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Depth Based Permutation Test For General Differences  
In Two Multivariate Populations 

 
Yonghong Gao  

Center for Devices and Radiological Health 
Food and Drug Administration 

 
 
For two p-dimensional data sets, interest exists in testing if they come from the common population 
distribution. Proposed is a practical, effective and easy to implement procedure for the testing problem. 
The proposed procedure is a permutation test based on the concept of the depth of one observation 
relative to some population distribution. The proposed test is demonstrated to be consistent. A small 
Monte Carlo simulation was conducted to evaluate the power of the proposed test. The proposed test is 
applied to some numerical examples. 
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Introduction 
 
Let X1, …, Xm and Y1, …, Yn be independent 
random samples from continuous p-dimensional 
populations with cumulative distribution 
functions F(x) and G(y) respectively. The in 
question interest is in assessing whether there 
are any differences whatsoever between the X 
and Y probability distributions. Thus, the null 
hypothesis is tested (1.1) against the most 
general alternative possible (1.2): 
 
                 H0: F(t) = G(t), for any t,              (1.1) 
 
           H1:F(t) ≠ G(t), for at least one t.        (1.2) 
 
In the univariate case, a popular statistic is the 
two-sided two-sample Kolmogorov-Smirnov 
statistic KS, which is  
 
     KS = (m n / d ) Supx {| Fm(x)-Gn(x) |}      (1.3) 
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where d is the greatest common divisor of m and 
n, Fm(x) and Gn(x) are the empirical distribution 
functions for the X and Y samples, respectively.   
Under the null hypothesis, KS is expected to be 
small, so the null hypothesis is rejected if KS > 
Jα, where the constant Jα is chosen to make the 
type I error probability equal to α. When sample 
sizes are small, values of Jα are given in tables, 
when sample sizes are large, where min{m, 
n}→∝, Smirnov (1939) derived the asymptotic 
distribution of the standardized KS and the 
limiting distribution of KS is quite complex. 

Another popular approach to the 
univariate testing problem is the density-based 
approach, where the two population density 
functions are estimated using kernel or spline 
estimation methods and then the test is defined 
as the distance (maximum distance or mean 
distance) between the two estimated density 
functions. Bowman (1985) uses the L2 distance 
and Allen (1997) uses the L1 distance. Allen 
(1997) conducts a comprehensive simulation 
study to compare the power of the KS-test, L2 
distance density test, L1 density test and t-type 
permutation test, the simulation results show that 
there is no uniformly superior test. 

In multivariate setting, two special cases 
of the testing problem (1.1) have been studied by 
many investigators. The first case (more 
extensively studied case) is the two-sample 
location problems:  
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              H0:µ=0,where G(x)=F(x-µ).           (1.4) 
 
The Hotelling’s T2-test is the usual normal 
theory test for this problem, it is well-known that 
the Hotelling’s T2 is the best when distribution is 
multivariate normal. To free the constraint of 
normality and to gain the benefit of robustness, 
many sign-based and rank-based nonparameter 
tests are proposed using the multivariate 
versions of the Mood median test and Mann-
Whitney test, see Marden’s (1999) excellent 
review paper on this topic. 

The second case is the testing of 
homogeneity of covariances problems: 

 
                     H0: Var( X ) = Var( y ).            (1.5) 
 
The Box’s M-test is the likelihood ratio test for 
this problem under multivariate normal 
distributions. 
 For the general testing problem (1.1), 
there is not much activity in existing literature. 
To develop the multivariate analog of 
Kolmogorov-Smirnov test, the first challenge 
faced is to define the empirical distribution 
based on multivariate data, and that challenge 
has not been met satisfactorily. Marden (1999) 
notices the association of F(x) and R(x, F) in 
univariate case: R(x, F)=2F(x)-1, where R(x, F) 
is the rank of x relative to distribution F: R(x, 
F)= E (Sign(x-X)), with X∼ F. Hence Marden 
(1999) suggests we could use KSR, 
 
       KSR=Supx {| Rm(x, F) – Rn(x, G) | }      (1.6) 
 
where Rm(x, F) is the multivariate spatial rank of 
x relative to sample {Xi}, so far no research 
activity in investigating the performance of KSR 
has been reported yet.  

