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In this paper, the problem of estimation of finite population mean in stratified 

random sampling is considered. Two improved exponential logarithmic type 

calibration estimators for finite population mean have been proposed for stratified 

random sampling when auxiliary information related to variable under study is 

available for each stratum. To judge the performance of the proposed estimators, a 

simulation study has been carried out in R-software using two datasets, one real and 

another one artificial generated population. The proposed estimators have also been 

compared with the estimators developed by Bahl and Tuteja [1] and Singh [17] in 

case of stratified random sampling.  

 

Keywords: Auxiliary information, Calibration estimation, Stratified sampling, 

Exponential, Logarithmic. 

 

  

1. Introduction 

The auxiliary information can be used both at designing and estimation stages. The 

use of auxiliary information for improving the precision of the estimators is well 

known when the auxiliary variable is highly correlated with the study variable. The 

ratio estimator is used for the estimation of population parameters when the study 

variable and the auxiliary variables are highly positively correlated to each other. 

Cochran [4] initiated the use of auxiliary information at estimation stage by 

suggesting ratio estimator for population mean.  

Recently calibration is commonly used method in survey sampling to increase the 

precision of the estimators of population parameters by making use of available 

auxiliary information. Calibration can be defined as a method of adjusting weights in 

sampling by utilizing the available auxiliary information in order to estimate 

population mean, total, etc. of the variable under study. Deville and Sarndal [5] 
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introduced the calibration approach as a procedure of minimizing a distance function 

subject to some calibration constraints. Later on, researchers Kim et al. [8], Singh 

and Arnab [16], Koyuncu and Kadilar [9], Mouhamed et al. [13], Koyuncu and 

Kadilar [10], Clement and Enang [3], Singh et al. [15], Basak et al. [2], Guha et al. 

[7], Kumari et al. [11], Garg and Pachori [6], etc., have also suggested some 

calibrated estimators of different population parameters under various sampling 

schemes.  

In this paper, two exponential ratio type calibration estimators for population mean 

using logarithmic conditions have been proposed under stratified random sampling 

to obtain better estimator of population mean. The exponential ratio type calibrated 

estimator has been suggested under stratified random sampling when auxiliary 

information related to variable under study is available for each stratum. A 

simulation study has also been carried out to check the performance of the proposed 

estimators with the estimators suggested by Bahl and Tuteja [1] and Singh [17] in 

case of stratified random sampling on two datasets. 

1.1 Notations used in Calibration Approach 

Let us consider a finite population U of size N. Let iy  and ix  (i = 1, 2, …, N) be the 

values associated with the ith unit of the study and auxiliary variables, respectively. A 

sample s = {1, 2, …, n}U of fixed size n is drawn using a probability sampling 

design P. The population total of the auxiliary variable, i

i U

X x


=  is assumed to be 

known. Deville and Sarndal [5] proposed the calibrated estimator as: 

ds i i

i s

Ŷ w y


=                                                                  (1) 

For the Horvitz and Thompson (1952) estimator given as: 

i
HT i i

i s i si

y
Ŷ d y

 

= =


                                                                         (2) 

where i id 1/=   & i ijPr(i s)and Pr(i, j s) =   =   are the inclusion probabilities of 

order one and two, respectively.  

Minimization of Chi-square distance function 
2

i i

i s i i

(w d )

d q

−
 subject to its calibration 

constraints i i

i s

w x X


= , Deville and Sarndal (1992) obtained the generalized 

regression (GREG) estimator of the population total Y as: 

GREG i i ds i i

i s i s

ˆŶ d y X d x
 

 
= + − 

 
                                                             (3) 
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where 

i i i i

i s
ds

2
i i i

i s

d q x y

ˆ

d q x





 
 
  =
 
 
 





 

The calibration estimator for population mean Y using two calibration constraints 

under stratified random sampling given by Singh [17] is 

L

s h h

h 1

y y
=

=                                                                                                               (4) 

where h are the new calibrated weights obtained by minimizing the Chi-square 

distance measure 
2L

h h

h 1 h h

( W )

Q W=

 −
 , subject to two calibration constraints: 

L

h

h 1

1
=

 =                                                                                                                    (5) 

L L

h h h h

h 1 h 1

x W X
= =

 =                                                                                                    (6) 

The calibrated weight is given as: 

L L

h h h h h h h h h h L
h 1 h 1

h h h hL L L
2 2 h 1

h h h h h h h h

h 1 h 1 h 1

(W Q x )( W Q ) (W Q )( W Q x )

