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A new model called as Marshal-Olkin Alpha Power Inverse Lindley (MOAP-IL) 

distribution has been proposed. The proposed model is more tractable since the 

density function has complex shapes. Properties and Estimation procedure has been 

discussed. The usefulness of the model has been verified through real life and 

simulated data.  
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1. Introduction 

Developing new class of continuous distributions from classical ones always remain 

a central focus of researchers. The extended class offers a more flexibility in 

complex data analysis. In many realistic fields like economics, finance and 

insurance, survival analysis, these extended distributions turn out to be very useful 

for the new emerging domains According to Lee et al. (2003), the classical 

distribution were extended by the method of differential equation, quantile function 

or transformation techniques prior to 1980 and post 1980, the new class of 

distributions were mainly obtained as a result of combining classical or adding 

parameter to classical distributions. These methods were named as method of 

combination. 

Marshal-Olkin (MO) class was pioneered by Marshal-Olkin (1997) by using the 

method of combination having cumulative distribution function(cdf) and probability 

density function(pdf) given by (1) and (2) respectively: 
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Where F(z) and f(z) are the base model cdf and pdf.  

Mahadev and Kundu (2017) recently offered a new family known as Alpha Power 

Transformation (APT) family. This family was also obtained by including extra 

shape parameter which incorporates skewness to the base model. The APT family 

have the following cdf and pdf: 
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Nassar et al. (2019) proposed new extension of MO family by incorporating (3) as 

baseline cdf in (1) and obtained a new family known as Marshal-Olkin Alpha Power 

(MOAP) with (5) as the cdf: 
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The corresponding pdf is: 
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This class of distribution possess increasing, decreasing, non-montone hazard rate 

and can be applied to skewed data thereby finding its applications in various fields 

such as finance, medical science, insurance etc. Thus this class is very well 

accommodating and can be effectually employed for complex data analysis.   

Lindley (1958) proposed Lindley distribution (LD) which has gained focus from 

researchers. This distribution turns out to a good alternative for exponential 

distribution in many other cases. LD has been progressively extended and practiced 

in various realistic situations. Sharma et al. (2015) proposed Inverse Lindley 

Distribution (ILD) as a stress- strength reliability model and observed its basic 

properties. The cdf and pdf of ILD is given by:
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Various authors including Sharma et al. (2016), Eltehiwy (2018), Dey et al (2018), 

Jan et al. (2019) have extended ILD using different approaches.  In this article, a new 

distribution is obtained by substituting (7) and (8) in (5) and (6) respectively. The 
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newly obtained distribution is named as Marshal-Olkin Alpha Power Inverse Lindley 

(MOAP-IL) distribution. The proposed model combine the features of MO family 

and ILD and is therefore proficient in modeling skewed data with increasing, reverse 

J, symmetrical, unimodal density function. The proposed model competes well with 

other models hence increasing its flexibility in modeling real life data sets. Some 

reliability measures and statistical characteristics of the model have been derived. 

The parameters have been estimated using MLE. The effectiveness of the model has 

been illustrated through simulated and two real life data sets. Lastly the conclusion 

has been stated. 

 

2. The Proposed Model 

Definition. 

A random variable Z follows MOAP-IL if its cdf is: 
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and the corresponding pdf is : 

Where 0,,0  z . 

Special Cases: 

a. If 1→ , MOAP-IL tends to Marshall Olkin-ILD. 

b. If 1→ and 1= , the model reduces to ILD. 

c. If 1= , the model reduces Alpha power ILD. 

2.1 Reliability Measures 

The Reverse hazard rate )(z , survival function S(z) and hazard rate h(z) of Z are 

respectively obtained as: 
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The behavior of the density function, h(z), S(z)  and are displayed in Figure 1. Figure 1 (a) 

displays the different shapes of density function.  
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Figure 1.  (a) Pdf plot (b) hazard rate (c) reverse hazard rate (d) survival plot 
of MOAP-IL for different parameter combinations. 

 

2.2 Structural Properties. 

To explore the statistical features of the proposed model, the mixture representation 

of MOAP family has been used. The pdf of Z represented as a linear combination of 

exponentiated ILD (EILD) is given as: 
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Where )(1 zH s+
 is the cdf of EILD with power parameter (s+1). 

