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In sample surveys, non-sampling errors are inherent due to non-response and 

measurement errors. Non-response occurred when the response is not available from 

respondent due to not being at home, no willingness to answer etc. Another error is 

the difference between the observed and actual values is known as measurement 

error. For dealing with such kind of errors1, we advocate the use of factor-type 

estimator for estimation of population mean in this manuscript and the expressions of 

the bias, mean square error (MSE) and optimum mean square error of suggested 

estimator has been derived. An empirical study is also performed over a real data set 

and bias, mean squared error and efficiency calculated for comparison purpose by 

simulation.  

 

Keywords: Estimation, non-sampling error, measurement error, simple random 

sampling, factor-type estimator.  

 

  

1. Introduction 

In the present scenario - states, industries, scientific institutions, public 

organizations, international agencies, etc. are the primary users of statistical data and 

it is necessary to collect fair data from the respondents according to requirement of 

the purpose. For instance, for better medical facilities, it is necessary to collect data 

about health status from the respondent of the country. One way of finding it is to 

collect the data from all the individuals of the country. This system of collection of 

data is called complete enumeration or census. Obviously, more labour, cost and 

time will be needed to obtain data for the census. However, if information about 

every unit is required then there is need of census. Population census, agricultural 

census, income tax assessment, preparation of voter list for different election 

purposes, etc. are examples for need of census. 
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But when some amount of error is permissible it may possible to select some units in 

the scientific manner from the population and infer the population on the basis of 

selected units. This set of some units is known as a sample and the procedure of 

selection of the sample is called sampling. Sampling is a routine experience for all of 

us, for example - a person makes a judgment about the quality of items by examining 

only a few items from a lot offered for sale.  

On the other hand, in the case of destructive units, complete enumeration is 

impractical. If it is to obtain the average life of refrigerators, televisions, bulbs, etc., 

then we will have to limit the observations, up to a part of the population and 

inference will have to be drawn by the data in the sample. However, the outputs are 

different from the population values due to inference about the population made 

from the sample in the survey. 

On the other hand, since a part of the population is examined, therefore errors are 

inherent and by regulating in a proper manner and operation by trained persons can 

reduce the same. By specified statistical principles, a sample survey is carried out to 

estimate the characteristics of the population. 

Comparatively, sampling is a technique of saving money, time, and manpower to 

assess information about unknown population parameters, in a faster and more 

precise manner instead of complete enumeration. Sample surveys are extremely 

popular and the data collected, serves as one of the foremost sources of information, 

required for reliable predictions of unknown population parameters for investigators, 

researchers, planners, administrators, etc. In addition, these involve well-trained 

manpower for data handling which produces high-level accuracy in predictions due 

to the least incorporation of non-sampling errors. The sampling approach provides a 

dual optimization advantage, i.e., it is smaller in scale and provides an equally 

efficient forecast about unknown parameters. 

A regular difference between answer given by the respondent and actual answer is 

termed as measurement bias. For example, a respondent may report lower income 

than actual income. [Cochran (2005), Sukhatme et al. (1984)]. 
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Figure. 1: Measurement errors 

 

 

The methods of estimation are examined under the hypothesis that composed data 

are pure and consistent. Although, data collected in real life, through samples may 

contain errors due to under or over reporting, not willing to answer, privacy issues 

and other reasons of respondents (Figure. 1). The difference between inspected 

(observed) and actual values is known as an error and is technically named as 

measurement error. 

 

 

Figure. 2: Effect of measurement errors 
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Measurement error causes serious results for estimation. Figure.2 represents the 

observed (with measurement errors) and actual values from the respondent and their 

linear representation. Measurement error be the gap between observed values and 

actual values of the variable. The regression lines for observed and actual values are 

different, therefore, it is clear that the predictions yield by observed values will 

ambiguous and misleading.   

Due to the importance of measurement error problems, there are a large number of 

research papers and books based on measurement errors are available in the 

literature. Hence it is quite difficult for us to discuss all the material of existing 

literature. Instead of reviewing all the same, we focus on the relatively important 

researches on measurement error-based problems in sample survey. Cochran (1968) 

provided a valuable text on the review of measurement errors in Statistics.  