W (X W x )

( W Q x )( W Q ) ( W Q x )

= =

=

= = =

 
− 

  = + −
 

− 
 

 


  
 

Thus, the estimator given by Singh (2003) is given as 

L L

s h h s h h

h 1 h 1

ˆy W y (X W x )
= =

= + −                                                             (7) 

where,           

L L L L

h h h h h h h h h h h h

h 1 h 1 h 1 h 1
s L L L

2 2
h h h h h h h h

h 1 h 1 h 1

( W Q )( W Q x y ) ( W Q x )( W Q y )
ˆ

( W Q )( W Q x ) ( W Q x )

= = = =

= = =

 
− 

  =
 

− 
 

   

  
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2. PROPOSED CALIBRATION ESTIMATOR  

Bahl and Tuteja [1] suggested an exponential ratio type estimator as: 

bt

X x
y y exp

X x

 −
=  

+ 
                                                                     (8) 

Let us consider a heterogeneous finite population U of size N which is divided into L 

homogeneous strata of sizes N1, N2, …, NL such that 
L

h

h 1

N N
=

= . A sample of size nh 

is drawn using simple random sampling without replacement (SRSWOR) from the 

hth stratum such that 
L

h

h 1

n n
=

= , where n is the required sample size. Let study 

variable (Y) and auxiliary variable (X) are positively correlated with each other. 

Suppose yhi and xhi are the ith units of Y and X, respectively, in the hth stratum for i= 

1, 2, ..., nh and h = 1, 2, …, L.  

h
h

N
W

N
=  and h

h

n
f

N
= are the hth stratum weight and sample fraction, respectively.  

The traditional stratified estimator of population mean in stratified random sampling 

is given as: 

L

st h h

h 1

y W y
=

=                                                      (9) 

Following Bahl and Tuteja [1], the exponential ratio type estimators given by Malik 

et al. [12] in stratified random sampling is defined as: 

L
h h

st.bt h h

h hh 1

X x
y W y exp

X x=

 −
=  

+ 
                                                       (10) 

This paper proposes two new exponential ratio type calibration estimators of 

population mean in stratified random sampling using two different sets of calibration 

constraints and calibration weights h1 h2and   for Case I and Case II, respectively, 

which are chosen in order to minimize the Chi-square type distance measure given 

as: 

2L
hi h

h 1 h h

( W )
; i 1,2

W Q=

 −
=                                                                                             (11) 

Case I:     The first proposed calibration estimator of population mean in stratified 

random sampling using one calibration constraint is given as:                                                   

L
h h

bt.L1 h1 h

h 1 h h

X x
y y exp

X x=

 −
=   

+ 
                                                                  (12) 
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subject to the following calibration constraints:    

L L

h1 h h h

h 1 h 1

log x W log X
= =

 =                                                                                    (12) 

The Lagrange function is given as:

( )
2L L L

h1 h
1 h1 h h h

h 1 h 1 h 1h h1

W
L 2 ( log x W log X )

W Q= = =

 −
= −   −                                         (13) 

Case II: The second proposed calibration estimator using two calibration constraint 

is given as:                                                   

L
h h

bt.L2 h2 h

h 1 h h

X x
y y exp

X x=

 −
=   

+ 
                                                  (14) 

subject to the following calibration constraints:    

L L

h2 h

h 1 h 1

W
= =

 =                                                                                                         (15) 

and  

L L

h2 h h h

h 1 h 1

log x W log X
= =

 =                                                              (16) 

The Lagrange function for both constraints are given as: 

2L L L L L
h2 h

2 1 h2 h 2 h2 h h h

h 1 h 1 h 1 h 1 h 1h h

( W )
L 2 ( W ) 2 ( log x W log X )

Q W= = = = =

 −
= −   − −   −              

                     (17) 

where  , 1  and 2 are the Lagrange’s multiplier. To find the optimum value of 

h1 h2and  , we differentiate the Lagrange function given in equation (13) and (17) 

with respect to h1 h2and  , respectively, and equate it to zero. Thus, the calibration 

weights are obtained as: 

h1 h h h hW (W Q log x ) = +                                                                                    (18) 

and 

h2 h h h 1 2 hW W Q ( log x ) = +  +                                                                        (19) 

Here   is determined by substituting the value of h1  from equation (18) to 

equation (12) and 1 , 2 are determined by substituting the value of h2  from 

equation (19) to equations (15) and (16), so this leads to calibrated weight as: 
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L

h h h

h 1
h1 h h h h L

2
h h h

h 1

W (log X log x )