In this article a KS-test is examined 
from another aspect. The key idea of 
Kolmogorov-Smirnov’s test is to compare the 
two distribution functions F(x) and G(x). 
Noticed was that the distribution function F(x) is 
some sort of measure of the position of x relative 
to distribution F, for example, if F(x) is close to 
.5, then x is in the close neighbor of the center of 
distribution F, if F(x) is close to 0 or 1, then x is 
on the outskirt of distribution F, which leads to 
the idea of the depth of one observation relative 
to a distribution. It is believed that the depth 

function D(x, F) of one observation x relative to 
some distribution F is some continuous function 
of F(x): D(x, F)=g(F(x)). For example, in 
univariate setting, the rank-based depth Dr(x, F) 
and the simplex’s depth Ds(x, F)  are concave 
functions of F(x):  

 
                Dr(x, F)=4 F(x) (1-F(x)),      
                    Ds(x, F)=2 F(x) (1-F(x)).           (1.7) 
 
Unfortunately in higher dimensions there does 
not exist a similar explicit formula supporting 
the conjecture that D(x, F) is some continuous 
function of F(x).  

Given the association of D(x, F) and 
F(x), we use the difference of D(x,F) and D(x,G) 
to measure the difference of F(x) and G(x). 
While the depth function and the corresponding 
empirical version are well defined in 
multivariate settings. 

 
Methodology 

 
Statistical depth functions have been used to 
measure the centrality of a multivariate data 
point with respect to a given data cloud, a center 
is usually given by a point of maximal depth. 
This center-outward ordering of the multivariate 
data provides a foundation for new 
nonparametric methods in multivariate 
estimation and inference.  

For recent results of different versions 
of depth function and their applications, see Liu 
(1990), Liu and Singh (1993), Yeh and Singh 
(1997) and Zuo, Cui and He (2003). The depth 
functions usually seen in literature are Tukey’s 
depth proposed by Tukey (1975), simplex depth 
introduced by Liu (1990), projection depth and 
Mahalanobis depth. They are all affine invariant 
and show great potential in multivariate analysis. 
Mahalanobis’s depth is the simplest but least 
popular one, mainly because it is not robust. 
Projection depth, Tukey’s depth and simplex 
depth can be quite robust, but the common 
disadvantage of these three depth functions is 
that the calculations of these depth functions are 
quite computationally intensive, especially in 
high dimensions. Gao (2003) proposes a robust 
yet easy to calculate depth function based on 
spatial ranks. In this paper we use this notion of 
the depth. 
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For a point x in Rp and a p-variate 
distribution F, the spatial rank of x relative to F 
is defined as  
 
         R(x, F) = E ( Sign ( x – Y)), Y∼ F,      (2.8) 
 
where Sign(x) is an unit vector in the same 
direction of x. Then the depth of point x  relative 
to distribution F is 
 
                       D(x, F)=1- || R(x, F) ||2                  (2.9) 
 
The sample version of R(x, F) and D(x, F) based 
on iid sample X1, …, Xn are 
 
                    Rn(x,F)=(ΣSign(x-Xi))/n         (2.10) 
 
                    Dn(x, F)=1- || Rn(x, F) ||2               (2.11) 
 
Under the null hypothesis (1.1), D(x, F)=D(x, G) 
for any x, so the proposed test statistic is 
  
    T(m,n)= Supx {|Dm(x,F) – Dn(x,G)|}       (2.12) 
 
and the null hypothesis is rejected when T(m, n) 
> tα, where tα is chosen to make the type I error 
probability equal to α. 
 