2.3 Moments 

The key features of a probability distribution including skewness, peakedness can be 

investigated using moments. The 
r

of Z has been calculated using (11) as: 
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 Also the MGF of Z is: 
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2.4 Incomplete Moments 

Incomplete moment (IC) possess applicability in many applied areas and are used in 

estimating Bonferroni and Lorenz curves. The 
thn IC of Z is: 
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2.5 Order Statistics 

The pdf of Z(r:n)  is: 
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Where )(zG for 1,1   and 1=  is given by (9). 

Substituting the value of r=1 and r=n in (14), the pdf of minimum and maximum 

order statistics can be obtained respectively. Furthermore, the cdf of Z(r:n) is: 
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2.6 Stress-Strength Reliability 

 Let Z (strength) ~MOAP-IL )( ,1,1   and Y (stress) ~MOAP-IL )( ,2,2   are i.i.d 

random variables. Then, the stress-strength reliability is:  
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Where ss   ,  are given by equation (12) for Z and Y respectively. 

2.7 Renyi Entropy 

If Z has the pdf given by (10), Renyi entropy denoted by  )(zI  is:                   
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After simplification, (16) reduces to 
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2.8 Stochastic Ordering 

The MOAP-IL distribution follows likelihood ratio ordering and from the following 

result (Shaked and Shanthikumar, 1994)  
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it follows that MOAP-IL is stochastically ordered. The result is confirmed in the 

theorem. 

Theorem: Suppose X ~MOAP-IL )( 1,1,1   and Y ~MOAP-IL )( 2,2,2  . If  == 21

and 21   (or  == 21 and 21   ) then zYZ lr  . 

Proof: The likelihood ratio i.e 
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decreases in x for  == 21 and 21   (or  == 21 and 21   ),  therefore

zYZ lr  and hence YZ st . 

2.9 Estimation 

The parameters of MOAP-IL model are estimated using MLE. The log likelihood 

function from a sample of ‘n’ size taken from (10) is: 
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The normal equations obtained after differentiating (18) w.r.t  ,, are:





































−−−













+
+



















−

−





































−−−+

−











+
+

+
−

−=




−−

−












+
+

−

−
−











+
+

−

=












+
+

−

=

−




1)1(
1

1
1)1(

)1(

1)1)(1(

1
2

1

1
1

1log

log

1

1
1

2
1

1

1
1

1

1 1

1
1

1

1

iz

ii

iz

i

iz

i

i

e
zz

i

e
z

n

i
e

z

n

i

z

i

e
z

e
znnL







































 

MARSHALL-OLKIN ALPHA POWER INVERSE LINDLEY DISTRIBUTION 

AND ITS APPLICATIONS  

 

10 

 


=












+
+

−












+
+

−

















































−−−+



















−−−

−=



−

−

n

i
e

z

e
z

iz

i

iz

i

nL

1 1

1
1

1

1

1
1

1

1)1)(1(

1)1(1

2
log



































































−−−+


























+
+−

+

−−−















































+
+−

+
+−

+
−=





−

−












+
+

−

−












+
+

=

−

−

=

−

=



1)1)(1(

1

1
1

)1(

1

)(log)1)(1(2
1

1
1

)1(

1
log

1

1

2log

1

1
1

1

2
1

1
1

1

1

1
2

1

iz

i

i

iz

i

i
i

e
z

ii

z

e
z

n

i

z
n

i izi

zn

i i

zz

e

e
z

e

z

nnL





































Since the above system of equations are complicated mathematical expressions and 

are very difficult to solve for a particular estimate, therefore the estimates of 

parameters are obtained using R software. 

2.10 Applications 

This section is assigned to prove the real life application of the proposed model. The 

proposed model has been compared with other existing lifetime models such as 

Generalised Inverse Weibull Distribution (GIWD), Alpha Power ILD (APILD), 

Logarithmic ILD (LILD), Generalized ILD (GILD) and ILD using two real life 

datasets. The comparison has been made on the basis of AIC, BIC, -logL. Among all 

compared models, the one with lowest value of AIC, BIC, -logL is considered a 

better model. Cramer-von Mises statistic (W*), AD statistics (A*), K-S statistics has 

been employed for the model fitting.  The distributions that has been taken in 

consideration for comparison have the following pdfs:  
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The two data sets have been taken from Maguire et al. (1952) Ghitany et al. (2008) 

respectively. The ML estimates together with –logL, AIC, BIC values are presented 

in Table 1, 2 respectively. Table 3, 4 displays W*, A* and K-S of the two data sets 

respectively. From these tables, it is apparent that the proposed model competes well 

relative to other models. 