W (W Q log x )

W Q (log x )

=

=

 
− 

  = +
 
 
 




                        (20) 

and  

L L

h h h h h h

h 1 h 1
h2 h h h L L L

2 2
h h h h h h h h

h 1 h 1 h 1

L L

h h h h h

h 1 h 1
h h h L L L

2 2
h h h h h h h h

h 1 h 1 h 1

( W (log X log x ))( W Q log x )

W W Q

( W Q log x )( W Q ) ( W Q log x )

( W Q )( W (log X log x ))

W Q log x

( W Q log x )( W Q ) ( W Q log x )

= =

= = =

= =

= = =

 
− − 

  = +
 

− 
 


−

+

−


 

  

 

  




 
 
 



 

              (21)

 

Thus, on substituting the value of h1 h2and   from equation (20) to equation (12) 

and from (21) to equation (15), we obtain the proposed calibrated estimators as: 

L L

bt.L1 h h.bt bt.L1 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= + − 

 
                                                (22)

 

where,       

L

h h h h.bt

h 1
bt.L1 L

2
h h h

h 1

W Q (log x )y
ˆ

W Q (log x )

=

=

 
 
  =
 
 
 




   

and 

L L

bt.L2 h h.bt bt.L2 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= + − 

 
                                               (23)

 

where,  
L L L L

h h h h h.bt h h h h h h h.bt

h 1 h 1 h 1 h 1
bt.L2 L L L

2 2
h h h h h h h h

h 1 h 1 h 1

( W Q )( W Q y log x ) ( W Q log x )( W Q y )
ˆ

( W Q log x )( W Q ) ( W Q log x )

= = = =

= = =

 
− 

  =
 

− 
 

   

  
 

and        
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h h
h.bt h

h h

X x
y y exp

X x

 −
=  

+ 
 

2.1 Expression for Mean Squared Error (MSE) 

The calibration estimator for first suggested estimator can be rewritten by first order 

Taylor expansion as: 

( )
L

2

bt.L1 h h

h 1

y Y W y Y
=

= + −
( )

( )

L

h h bt.h

h 1

L
2

h h

h 1

W log X Y

W log X

=

=

  
  
  − 

  
    




                      

                                                ( )
L

h h h

h 1

W log X log x
=

 
 − 
 
  

The mean squared error of the estimator up to second order of approximation is 

given as:  

( )
2

bt.L1 L1MSE y E y Y = −   

( )
2L

xh2 2 2 2 2
h h h yh bt.L1 xh bt.L1 h h xh yh xh

h 1

C
W f Y C C 2 Y C C C

2=

  
= − + −   −  

   
  

where 

( )

( )

L

h h bt.h

h 1

bt.L1 L
2

h h

h 1

W log X Y

W log X

=

=

 
 
 

 =
 
 
 




 

The calibration estimator in case of second proposed estimator can be rephrased by 

first order Taylor expansion as: 

( )
L

2

bt.L2 h h

h 1

y Y W y Y
=

= + −
( )

L L L

h h h h h h h

h 1 h 1 h 1

2
L L

2
h h h h

h 1 h 1

W log X Y W Y W log X

W log X W log X

= = =

= =

     
−     

     
− 

    
−    

    

  

 

 

                   ( )
L

h h h

h 1

W log X log x
=

 
 − 
 
  

The mean squared error of the estimator up to second order of approximation is 

given as:  
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( )
2

bt.L2 L2MSE y E y Y = −   

       ( )
2L

xh2 2 2 2 2
h h h yh bt.L2 xh bt.L2 h h xh yh xh

h 1

C
W f Y C C 2 Y C C C

2=

  
= − + −   −  

   
  

where 

( )
L L L

h h bt.h h bt.h h h

h 1 h 1 h 1

bt.L2 2
L L

2
h h h h

h 1 h 1

W log X Y W Y W log X

W log X W log X

= = =

= =

    
−    

     =
   

−   
   

  

 

 

Now we consider the different values of hQ  to obtain the different forms of the 

suggested calibration estimator as follows:  

1. The calibration estimators when hQ 1=  

Case-I:   
L L

bt.L1 h h.bt bt.L1 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= +  − 

 
 

 

where,      

L

h h.bt h

h 1
bt.L1 L

2
h h

h 1

( W y log x )
ˆ

( W (log x )