Proposition 1 
 Under the null hypothesis (1.1), when 
min{m, n} → ∞, T(m, n )→0. The proof of 
above proposition is based on the following 
result presented in Gao (2003) about the rank 
based depth,  
limn→∞ Supx  {|D(x,F)–Dn(x,F) |}=0, for any x, F. 
Note that test T(m, n) and test KSR are closely 
related and produces the following result: 
 
                    T(m, n) ≤ 2 KSR. 
 

It is not easy to get the distribution 
(exact or asymptotic) of T(m, n) under the null 
hypothesis, bootstrap and permutation 
resampling methods provide the attractive 
alternative approaches to determine a critical 
point for the test. Permutation approach usually 
shows slightly higher power than the bootstrap 
approach, hence we use permutation in this 
paper. The procedure is implemented as the 
following. 

The original two samples are pooled into one 
large sample {X1, …, Xm, Y1, …, Yn}, Two 
resampled data sets are drawn without 
replacement from the pooled forming the 
permutated samples {X1*, …, Xm*} and {Y*1, 
…, Y*n}. Each pair of resampled datasets gives 
a permutated value of the statistic T*(m,n).  We 
repeat this process B times, yielding B 
permutated values of T*(m,n), for a specified 
level of significance α, the hypothesis (1.1) is 
rejected if #{ T*(m,n) ≥ T(m, n) }+1 ≤ (B+1)α . 
 
Example 1: Iris data 
 The Iris dataset was introduced by R. A. 
Fisher as an example for discriminate analysis. 
The data report four characteristics (sepal width, 
sepal length, pedal width and pedal length) of 
three species of Iris flower: Setosa, Versicolor 
and Virginica. From the scatter plot of the any 
two variables it can be seen that Setosa is quite 
different from the other two species. The 
proposed test is applied, T(m,n), Marden’s rank-
based test KSR, Box’s M-test TM and the 
Hotelling T2 test on the three pairs of dataset: 
(Setosa and Versicolor), (Versicolor and 
Virginica), and (Setosa and Virginica). The 
values of the test statistics and the p-values (the 
values within the parenthesis ) are shown in 
table 1. From the table we can see that the three 
species are all significantly different from each 
other using any of the three tests. 
 
Table 1. Analysis of Iris Data. 
 

Test Setosa and 

Versicolor 

Versicolor 

and Virginica 

Setosa and 

Virginica 

T(m,n) .9756 (0) .9885 (0) .8843 (0) 

KSR 1.8807 (0) 1.942 (0) 1.372 (0) 

TM 71.302 (0) 116.648 (0) 37.392(0) 

T2 2580.8 (0) 4879.6 (0) 355.4(0) 

 
Example 2: Hotdogs 
 The Hotdogs (1989) data file contains 
data on the sodium and calories contained in 
each of 54 major hot dog brands. The hotdogs 
are classified by type: beef, poultry, and meat 
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(mostly pork and beef, but up to 15% poultry 
meat), the two variables are Sodium (Milligrams 
of sodium per hot dog) and Calories (Calories 
per hot dog). Corresponding to three different 
type of hot dog produces three data sets, the 
proposed test is used to determine if these three 
datasets have the same distribution in terms of 
the two variables being considered. The analysis 
result is shown in Table 2.  

It is shown in Table 2 that the four tests 
agree on the following conclusions: there is no 
significant evidence to say that the beef hotdogs 
and the meat hotdogs are different, but the beef 
hotdogs and the poultry hotdogs are significantly 
different. For meat hotdogs and poultry hotdogs, 
there is some disagreement among the four tests, 
both depth test and rank test show some but not 
that strong evidence to say that these two types 
of hotdogs are different, while Hotelling’s T2-
test and Box’s M-test show significant evidence 
of difference. To explain this disagreement, the 
data is further analyzied.  One outlier is found 
(with extreme low sodium value) for the Meat-
type hotdogs, because of that one observation, 
the poultry hotdogs look more like part of the 
meat hotdogs family (the range of meat hotdogs 
covers the range of poultry hotdogs). The outlier 
is deleted and compared with the poultry 
hotdogs again. The result is in Table 2, where 
MeatN means the new meat hotdogs data set. 
Then the four test procedures give us the same 
conclusion that the meat hotdogs and poultry 
hotdogs are different. 