A family of factor-type ratio estimators was given by Singh and Shukla (1987) with 

one parameter. The estimator proposed by them is  

𝑦̅∗ =  
𝑦̅

𝑥̅∗ ,                                                                (1) 

𝑤ℎ𝑒𝑟𝑒 𝑥̅∗ = [ 
(𝐴 + 𝐶)𝑋̅ + 𝑓𝐵𝑥̅

(𝐴 + 𝑓𝐵)𝑋̅ + 𝐶𝑥̅
 ]

−1

 

Where 𝐴 = (𝑚 − 1)(𝑚 − 2), 𝐵 = (𝑚 − 1)(𝑚 − 4), 𝐶 = (𝑚 − 2)(𝑚 − 3)(𝑚 − 4),
(0 < 𝑚 < ∞) is a constant.  

The beauty of this estimator is that it provides different estimators like, ratio, 

product, dual to ratio, etc. on different values of parameter m. The factor-type 

estimator is bias controlled with multiple choices of parameter m for optimum mean 

squared error (MSE). Shukla et al. (2012b) introduced an estimation strategy for the 

purpose of optimization in presence of measurement error using factor-type 

estimator.  

 

2. Notations and set up 

Let U be a finite population of size N and S be a sample of size n drawn from 

population by SRSWOR. Let y and x represents the study and auxiliary variables, 

respectively under consideration. 𝑌̅, 𝑋̅ be the population means and 𝑦̅, 𝑥̅ be the 

sample means of the y and x, respectively. 𝑆𝑌
2 and 𝑆𝑋

2 represents the population 

variance for y and x and 𝜌 is the coefficient of correlation between y and x. 

Let the measurement errors are present in the sample while selecting, recording or 

processing the data. The 𝑖𝑡ℎ observed unit of y and x in the presence of measurement 

error in the sample is (𝑦𝑖, 𝑥𝑖) (say) respectively. Let (𝑢𝑖, 𝑣𝑖)  be the measurement 

errors corresponding to the (𝑦𝑖, 𝑥𝑖) such that (𝑦𝑖 = 𝑌𝑖 + 𝑢𝑖 ,𝑥𝑖 = 𝑋𝑖 + 𝑣𝑖) where 

𝑌𝑖 and 𝑋𝑖 be the actual values of 𝑦𝑖  𝑎𝑛𝑑 𝑥𝑖 respectively.  

Since, sample observations are independent to each other, therefore the measurement 

error present on y and x are independent of each other, so u and v are also 
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independent. Also, assume that the average of 𝑢𝑖 and 𝑣𝑖 are zero as the measurement 

error caused by under and over-reporting problems. 𝑆𝑢
2 and 𝑆𝑣

2 be the population 

variance for u and v, respectively. This sampling strategy is denoted by Ω and define 

the following symbols. 

𝐴Ω = 𝜆(𝑆𝑌
2 + 𝑆𝑢

2), 𝐵Ω = 𝜆(𝑆𝑋
2 + 𝑆𝑣

2),  𝐶Ω =  𝜆𝜌𝑆𝑌𝑆𝑋.  

Let 𝜔𝑦 = ∑ (𝑌𝑖 − 𝑌̅𝑛
𝑖=1 ),  𝜔𝑥 = ∑ (𝑋𝑖 −  𝑋̅𝑛

𝑖=1 ),     𝜔𝑢 = ∑ 𝑢𝑖
𝑛
𝑖=1 ,    𝜔𝑣 = ∑ 𝑣𝑖

𝑛
𝑖=1 .  

By adding 𝜔𝑦 and 𝜔𝑢 and dividing by n.  

1

𝑛
 (𝜔𝑦+𝜔𝑢) = ∑  

1

𝑛
(𝑦𝑖 − 𝑌̅)𝑛

𝑖=1 .       (2) 

So 𝑦̅ = 𝑌̅ +
1

𝑛
 (𝜔𝑦+𝜔𝑢).  

Similarly, 𝑥̅ = 𝑋̅ +
1

𝑛
 (𝜔𝑥+𝜔𝑣).  

And the expected values are 𝐸 (
1

𝑛
 (𝜔𝑦+𝜔𝑢))

2

= 𝐴Ω𝑌̅−2, 𝐸 (
1

𝑛
 (𝜔𝑥+𝜔𝑣))

2

=

𝐵Ω𝑋̅−2   and E (
1

𝑛
(𝜔𝑦+𝜔𝑢)

1

𝑛
(𝜔𝑥+𝜔𝑣)) = 𝐶Ω𝑋̅−1 𝑌̅−1 , λ =  

1

𝑛
−

1

𝑁
 , R = 

𝑌̅

𝑋̅
  . 

 

3. Some existing estimators 

Some existing estimators of population mean 𝑌̅ in the setup Ω are discussed in this 

section.  

