 (VhZS}%x + ghsﬁx(z)) -

% a(YhZth + 0She(z) + @ (thth + 9h5hx(2))}

_Zh 1Ph {AhQ BhQ(l—Za) + aZBhQ + — ChQ(l—(l)}
. 1 2
MSE(53r) = Bher PR {Ang + 72 Bro(@? — 20 + D+ Gt -} (19)
Minimizing MSE (¥, ) with respect to a and solving gives
(1 + X"ChQ)
BhQ

Thus, Eq. 15 could be written in terms of minimum MSE as

2 —
MSE()_];T)mln - Zh 1Ph {AhQ BhQ l(l + XhChQ) —_ 2 (1 -|- Xgﬂ) _|_ 1] +
Bhq hQ

+-Chg [1 - <1 + thh@)]} (16)

BhQ
2.2 Estimation Using Calibration Technique

Emphasis of this study is on using calibration method to smoothen the performance
of both the existing and suggested estimators. The procedure is as follows follows;

Calibration of the Proposed Estimator
Given the proposed estimator in Eq. 8

=Yho1 Ph

where y;" =y, + (1 —a)log (;—h)
Then the calibration estimator given as
y;rc = Z%l:l Wh 37;;*
(17)
is minimized using the distance measure
Z%z:l(Wh - Ph)z
QnPr
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subject to the constraint
Zlfz=1 Wy X, = X
(18)
Now, the optimization problem given as
The1Wh—PR)? A
L= St — 9 (Shes Wh %, — X) (19)
is solved to minimize the distance between the existing and calibration weights as;

oL _ 2(Wp—Pp)
swp QnPn

wy, = Pp[1 4+ 1%,Q]
Substituting for wy, in Eq. 18 and solving for A gives

2% =0

- oL i
1= X—-Yh=1PnrXp
— vL p %2
Zh=1 hQnXy

Thus, the calibration weights become

X — Yhe1 PXy
=P, + X QuP,
Wy = Py I p 0,52 XpQnPn
Eq. 17 then becomes
— L — %k — . Zh 1Phxh]
Yhe1 Pulh" + Xhe1 PnQn Xnyn [—ZL_ PRQn;? (20)
Substituting for y* yields
=%k 1Ph—*+2L 1 Pa(L — @) log () + Xy PuQn % [77 + (1 —
X—Yh=1Pn¥p
a) log ] [Eh 1Pthxh] (21)

Assuming Q; = 1, we have

L L .
X
= Z P,y + Z P,(1—a)log <_—h)
h=1 h=1 L

X — Ppx
+ Z Pyixpyp +(1—a) Z Pnxp log( ) Zi=1 _fz hl
h=1 Yhe1Pny
= Yhe1 Pavh + (1 — @) Xi- 1Ph108( ) +B(X — Xho1 Puxp) + (1 —
L X-Yi- 1Phxh
@) Ther Pui log () [ 2ok 22)

L Py
Where g = Zi=1Pntnth
Zh=1phxh

Let v, =Y (1+e)), % =X (1 +ey),
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Such that Eq. 22 can be written as
X (1+ey)

Tpre = ket Pa¥ (1+€,) + (1= @) They P log (K552 + p(X -

_ = X (1+ex)\ [X-Zho1 PrX (1+ey)
=1 PrX (1+e)) + (1 —a) Xjoy PuX (1 +ey) 108( Iz ) [Eh:fptlf};(lwx)z]

Assume that X* = X,
L L L
=th)_/+zph?ey +(1—a)zph10g(1+ex)
h=1 h=1 L h=Ll

+ﬁ<)? - Z P,X - ZPh;?ex>

— Yk 1 PhX — Yho, PiXe,
%l=1 PhXZ(l + ex)z

X
log(1 +e,) I

=21 1}17 +Xho, PhYe, +(1 - ) Yh_q P,llog(l te)+ (X -k P X —
Yho1 PuXey) + (1 — a)[Xhot PuX + Xho PuXey]log(1 +

e ) I:X_Z%l=1 PhY—Z{]:l Ph}?ex:I
x Z;{=1Ph22(1+ex)2

ez el
Butlog(1 +e,) = e, _7"+?x_
L
o = - ez el
:ZPhY-I_ZPhyey + (1—a)ZPh ex—?+?—...
h=1 h=1 h=1
L L
+'B<X_zph)?_zph)?ex>
h=1 h=1
L L
D P+ ) Pie,
h=1 h=1

. X_Zﬁ=1ph}?—21]§=1ph)?ex
Z;’l=1ph)?2(1 +ex)2

ez e
+(1-a) <ex—7x+—x

3

10
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h=1 h=1 h=1

L L
; 5<X_zphx_zph)(ex)

h=1 h=1
L L 2
_ _ ey ey

ra-o|Y rr+) pie, <ex__+?