=

=

 
 
  =
 
 
 




 

Case-II:   
L L

bt.L2 h h.bt bt.L2 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= +  − 

 
 

 

where,    

L L L

h h.bt h h h h h

h 1 h 1 h 1
bt.L2 L L

2 2
h h h h

h 1 h 1

( W y log x ) ( W y .bt)( W log x )
ˆ

( W log x ) ( W log x )

= = =

= =

 
− 

  =
 

− 
 

  

 
 

2. The calibration estimators when h

h

1
Q

x
=  

Case-I:  
L L

bt.L1 h h.bt bt.L1 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= +  − 

 
 

 

where,      

L
h

h h

hh 1
bt.L1 2L

h
h

hh 1

log x
W y

x
ˆ

log x
W

x

=

=

  
  
   =
  
  
   




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Case-II:  
L L

bt.L2 h h bt.L2 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= +  − 

 
 

 

where,  

L L L L
h h h h

h h h h

h h h hh 1 h 1 h 1 h 1
bt.L2 22L L L

h h h
h h

h h hh 1 h 1 h 1

W log x log x y
W y W W

x x x x
ˆ

log x W log x
W W

x x x

= = = =

= = =

      
 −     
       =  

     
−     

     

   

  

 

 

3. The calibration estimators when h

h

1
Q

log x
=  

Case-I:   
L L

bt.L1 h h bt.L1 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= +  − 

 
   

where,      

L

h h

h 1
bt.L1 L

h h

h 1

W y

ˆ

W log x

=

=

  
  

   =
  
  
   





 

Case-II:   
L L

bt.L2 h h bt.L2 h h h

h 1 h 1

ˆy W y W (log X log x )
= =

 
= +  − 

 
   

where,     

L L L
h h

h h h

h hh 1 h 1 h 1
bt.L2 L L

h
h h

hh 1 h 1

W y
W y W

log x log x
ˆ

W
W log x 1

log x

= = =

= =

     
−     

      =
   

−   
    

  

 

 

 

3. Simulation Study 

A simulation study is carried out in order to study the performance of the proposed 

exponential type calibrated ratio estimators on two datasets: real and artificial 

populations. The stratified random samples are drawn using Proportional allocation 

and simple random sampling without replacement (SRSWOR) from each stratum. A 

simulated study generating 25,000 samples is performed using R-software.  

The empirical percentage relative root mean squares error (%RRMSE) and 

percentage relative efficiency (%RE) of the estimators are computed using the 

following formulae: 
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225000

i 1

(y Y)1
%RRMSE(y ) 100 ; s,st.bt, bt.L1,bt.L2

25000 Y




=

 −
=   = 

 
  

sRRMSE(y )
%RE(y ) 100; st.bt, bt.L1, bt.L2

RRMSE(y )




=   =  

3.1 Real Population  

The mango production population (https://data.gov.in/catalog/all-india-and-state-

wise-area-and-production-fruits) is considered for the simulation study. It comprises 

of 78 units, divided into two strata (North and South zone) of 30 and 48 sizes. The 

study variable Y is production of mangoes (in tonnes) and the auxiliary variable X is 

the area (in hectares) from the year 2009-2015. The mean of the study and the 

auxiliary variable are Y 917.52=  and X 106.67= , respectively, and the correlation 

coefficient between X and Y is xy 0.901 = . The empirical percentage relative root 

mean squares error (%RRMSE) and percentage relative efficiency (%RE) of the 

estimators sy , st.bty , bt.L1y  and bt.L2y computed for mango population are given in 

Table 1 and 3, respectively.  

3.2 Artificial Population  

A finite population of size N=3000 is generated for 3 strata considering 1000 units in 

each stratum. The values for the auxiliary variable X are generated considering the 

Exponential distribution with varying values of the parameter for each stratum and 

the variable of interest Y is generated using the following models:  

1st strata:  1 1 1 1 lX Exp(1000,2) and Y 100 ( *X )= = +  +   

where 1 10.25 and N(0,2) =   

2nd strata: 2 2 2 2 2X Exp(1000,3) and Y 200 ( *X )= = +  +   

where 2 20.50 and N(0,4) =   

3rd strata: 3 3 3 3 3X Exp(1000,8) and Y 300 ( *X )= = +  +   

where 3 30.75 and N(0,8) =   

The empirical percentage relative root mean squares error (%RRMSE) and 

percentage relative efficiency (%RE) of the estimators sy , st.bty , bt.L1y  and bt.L2y

computed for artificial population are given in Table 2 and 4, respectively.  
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Table 1. Percentage Relative Mean Square Error (%RRMSE) for Mango Population 

hQ  Sample 

Size 

%RRMSE 

( sy ) 