3.1 Sample mean estimator  

Sample mean estimator is very well – known and in setup Ω, is defined as  

𝑡1 =  𝑦̅ =  
1

𝑛
 ∑ 𝑦                        (3) 

𝑡1 is an unbiased estimator and its variance is by 

𝑉(𝑡1) =  𝐴Ω                                            (4) 

3.2 Shalabh (1997) estimator  

Shalabh (1997) suggested a ratio-type estimator in setup Ω and it is defined as  

𝑡2 =
𝑦̅

𝑥̅
 𝑋̅                                                               (5) 

The estimator 𝑡2 is biased and the expression of bias is  

𝐵(𝑡2) = 𝑋̅−1[𝑅𝐵Ω −𝐶Ω ]                                         (6)  

and its MSE is given by  

 𝑀(𝑡2) = [𝐴Ω + 𝑅2𝐵Ω −2𝑅𝐶Ω ]                                          (7) 
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3.3 Manisha and Singh (2001) estimator  

An estimator as a combination of different estimators suggested by Manisha and 

Singh (2001) as   

𝑡3 = 𝜙𝑡2 + (1 − 𝜙)𝑡1                    (8) 

where 𝜙 is a constant so that MSE of 𝑡3 is minimum. The estimator 𝑡3 is biased and 

the expression of bias is 

𝐵(𝑡3) = 𝜙 𝑋̅−1[𝑅𝐵Ω −𝐶Ω ]                   (9) 

The expression of MSE of 𝑡3  is 

𝑀(𝑡3) = 𝐴Ω + 𝜙 2𝑅2𝐵Ω − 2𝜙 𝑅𝐶Ω                 (10) 

and the optimum MSE of 𝑡3 at 𝜙𝑜𝑝𝑡 =(𝑅 𝐵Ω)−1 𝐶Ω is 

𝑀(𝑡3)𝑚𝑖𝑛 = 𝐵Ω
−1[𝐴Ω𝐵Ω − 𝐶Ω

2 ]                (11) 

3.4 Grover and Kaur (2011) estimator  

Grover and Kaur (2011) proposed an exponential ratio type under sampling strategy 

Ω as   

𝑡4 = {𝑝1𝑦̅ +  𝑝2(𝑋̅ − 𝑥̅)}exp ( 
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
 )                (12) 

where 𝑝1, 𝑝2 are constants so that MSE of 𝑡4 is minimum. 𝑡4 is biased and the 

expression of bias is 

𝐵(𝑡4) = (𝑝1 − 1) 𝑌̅ + 0.375 𝑝1𝑅
𝐵Ω

𝑋̅
−  0.5 𝑝1

𝐶Ω

𝑋̅
+   0.5 𝑝2

𝐵Ω

𝑋̅
             (13) 

The expression of MSE of 𝑡4  is 

𝑀(𝑡4) =  𝑌̅2(𝑝1 − 1)2 + 𝑝2
2𝐴Ω + 𝐵Ω(𝑝2 + 0.5𝑅𝑝1)2 + 2(𝑝1 − 1)(0.5 𝑝2𝑋̅ +

0.375 𝑝1𝑌̅)𝑅𝐵Ω𝑋̅−1 − 𝐶Ω[𝑝1𝑅(2 𝑝2 +  𝑝1𝑅) −  𝑝1( 𝑝1 − 1)𝑅]            (14) 

And the optimum MSE of 𝑡4 at 

 𝑝1 =  
𝑌̅2𝐵Ω

𝑌̅2𝐵Ω + 𝐴Ω𝐵Ω − 𝐶Ω
2 ,  𝑝2 =

𝑌̅2(2𝐶Ω−𝑅𝐵Ω)  

2( 𝑌̅2𝐵Ω + 𝐴Ω𝐵Ω − 𝐶Ω
2  )

  

is 𝑀(𝑡4)𝑚𝑖𝑛 =  𝑌̅2 −  
4𝑌̅2𝐵Ω−𝑅2𝐵Ω𝐶Ω

2 +𝑅2𝐴Ω𝐵Ω
2 +0.0625𝑅4𝐵Ω

3

4𝑌̅2𝐵Ω+4𝐴Ω𝐵Ω−4𝐶Ω
2                  (15) 