h=1 h=1

— ) X = Yh1 PuX _ZII{=1PhX€xl _y
Yho1 PaX2(1 + ey)?
_ . s )
= {Zh=1phyey + (1 - (l) Z%l:lph (ex - €7x + e?x — ) — ﬁ(thPhXex) n

— L Y L 4 _ e é_,“ —Sho1 Pr¥ex
(1= @)[They PuX + Bhoy Pufey] (e —Z+ 2 - 1) TR (1+ex)2]}

Bias(Tyee) = {Shos PAVE(ey) + (1= @) Theo Pa (ECe) — 3 E(ed) + 2 E(ed) -
) = Bk PuRE(ex) — (1 — @)[They PuX + Thy PXE(en)] (E(ex) -
LE(ed) +1E(e) - ) [Riatied ] (23)

Zf,=1 PpX2%(1+ey)?

Now, let the expectation of the error terms as be given as follows
E(ey) =E(e,) =0

E(ef) = AanSin + 0nSths = Ang

E(e2) = AnS2h + 604S22  =Bng

E(eyex) = Athxththyh = Prg
Substituting into Eq. 22 gives

, . 1
Blas(yprc) =73 1-a) Z}L1=1 Py AhQ (24)
And the mean square error is obtain as follows

— 2 —
MSE(yzjrc) =E {Z%:l PhYey + (1 - a) Z}L1=1Ph (ex - e?x) - .B(leizlphxex) -

= = ez Yk_, PrXe 2
(= @)[Ther X + Zhes Poles] (e - 5) [z%,_l};’hl)?zh(u);xﬂ]}

L L 5 L
=E P,Ye, +(1—a) P<ex—e—x>—ﬁ< P)?ex>
{hzl h* "y hzzl h 2 hzl h

L 2 L v 2
— — €y Zh=1 PhXex
X+thxex <€x_7>I2L PX2(1+9 )2
h=1 h=1"h x

-(1-a

11
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L
=F pP.Ye
.
+(1—a)<ex——><ZPh
_ L 2
b1 PrXe, _
g e (5

L
=E P,Ye
+(1—a)<ex—e—x><ZPh

L pXe
X+ZPhXex h=1"h7"x )

lzh 1Ph)? (1+e,)?
y (Z PhXex>

Z PhYey
+(1—a)<ex——><ZPh
L

X+ZPXe Ziiea PrXey s ZP)?e

P |SE_ PR (1 + ey)? L
= E{ o1 YZe) — B Xh-1 Pf%Yh)?heyex + BTkt Py Y, Xneye, +

= 2

B2 Th_y P Rn 2

= (k.1 V2E(ed) — B Bhoy PR KLE (eyes) + B Xhos PuTiKnE (eyey) +
= 2
32 2%1:1 PhZXh E(exz)}

[ — S S
{Zh 1 ZAZh k1o, y’”—ﬁzgzlp,fyhxhpxyhzz,l%’l%h+
S S x x
BYh- 1PththxyhAZh 2 m"‘ﬁ Y thXh Aan h+9 hz}

= B2 VN1 Ph’ Ang + Xho1Brg — BXh=1PF Tno + B X1 Pn Tho (25)
Calibration of Rajest et al (2020) Existing Estimator
Recall that the calibration estimator of Eq.20 is given by

12
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o — L — k% —x —xx | X Zh 1Ppxy
Vore = 2h=1 Pa¥n’ + Xhe1 PnQn X171 —]
Zh_l Pthxh

and the existing estimator by Rajest et al (2020) is given by

t' = They Pu |7 + alog (3]

Writing t* as a calibration equation, we have

te =XhaaWn (26)
H H — kxk —% ﬂ

where in this case, y,"* = y; + alog ()?h)

Therefore Eqg. 26 becomes

X_Zlf1=1phfi*1
ts —ZP [y +alog( )] ZPQ X [y +alog( )] —
h|Yn h¢nXn |Vn Z%z:lthhth
. Xp,
=ZPhyh+aZPhlog(_—)
h=1 Xn
X = Yho1 PuXy l

ZPhx,*lj/,’;+aZPhxhlog< ) ST XL
h=1

=Yk Phyn +aXi- 1Ph1°g( )+a(X Yh=1 Puir) +

@ The oy log (2) [M]

She1 Ph¥p

Let y, =Y (1+e)), =X (1+e,)
Such that

te=Sk PV (1+4e,) +ali_ Pylo )+ BE - Tk P X (1+e,)) +

L = X (1+e) [X-Zk_, PrX (1+ey)
a2h=1PhX (1 + ex) log( X+ ) Ek:lPhX2(1+ex)2

g (x (1+ey)