%RRMSE 

( st.bty ) 

%RRMSE 

( bt.L1y ) 

%RRMSE 

( bt.L2y ) 

1  18 24.47 16.03 14.10 11.63 

20 18.85 17.20 13.15 9.82 

22 16.70 18.60 12.34 9.33 

24 15.29 19.77 11.45 8.53 

h

1

x
 

18 24.47 16.03 15.86 11.63 

20 18.85 17.20 14.83 9.82 

22 16.70 18.60 13.72 9.33 

24 15.29 19.77 12.72 8.53 

h

1

log x
 

18 24.47 16.03 14.53 11.63 

20 18.85 17.20 13.56 9.82 

22 16.70 18.60 12.68 9.33 

24 15.29 19.77 11.76 8.53 

 

Table 2. Percentage Relative Root Mean Square Error (%RRMSE) for Artificial 

Population 

hQ  Sample Size %RRMSE 

( sy ) 

%RRMSE 

( st.bty ) 

%RRMSE 

( bt.L1y ) 

%RRMSE 

( bt.L2y ) 

1  100 9.40 5.56 3.17 2.77 

200 6.33 3.75 2.19 1.85 

300 5.04 3.00 1.77 1.46 

400 4.26 2.54 1.50 1.24 

h

1

x
 

100 9.41 5.56 3.03 2.56 

200 6.27 3.75 2.09 1.69 

300 4.98 3.00 1.68 1.33 

400 4.21 2.54 1.42 1.13 

h

1

log x
 

100 9.51 5.56 3.35 3.03 

200 6.45 3.75 2.30 2.05 

300 5.14 3.00 1.85 1.63 

400 4.35 2.54 1.57 1.39 
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Table 3. Percentage Relative Efficiency (%RE) for Mango Population 

hQ  Sample 

Size 

%RE 

( sy ) 

%RE 

( st.bty ) 

%RE 

( bt.L1y ) 

%RE 

( bt.L2y ) 

1  18 100.00 152.64 173.59 210.48 

20 100.00 109.57 143.27 191.83 

22 100.00 89.79 135.29 179.09 

24 100.00 77.33 133.56 179.28 

h

1

x
 

18 100.00 152.64 154.28 210.48 

20 100.00 109.57 127.10 191.83 

22 100.00 89.79 121.72 179.09 

24 100.00 77.33 120.14 179.28 

h

1

log x
 

18 100.00 152.64 168.44 210.48 

20 100.00 109.57 138.94 191.83 

22 100.00 89.79 131.72 179.09 

24 100.00 77.33 130.01 179.28 

 

Table 4. Percentage Relative Efficiency (%RE) for Artificial Population 

hQ  Sample 

Size 

%RE 

( sy ) 

%RE 

( st.bty ) 

%RE 

( bt.L1y ) 

%RE 

( bt.L2y ) 

1  18 100.00 169.15 297.00 338.95 

20 100.00 168.74 288.53 342.41 

22 100.00 168.01 285.47 345.16 

24 100.00 167.88 284.59 344.68 

h

1

x
 

18 100.00 169.26 310.12 367.26 

20 100.00 167.12 299.65 370.74 

22 100.00 165.92 296.41 373.49 

24 100.00 165.67 295.31 373.05 

h

1

log x
 

18 100.00 171.10 284.05 313.99 

20 100.00 171.97 280.02 314.33 

22 100.00 171.45 277.68 315.20 

24 100.00 171.20 277.29 313.92 

 

4. Conclusion  

In this paper, two exponential type ratio calibration estimators have been suggested 

using logarithmic mean of the auxiliary variable in defining the calibration 

constrains. A simulation study has been conducted on real and artificial datasets, in 

order to compare the efficiency of the proposed estimator with the estimators given 
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by Bahl and Tuteja [1] and Singh [17]. It is observed from Table 1 and 4 that the 

proposed estimators are having less %RRMSE than the estimators given by Bahl and 

Tuteja [1] and Singh [17] for all values of Qh. It can be concluded that the proposed 

exponential type calibrated ratio estimators are more efficient than the estimators of 

Bahl and Tuteja [1] and Singh [17] under stratified random sampling as they are 

having less percentage relative efficiency for these datasets. 
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