3.5 Shukla et al. (2012a) estimator  

An estimator in the presence of measurement errors for mean estimation is proposed 

by Shukla et al. (2012) is given by 

𝑡5 = 𝜑𝑦̅∗ + (1 − 𝜑)𝑦̅                         (16) 

where   𝑦̅∗= 𝑦̅(𝑋̅  −  𝑓𝑥̅)(1 − 𝑓)−1𝑋̅−1          

where 𝜑 is a constant so that MSE of 𝑡5 is minimum. 𝑡5 is biased and the expression 

is   

𝐵(𝑡5) = 𝜑 𝑓{(1 − 𝑓)𝑋̅}−1 𝐶Ω                (17) 
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the MSE of 𝑡5  is given by  

𝑀(𝑡5) = 𝐵Ω𝜑2𝑓2𝑅2(1 − 𝑓)−2 + 𝐴Ω−2𝑓𝜑𝑅𝐶Ω(1 − 𝑓)−1             (18) 

The minimum MSE of 𝑡5 at 𝜑 = (1 − 𝑓)𝐶Ω𝐵Ω
−1𝑓−1𝑅−1 is 

𝑀(𝑡5)𝑚𝑖𝑛 = 𝐵Ω
−1[𝐴Ω𝐵Ω − 𝐶Ω

2 ]                (19) 

3.6 Ekpenyong and Enang (2014) estimator 

Under sampling strategy Ω, Ekpenyong and Enang (2014) suggested an estimator as: 

 𝑡6 = 𝑑1𝑦̅ +  𝑑2( 𝑋̅ − 𝑥̅) exp ( 
𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
 )                  (20) 

where 𝑑1, 𝑑2 are constants so that MSE of 𝑡6 is minimum. 𝑡6 is biased and the 

expression is 

𝐵(𝑡6) = (𝑑1 − 1) 𝑌̅ − 0.5𝑑2
𝐵Ω

𝑋̅
                           (21) 

The expression of MSE of 𝑡6  is 

𝑀(𝑡6) = 𝐴Ω𝑑1
2 + 𝑌̅2(𝑑1

2 + 1 − 2𝑑1)+𝑑2 
2 𝐵Ω − 2[𝑅𝐵Ω + 𝑑1𝐶Ω − 0.5𝑑1𝑅𝐵Ω]      (22) 

The minimum MSE of 𝑡6 at  𝑑1 =  
4 𝑌̅2 + 4𝐶Ω − 𝑅2𝐵Ω

4 𝑌̅2 + 4 𝐴Ω − 𝑅2𝐵Ω
  and 𝑑2 =

2𝑅 (𝐴Ω−𝐶Ω)  

4 𝑌̅2+4𝐶Ω−𝑅2𝐵Ω
  is 

𝑀(𝑡6)𝑚𝑖𝑛 =  𝑌̅2 −  
4𝑌̅4𝐵Ω−𝑅2𝑌̅2𝐵Ω

2 +𝑅2𝐴Ω𝐵Ω
2 +4𝑅𝑌̅2𝐵Ω𝐶Ω

4𝑌̅2𝐵Ω+4𝐴Ω𝐵Ω−(𝑅𝐵Ω−2𝐶Ω)2               (23) 

3.7 Singh and Pal (2015) estimator  

Singh and Pal (2015) proposed an estimator as: 

𝑡7 =
𝑦̅

𝑥̅
 𝑋̅ 𝑒𝑥𝑝 ( 

𝑋̅ − 𝑥̅

𝑋̅ + 𝑥̅
)                   (24) 

𝑡7 is a biased estimator and its bias is given by 

𝐵(𝑡7) = 𝑌̅(0.625𝐵Ω −1.5𝐶Ω)                 (25)  

and its MSE is given by 

𝑀(𝑡7) = [𝐴Ω + 2.25𝑅2𝐵Ω −3𝑅𝐶Ω ]                (26) 

3.8 Gupta and Yadav (2018) estimator 

Gupta and Yadav (2018) have used the information of sample size to improve the 

estimation of the mean of y and recommended a generalized ratio type estimator for 

estimation purpose as: 

𝑡8 = 𝑦̅ [𝑞 + (1 − 𝑞) ( 
𝑋̅+𝑛

 𝑥̅+𝑛
)]                   (27) 

where constant q is chosen so that MSE of 𝑡8 is minimum. 𝑡8 is biased and the 

expression of bias is 

𝐵(𝑡8) = (𝑞 − 1)(𝑋̅ + 𝑛)−1(𝐶Ω−𝑅𝐵Ω)               (28) 
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The expression of MSE of 𝑡8  is 

𝑀(𝑡8) = 𝐴Ω + 𝑌̅2(𝑋̅ + 𝑛)−2(1 − 𝑞)2 𝐵Ω + 2(𝑞 − 1)𝑌̅(𝑋̅ + 𝑛)−1𝐶Ω           (29) 