 

Table 1. ML Estimates and Information Measures for Coal mining data 

Model                                          Estimates                                     -logL               AIC                   BIC 

                          𝛼                          𝜹                      𝜸                                                

MOAP-IL   15.45( 63.35)          2.70(2.90)         21.22(36.35)            710.27           1426.54             1434.62 

 APIL         514.09(607.35)       11.77(2.38)               -                         721.13           1446.26             1451.65 

 LIL                -                          13.54( 2.73)        39.49(17.48)           724.28           1452.56             1457.94 

 GIL           0.64(0.04)               14.25(2.19)              -                          726.51           1457.01             1462.39 

 IL                  -                          35.54(3.32)              -                          761.86            1525.72            1528.41 

 GIW       4.97(1.23e+3)        0.64(4.06e-2)        4.73(1.84e+3)           726.30          1458.61              1466.67               

 

Table 2. ML Estimates and Information Measures for Bank data 

Model                                          Estimates                                      -logL               AIC                   BIC 

                             𝜶                           𝜹                      𝜸                                                

MOAP-IL     481.11(466.21)         5.06(1.19)          0.07(0.03)         326.10            658.20                666.02 

APIL             0.22(0.177)               8.43(1.35)               -                    335.25            674.52                679.73 

LIL                  -                              6.84(1.10)            0.63(0.36)        336.29            676.58               681.79 

GIL              1.15(0.08                  7.23(0.90)              -                       334.78            673.56               678.77 

IL                       -                           6.10(0.54)                -                    336.62            675.24               677.85 

GIW            3.09(420.32)            1.90(221.79)           1.16(0.07)        334.38            674.76               682.58 

 

The pp and cdf plots for the two data sets are presented in Figure 2 and 3 

respectively. The asymptotic 95% CI for the two data sets are respectively given by 

(19) and (20): 
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Table 3. Goodness of fit statistics for Coal mining data 

Model                 W*                A*                 K-S                

MOAP-IL            0.32                 2.25            0.13                

APIL                    0.82                 4.33            0.16              

LIL                       1.08                 5.81            0.17  

GIL                      0.75                  4.41            0.14 

IL                         4.63                 23.80           0.33 

GIW                     0.71                  4.40            0.14 

 

Table 4. Goodness of fit statistics for Bank data 

Model                 W*                A*                 K-S                

MOAP-IL            0.09                 1.07           0.07               

APIL                    0.37                 2.66           0.11             

LIL                       0.49                 3.48           0.15  

GIL                      0.43                  2.93          0.11 

IL                         0.57                  3.91          0.16 

GIW                    0.42                   2.89          0.11 

 

3. Simulated Data Analysis. 

The proposed distribution has been compared with other lifetime models using 

simulated data. The data has been generated using inverse cdf technique for n=500, 

the results are presented in Table 5. It is evident from the table also that MOAP-IL 

competes well for generated data. 

                              

Table 5. ML Estimates and Information Measures for Simulated Data 

Model                                          Estimates                                        -logL                 AIC                   BIC 

                              𝜶                          𝜹                      𝜸                                                

MOAP-IL       1.00( 1.68)          1.68(0.14)               1.22(1.05)          1226.95            2458.89          2468.54 

 APIL             1.49(0.55)         1.68(0.14)                   -                       1227.9              2461.95          2469.38 

 LIL                      -                    1.68(0.13)              1.49(0.5)             1228.92             2460.83          2469.26 

 GIL                0.95(0.03)            1.83(0.06)                  -                     1227.56            2459.12           2471.55 

 IL                      -                        1.82(0.06)                  -                      1228.6              2463.26          2472.48                                 

 GIW              1.82(43.76)          0.74(17.71)           1.00(0.03)          1228.03             2462.05            2474.69              
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Figure 2. Cdf plot and PP plot for the coal mining data. 

 

 

Figure 3. Cdf and pp plots for the Bank data set. 

 

 

4. Concluding Remarks 

A new extension of ILD has been proposed. This model can serve as better 

alternative for other existing lifetime models. This model exhibits various complex 

shapes of density function. Some fundamental characteristics along with the 

parameter estimates have been obtained. The model conformity has been done using 

two real life and generated data. The model is expected to stand more flexible than 

the compared models and can be used in various applied areas. 
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