Also, assume that X* = X,

L L L L L

= Z P,Y + Z P,Ye, + az Py log(1+e,) + P ()? — Z PX — z Ph)?ex)
h=1 h=1 h=1 h=1

Z PhX

+ Z PhXex

+a

ZiL1=1 Ph)? - Zh=1 Ph)?exl

log(1 +e,) I —
* ;‘tzl PhXZ(l + ex)z

13
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=N 1Ph7+2h 1Ph73y +aXh- 1Ph108(1+€x)+,3()? She1 PnX —

X-Yh_,PpX PpXex
Yhe1 PrXex) + a[Xhoq PuX + Xiioq PrXe,]log(1 + ex)[ Zh ! Pthz%;+;x)2 =

e _
3
L

L ~ L _ ex
:ZPhY+ZPhYey aZPh ey — ?_
h=1 h=1

h=1

Butlog(l+ey) = e, —= +

2 3
ey ey
<ex 273

Y Yh=1 PnX — Yk_1 PnXe,
Zh 1PhX 1+ e, )?

L 2

(t; —Y)—{ZPhY+ZPhYey +aZPh<ex—%x+e3—;_...>
( zphx gphXex>

\ 3

X+ZP Xe +ex

h X 2 3

_ X Zk:lPhX 2h=1 PhXGx _y
Tho1 PrX2(1 + ey)?

_ . ) )

= {Bhea PPy aZies P (ex = 5+ S =) 4 BBk Per)alZhes PAT +
X £ e —Yk_, PpXey

Z}E=1PhXex](ex—e7+%_...)[L h=1"h%€ ]}

Yh=1 PpX?(1+ex)?

. " = 1 1
Blas(tc) = {Z}E:l PhYE(ey) ta 2%1:1 Ph (E(ex) - EE(e,%) + ;E(e,?) — ) -
v v 4 1 1
B Ther PuXE (ex) — a[Shoy PuX + Xy PuRE(e)] (E(ex) —3E(ed) +3E(ed) —
) Sh=1 PhXE(ex)
Yk PhX2(1+ey)?
Substituting the expectation of the error terms gives

Bias(t) = —sa Xy Py Ang 27)

14
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MSE(t;) = {Zh 1PrYe, +aXi_ Py (ex ) B(Xh=1PnXey) —

2

2
ex Yr_1PnXey
@[Zfi=1 PuX + Xk 1PhXex] €x 73 [ZL 1};3h1)?2h(1+ex)2]}

L

_E{thyey +athPh<€x > (thxex> 2
(oo~ D) b
T2 ) B PX2 (1 + ey)?

i+ z p,Xe,
h=1

=E {Z;ﬁ:l Y2el — BYho1 PiVaXneyer + B Y ko1 Pn¥nXneye, +
= 2
B2 Tho1 Pa X, exZ}

-

Syn S
{Zh 1Y2/12h >+ On ym_ﬁZh 1PthXh/12h%th+
B Xh=1 Pn¥nXnlan yhsxh'i'ﬁ Yh= 1Ph2Xh A2n xh"'e xhz}

=Yk 1 Bho—BYko1PETho + BIK_1 PnTho + B2 XK1 Pu® Ang (28)

3. Empirical Study

In this section we have carried out an empirical study for which we have considered
two natural population data set.

Population -1 (Sarndal, C. E., Swenssen, B. Wretman, J. (2003))

Y: production of wheat (in tons), X: area of wheat (in hectares)

No of strata = 4.

N, = 47,N, = 30,N; = 29,N, = 13,n, = 15,n, = 10,n; = 10,n, = 5,Y; =
443.5447,Y, = 68.68276, Y; =17.06667,Y, = 52.52308,X, = 160.2362,X, =
29.70345, X, = 11.54667,

X, = 23.62308, 5% = 74026.75,5%, = 28871.781,52, = 244.1292,52, =
4451.124, 52, = 8377.401, 52, = 315.4532,52%, = 91.45775,52, =

682.9703, Pyyx = 0.9583838, P,yx = 0.779071, P3yx = 0.8719665, Pyyy =
0.9922591

Population -2 (FBS, crops area population by districts, Islamabad:2011)
Y: 1983 Population (Millions), X: 1982 gross national product.

N, =38N, =14, Ny = 11,N, = 33,N; = 24,n, = 17,n, = 6,15 = 4,1,
=12,ns = 11,

¥, = 13.03684, Y, = 37.35,7, = 23.13636, 7, = 79.65455, V; = 20.28333, X,
= 1029.158,
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X, = 25671.57,X; = 5028.818, X, = 7533.939, Xs = 16315.25, 52,
= 270.9083,

S2, = 3906.929, S, = 1339.405,52, = 45082.17, S2, = 368.9423,
S2, = 3667.896,

SZ, = 656846.1403, 52, = 633487.43, 5%, = 440717912, S2, = 408441212,

PlYX = 0743954‘4, PZYX = 0969956, P3YX = 09768227, P4-YX =
0.2948897, Peyy = 0.901107

The MSE expression for the existing estimators for the section 1 and 2 i.e for the
case of nonresponse and measurement errors can be obtained from the section of the
existing estimators by using the appropriate notations from sections 1 and 2
respectfully.