The minimum MSE of 𝑡8 at 𝑞 = 1 −  
𝐶Ω ( 𝑋̅+𝑛 )

𝐵Ω 𝑌̅
  is 

𝑀(𝑡8)𝑚𝑖𝑛 = [𝐴Ω −
𝐶Ω

2

𝐵Ω
 ]                  (30) 

3.9 Tiwari et al. (2022) estimator 

Tiwari et al. (2022) proposed a family of estimator under the set up Ω as 

𝑡9 = [𝑎 𝑦̅ + 𝑏(𝑋̅ − 𝑥̅)] [
𝛿𝑋̅+𝜂

𝛿𝑥̅+𝜂
]  exp [

3(𝑋̅ − 𝑥̅)

𝑋̅ + 𝑥̅
]               (31) 

where 𝑎, 𝑏,  are constants so that MSE of 𝑡9 is minimum. The estimator 𝑡9 is bias and 

the expression of bias is 

𝐵(𝑡9) = (𝑎 − 1)𝑌̅ − 𝑎𝑌̅−1(𝑅1 + 1.5𝑅)𝐶Ω + [𝑏(𝑅1 + 1.5𝑅) 

+ 𝑎(𝑅1
2 + 1.875𝑅2 + 1.5𝑅𝑅1)]𝑌̅−1𝐵Ω               (32) 

The expression of MSE of 𝑡9  is 

𝑀(𝑡9) = 𝑌̅2 + 𝑎𝑀1 + 𝑎2𝑀2 + 𝑏𝑀3 + 𝑏2𝑀4 + 𝑎𝑏𝑀5             (33) 

and the minimum MSE of 𝑡9 at 𝑎 =  
𝑀3𝑀5 − 2𝑀1𝑀4

4 𝑀2𝑀4− 𝑀5
2  , b =  

𝑀1𝑀5 − 2𝑀2𝑀3

4 𝑀2𝑀4− 𝑀5
2    is 

𝑀(𝑡9)𝑚𝑖𝑛 = 𝑌̅2 −  
𝑀1

2𝑀4+ 𝑀3
2𝑀2−𝑀1𝑀3𝑀5

4𝑀2𝑀4−𝑀5
2                 (34) 

Let 𝑀1 = (𝑅1 + 1.5 𝑅)𝐶Ω − (2𝑅1
2 + 3.75𝑅2 + 3𝑅𝑅1)𝐵Ω − 2𝑌̅2,   

𝑀2 = (3𝑅1
2 + 6𝑅2 + 6𝑅𝑅1)𝐵Ω + 𝐴Ω + 𝑌̅2 − (3𝑅1 + 4.5𝑅)𝐶Ω,  

𝑀3 = −(2𝑅1 + 3𝑅) 𝐵Ω, 𝑀4 =  𝐵Ω , 𝑀5 = (4𝑅1 + 6𝑅) 𝐵Ω − 𝐶Ω ,  𝑅1 =  
𝛿 𝑌̅ 

 𝛿𝑋̅+𝜂
 

 

4. Proposed estimators and its properties 

Earlier, several authors described the problem of measurement errors in different 

sampling strategies and suggested procedures for removing the same. It appears that 

by using these procedures, measurement errors influence the results in sample 

surveys. As a result, we expanded the same using the factor-type estimator advocated 

by Singh and Shukla (1987). 

The proposed class of estimators for population mean under Ω as given below:    

𝑦̅𝐹𝑇 = 𝑓𝑦̅∗ + (1 − 𝑓)𝑦̅                      (35)      

Where 𝑦̅∗ =  
𝑦̅

𝑥̅∗  ,   𝑤ℎ𝑒𝑟𝑒 𝑥̅∗ = [ 
(𝐴+𝐶)𝑋̅+𝑓𝐵𝑥̅

(𝐴+𝑓𝐵)𝑋̅+𝐶𝑥̅
 ]

−1

              

and 𝐴 = (𝑚 − 1)(𝑚 − 2), 𝐵 = (𝑚 − 1)(𝑚 − 4), 𝐶 = (𝑚 − 2)(𝑚 − 3)(𝑚 − 4), 
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𝑓 =  
𝑛

𝑁
 𝑎𝑛𝑑 𝑚 ∈ (0, ∞) is a constant.  

Remark 4.1 If sample size is too small (𝑛 → 0)   

then  𝑦̅𝐹𝑇 = 𝑦̅ = 𝑡1                  (36) 

and when the sample size is large enough (𝑛 → 𝑁) 

then 𝑦̅𝐹𝑇 = 𝑦̅∗ =  
𝑦̅

𝑥̅∗                  (37) 

the usual factor-type estimator of Singh and Shukla (1987). 