From this example it is seen that the 
depth-based permutation test is not powerful 
when the range of one data set covers the range 
of another data set, and we should always check 
the data first, clean the data if possible before 
implementing any formal testing procedure.   
 
 

 
 

Results 
 
Two simulation experiments were conducted 
studying the  empirical power of the proposed 
test. The first experiment investigates the 
sensitivity of the test to the mean effect, the 
second investigates the sensitivity of the tail 
mass effect (characterized by variance matrix). 
For comparison purpose we estimate powers of 
the Hotelling’s T2-test, Box’s M-test TM and 
Marden’s KSR test  as well in the conducted 
experiments. For every trial, two samples are 
generated, one from distribution F and one from 
G, the hypothesis (1.1) is tested independently 
using each of the four testing statistics 
mentioned above. The level of significance is 
5%, the bootstrap size B is 199, the sample size 
is m=n=30, and dimension is p=2. The trial was 
repeated 1000 times for each case 
(corresponding to different pairs of (F, G)), the 
empirical power (the number of times the null 
hypothesis was rejected divided by 1000) is 
recorded for each test and the results are 
summarized in Table 3 and Table 4. 
 Let N2(µ, σ2 I2) denote the bivariate 
normal distribution with mean vector as µ and 
covariance matrix as σ2 I2. For experiment 1,  
use F= N2((0,0), I2), G= N2((a,a), I2), with a=0, 
.2, .4, .6 and .8. For experiment 2, use F = 
N2((0,0), I2), G= N2((0,0), bI2), with b=1, 1.2, 
1.4, 1.6 and 1.8. When the case is the location 
problem in multivariate normal distribution 
(corresponding to experiment 1), the Hotelling’s 
T2 has the highest power as it should be, the 
permutation test T(m,n) has power as much as 
80% of the Hotelling’s T2 test, the Box’s M-test 
has no power in this case since it is location 
invariant, Marden’s KSR test has some power but 
lower than T(m,n) test. 

 
 
 
 

Table 2. Analysis of Hotdogs Data. 
 

Test Beef vs. Meat Beef vs. Poultry Meat vs. Poultry MeatN vs. Poultry 

T(m,n) .2208 (.71) .7712 (.005) .2183 (.1) .6301 (0) 
KSR .6260 (.73) .9382 (.006) .8208 (.13) .8976 (0) 
TM 1.696 (.73) 5.011 (.003) 2.454 (0) 5.411 (0) 
T2 .506 (.78) 119.1 (0) 87.96 (0) 81.82 (0)  
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For the case of the homogeneity of 

covariance matrices (corresponding to 
experiment 2), the Box’s M-test has the highest 
power, the proposed test T(m,n) is the second 
best the Hotelling’s T2 test and Marden’s 
Marden’s KSR test have no power. From this 
small simulation study it is determined that the 
proposed test is competitive at least in those two 
cases and further research is needed to 
investigate its properties under other situations. 
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Table 3.  Simulation Study 1: Study of the sensitivity to the mean effect. 
 

Test a=0 a=.2 a=.4 a=.6 a=.8 
T(m,n) .047 .148 .287 .509 .781 
KSR .051 .121 .145 .241 .422 
TM .052 .048 .049 .049 .051 
T2 .051 .149 .493 .764 .983 

 
 

Table 4.  Simulation Study 2: Study of the sensitivity to the tail mass effect. 
 

Test b=1 b=1.2 b=1.4 b=1.6 b=1.8 
T(m,n) .047 .089 .101 .149 .356 

KSR .051 .069 .06 .09 .067 
TM .052 .099 .11 .198 .511 
T2 .051 .069 .06 .054 .066 
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