To determined the percent relative efficiency (PRE), of the estimator with respect to
the usual estimator (¥, ¥s¢,) we have use the given formula.

mse usual estimstor
MSE(6)

PRE (6) =
te

X 100,60 = Ysg Y5y Vscamy Ysp, t tés Ypr, Ypre

4. Results

Table 1. MSE and PRE of estimators when there is presence of nonresponse on both
the study and auxiliary variables for population 1

gnh =2
Estimators MSE PRE
Vi 551.8020 100.000.00
Vsr) 61.7760 893.2299
Vs 61.5828 896.0318
Vacam 467.9744 117.9129
Yy (6cp=0) 61.32050 899.7985
Ve (<= 1) 61.3900 898.8466
Vsepy (Xp=—1) 61.3910 898.8313
t* 61.5858 896.0318
Ypr 40.367 887.875
Ypre 29.571 894.224
t: 29.571 894.224
gn =4
Estimators MSE PRE
Vi 567.8053 100.000.
Vaw) 88.6968 640.1639
V) 88.5978 640.8790
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Vaam 530.3673 107.0589
Yoy (0p=0) 88.1623 644.0449
Vi (p=1) 88.2567 643.3562

Vi (<= —1) 88.2590 643.3396
t* 88.5978 640.8790

Vor 50. 6775 778.7689

Ve 40.0890 851.1137

t: 40.0890 851.1137

gn=28
Estimators MSE PRE

Vin 599.8118 100.000.

V) 143.5385 420.8069

Vs 140.8417 425.8766

Vscam) 655.1529 91.5529
Vaepy (0h=0) 139.9058 428.7255
Vi (p=1) 140.0595 428.2550

Vapy (p=—1) 140.0662 428.2345
t* 140.8417 425.8766

Ypr 109.854 460.2247

Ve 97.670 479.1143

t: 97.670 479.1143

Table 2. MSE and PRE of estimator when there is presence of nonresponse on both
the study and auxiliary variables for population 2

gn =2
Estimators MSE PRE
Vin 192.2504 100.000.00
Vser) 288.7807 66.5731
Ve 169.2728 113.5743
Vscam 1025.251 18.7515
Ysepy (<p=0) 120.9315 158.9756
Ve (p=1) 120.644 159.3265
Voepy (= —1) 125.6208 153.0403
t* 169.2728 113.5743
Vor 100.6741 200.2365
Vore 97.9111 202.6009
t: 97.9111 202.6009
grh =4
Estimators MSE PRE
Vin 198.2250 100.000.00
V) 301.6620 65.7109
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)75*(1)) 175.813 112.7476
Vacam 1066.2370 18.5910
y;(P) (xp=0) 124.3443 159.4162
3_’5*(19) (xp=1) 1239.130 1599711
37;(1,) (o= —1) 129.3531 153.2433
t” 175.813 112.7476

Vor 105.7800 181.8001

Vpre 99.9677 189.6710

t; 99.9677 189.6710

gn =8
Estimators MSE PRE

Vi 210.1741 100.000.00
)75*(R) 327.4247 64.1900
3_’5*(0) 188.7929 111.3252

Vacam 1148.21 18.3045
Yapy (p=0) 120.8596 160.6104
y;(P) (xp=1) 129.9988 161.6793
Vo) (ccp=—1) 136.5215 153.9495
t” 188.7929 111.3252

Yor 108.8675 190.1134

Vpre 100,6519 199.7699

t; 100,6519 199.7699

From Tables 1 and 2, for both populations 1 and 2 and for the values of g =
2,4 and 8, the proposed estimators . ,ypyrc and t& perform exceedingly better
in terms of gains in efficiency compared to the existing estimators considered in this
study. Again, it is also observed that the proposed calibration estimators
Ypre and t, which are gotten from the proposed and Rajest et al (2020) estimators
respectively have the same PRE which makes calibration technique a veritable tool
in smoothing process.

5. Conclusion

Obtaining an efficient estimator has been a major challenge in sample survey due to
measurement error and nonresponse. This study has proven to be very effective in
terms of gains in efficiency and has unraveled the potentials of the calibration
technique as a smoothing tool in making estimators of the same class to perform
exceedingly better in the same manner irrespective of the weight adjustments in the
parent estimator. This is seen in the performance of the two proposed calibration
estimators. Consequently, it is preferable to use the proposed estimators in real life
practice when measurement error or nonresponse is detected in the survey data.
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