4.1 Some special cases 

The 𝑦̅𝐹𝑇  for first four constant values of m is as below: 

(i) If m = 1, then  

𝑦̅𝐹𝑇 = 𝑓𝑦̅ 
𝑋̅

 𝑥̅
 + (1 − 𝑓)𝑦̅ = 𝑓𝑡2 + (1 − 𝑓)𝑡1                         (38) 

(ii) If m = 2, then 

𝑦̅𝐹𝑇 = 𝑓 𝑦̅   
 𝑥̅

𝑋̅
 + (1 − 𝑓)𝑦̅                    (39)         

(iii) If m = 3, then  

𝑦̅𝐹𝑇 = 𝑓𝑦̅ [ 
𝑋̅−𝑓 𝑥̅

(1−𝑓)𝑋̅
 ] + (1 − 𝑓)𝑦̅                     (40)         

(iv) If m = 4, then    

𝑦̅𝐹𝑇  =  𝑦̅  = 𝑡1                         (41) 

 

5. Properties of proposed estimator 

Using the concept of large sample approximation i.e. if 𝑛 → 𝑁 

Let  𝑦̅ = (1 + 𝑒0)𝑌̅  ⇒ 𝑒0 = 𝑌̅−1(𝑦̅ − 𝑌̅), 

 𝑥̅ = (1 + 𝑒1)𝑋̅  ⇒  𝑒1 = 𝑋̅−1(𝑥̅ − 𝑋̅),  

 E(𝑒0) = 0, E(𝑒1) = 0,  E(𝑒0
2) = 𝐴𝛺 𝑌̅−2, 𝐸 (𝑒1

2) =  𝐵𝛺 𝑋̅−2,  and  E(𝑒0𝑒1) = 𝐶𝛺 𝑋̅−1 

𝑌̅−1,   

Let 𝛼 =
𝑓𝐵 

𝐴+𝑓𝐵+𝐶 
  and 𝛽 =

𝐶

𝐴+𝑓𝐵+𝐶 
 and 𝜃 = 𝛼 − 𝛽 

Theorem 5.1: The estimator 𝑦̅𝐹𝑇  in terms of 𝑒0 𝑎𝑛𝑑 𝑒1could be expressed as: 

𝑦̅𝐹𝑇 = 𝑌̅[1 + 𝑒0 + 𝑓(𝑒1𝜃 + 𝑒0𝑒1𝜃 − 𝛽𝜃𝑒1
2)]               (42) 

Proof: We have 
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𝑦̅𝐹𝑇 = 𝑓𝑦̅∗ + (1 − 𝑓)𝑦̅              

where   𝑦̅∗ =  
𝑦̅

𝑥̅∗  ,   𝑤ℎ𝑒𝑟𝑒 𝑥̅∗ = [ 
(𝐴+𝐶)𝑋̅+𝑓𝐵𝑥̅

(𝐴+𝑓𝐵)𝑋̅+𝐶𝑥̅
 ]

−1

      

𝑦̅𝐹𝑇 = 𝑓
𝑦̅

𝑥̅∗  + (1 − 𝑓)𝑦̅                

𝑦̅𝐹𝑇 = 𝑓𝑌̅(1 + 𝑒0) [
(𝐴+𝐶)𝑋̅+𝑓𝐵𝑋̅(1+𝑒1)

(𝐴+𝑓𝐵)𝑋̅+𝐶 𝑋̅(1+𝑒1)
 ] + (1 − 𝑓)𝑌̅(1 + 𝑒0)            

𝑦̅𝐹𝑇 = 𝑓𝑌̅(1 + 𝑒0) (1 + 𝛼𝑒1)(1 + 𝛽𝑒1)−1 + (1 − 𝑓)𝑌̅(1 + 𝑒0)                  (43)     

Expanding by Taylor’s theorem and neglecting the terms having 𝑒𝑖’s degree greater 

than two. We have 

𝑦̅𝐹𝑇 = 𝑓𝑌̅[(𝛼 − 𝛽)𝑒1 − 𝛽(𝛼 − 𝛽)𝑒1
2 + (𝛼 − 𝛽) 𝑒0 𝑒1] + 𝑌̅(1 + 𝑒0)      

𝑦̅𝐹𝑇 = 𝑌̅[(1 + 𝑒0) + 𝑓(𝑒1𝜃 + 𝑒0𝑒1𝜃 − 𝛽𝜃𝑒1
2)]              (44) 

Theorem 5.2: The bias of 𝑦̅𝐹𝑇 is 𝐵(𝑦̅𝐹𝑇) = 𝑓𝜃𝑅𝑋̅−1 𝑌̅−1(𝐶Ω𝑋̅ − 𝛽𝐵Ω𝑌̅)           (45) 

Proof: The bias for the proposed estimator using the result obtained in (5.1) can be 

written as     

𝑦̅𝐹𝑇 − 𝑌̅ = 𝑌̅ [𝑒0 + 𝑓(𝑒1𝜃 + 𝑒0𝑒1𝜃 − 𝛽𝜃𝑒1
2)] 

𝐵(𝑦̅𝐹𝑇) = 𝐸(𝑦̅𝐹𝑇 − 𝑌̅) = 𝐸[𝑌̅ {𝑒0 + 𝑓(𝑒1𝜃 + 𝑒0𝑒1𝜃 − 𝛽𝜃𝑒1
2)}]            (46) 

Taking expectations and ignoring higher terms of o(n-1) 

𝐵(𝑦̅𝐹𝑇) = 𝑓𝜃𝑅𝑋̅−1 𝑌̅−1(𝐶Ω𝑋̅ − 𝛽𝐵Ω𝑌̅)               (47) 

Theorem 5.3: The MSE of 𝑦̅𝐹𝑇 (up to first order of approximation) is  

𝑀(𝑦̅𝐹𝑇) = 𝑓2𝑅2𝜃2𝐵Ω + 𝐴Ω + 2𝑓𝑅𝜃𝐶Ω               (48) 

Proof: 𝐸(𝑦̅𝐹𝑇 − 𝑌̅)2 = 𝐸[𝑌̅ {𝑒0 + 𝑓(𝑒1𝜃 + 𝑒0𝑒1𝜃 − 𝛽𝜃𝑒1
2)}]2 

Taking expectations and ignoring higher terms of o(n-1) 

𝑀(𝑦̅𝐹𝑇) = 𝐸(𝑦̅𝐹𝑇 − 𝑌̅)2 =  𝑓2𝑅2𝜃2𝐵Ω + 𝐴Ω + 2𝑓𝑅𝜃𝐶Ω             (49) 

Theorem 5.4: The minimum MSE 𝑦̅𝐹𝑇 occurs when 𝜃 =
−𝐶Ω

𝑓𝑅𝐵Ω
 and expression is:  

 M(𝑦̅𝐹𝑇) = 𝐴Ω −  
𝐶Ω

2

𝐵Ω
                   (50) 

Proof:  Differentiating MSE (𝑦̅𝐹𝑇) in (5.3) with respect to 𝜃 and equating to zero 

(assuming 𝜃 ≠ 0), we have 

𝜃𝑜𝑝𝑡 =
−𝐶Ω

𝑓𝑅𝐵Ω
  = - V (let)                 (51) 

Substituting optimum value of  𝜃 in (5.3), the expression of minimum mean squared 

error is 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = 𝐴Ω −  
𝐶Ω

2

𝐵Ω
  

Note 5.1: The optimality condition 𝜃 = −𝑉 provides the equation  
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AV + (V+1) f B + (V – 1) C = 0                (52) 

which is cubic in terms of m. One can get maximum three values of m for which 

MSE is optimal. For the best choice of m, the following strategy can be adopted: 

STEP I: Compute |𝐵(𝑦̅𝐹𝑇)𝑖|, i = 𝑚1, 𝑚2, 𝑚3 

STEP II: Select i as: 

 |𝐵(𝑦̅𝐹𝑇)𝑖| = 𝑚𝑖𝑛[|𝐵(𝑦̅𝐹𝑇)𝑖|] = 𝑚𝑖𝑛[|𝐵(𝑦̅𝐹𝑇)𝑚1
|, |𝐵(𝑦̅𝐹𝑇)𝑚2

|, |𝐵(𝑦̅𝐹𝑇)𝑚3
| ]       (53) 

Obviously, this strategy provides bias controlled optimum MSE. 

Note 5.2: For the pair of values (𝑉, 𝑓), one can generate a trivariate table for m1, m2, 

m3 so as to achieve solution quickly. 

Note 5.3: Sometimes one can obtain only one optimum(real) value of m and other 

two complex values. In this case, there will be no choices for minimum bias. 

 

6. Comparisons  

Comparison between 𝑦̅𝐹𝑇 with other estimators under measurement error will be 

discussed in this section. 

6.1 Comparison between  𝒚̅𝑭𝑻 and 𝒕𝟏 

 𝑀(𝑡1) − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = 𝐴Ω − (𝐴Ω −  
𝐶Ω

2

𝐵Ω
)  =  

𝐶Ω
2

𝐵Ω
              (54) 

𝑦̅𝐹𝑇 is better than 𝑡1, 𝑖𝑓 𝑀(𝑡1) − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 =
𝐶Ω

2

𝐵Ω
> 0 

Therefore, the estimator 𝑦̅𝐹𝑇 is better than 𝑡1. 

6.2 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟐 

𝑀(𝑡2) − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = [𝐴Ω + 𝑅2𝐵Ω −2𝑅𝐶Ω ] − (𝐴Ω −  
𝐶Ω

2

𝐵Ω
) > 0            (55) 

(𝐶Ω−𝑅𝐵Ω)2 > 0 

Therefore, estimator 𝑦̅𝐹𝑇 is better than estimator 𝑡2. 

𝟔. 𝟑 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟑 

 𝑀(𝑡3)𝑚𝑖𝑛 − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = 𝐴Ω −  
𝐶Ω

2

𝐵Ω
− [𝐴Ω −

𝐶Ω
2

𝐵Ω
 ] = 0             (56) 

The estimator 𝑦̅𝐹𝑇 and estimator 𝑡3 are equal efficient. 

 

 

 



 

YADAV ET AL. 

 

13 

 

6.4 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟒 

𝑀(𝑡4)𝑚𝑖𝑛 − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 =  [𝑌̅2 −  
4𝑌̅2𝐵Ω−𝑅2𝐵Ω𝐶Ω

2 +𝑅2𝐴Ω𝐵Ω
2 +

𝑅4𝐵Ω
3

16

4𝑌̅2𝐵Ω+4𝐴Ω𝐵Ω−4𝐶Ω
2 ] − 𝐴Ω −  

𝐶Ω
2

𝐵Ω
 > 0  (57) 

𝑦̅𝐹𝑇 is better than 𝑡4, if 𝑌̅2 (𝑌̅2 − 1) > ( 
𝑅2𝐵Ω

8
+ 𝐴Ω −

𝐶Ω
2

𝐵Ω
 )

2

 

so, estimator 𝑦̅𝐹𝑇 is more efficient than estimator t4. 

6.5 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟓 

𝑀(𝑡5)𝑚𝑖𝑛 − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = 𝐴Ω − 𝐶Ω
2  − (𝐴Ω − 𝐶Ω

2) = 0             (58) 

The estimator 𝑦̅𝐹𝑇 and estimator 𝑡5 are equal efficient. 

6.6 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟔 

 𝑀(𝑡6)𝑚𝑖𝑛 − 𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = [𝑌̅2 −
4𝑌̅4𝐵Ω−𝑅2𝑌̅2𝐵Ω

2 +𝑅2𝐴Ω𝐵Ω
2 +4𝑅𝑌̅2𝐵Ω𝐶Ω

4𝑌̅2𝐵Ω+4𝐴Ω𝐵Ω−(𝑅𝐵Ω−2𝐶Ω)2 ] − 𝐴Ω −
𝐶Ω

2

𝐵Ω
) > 0  

(59) 

𝑦̅𝐹𝑇 is better than 𝑡6, if 4𝐴Ω𝐵Ω
2  (𝐴Ω − 𝐶Ω𝑅) <  (2 𝐶Ω

2 − 𝑅𝐵Ω𝐶Ω)2 

so, estimator 𝑦̅𝐹𝑇 is more efficient than estimator t6. 

6.7 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟕 

𝑀(𝑡7) −  𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = [𝐴Ω +
9

4
𝑅2𝐵Ω −3𝑅𝐶Ω ] − 𝐴Ω −  

𝐶Ω
2

𝐵Ω
> 0             (60) 

𝑦̅𝐹𝑇 is better than 𝑡7, if 𝐶Ω(𝑅𝐵Ω)−1 > 1.5 

so, estimator 𝑦̅𝐹𝑇 is more efficient than estimator 𝑡7. 

6.8 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟖 

𝑀(𝑡8)𝑚𝑖𝑛 −  𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = 𝐴Ω −  
𝐶Ω

2

𝐵Ω
− [𝐴Ω −

𝐶Ω
2

𝐵Ω
 ] = 0             (61) 

The estimator 𝑦̅𝐹𝑇 and estimator 𝑡8 are equal efficient. 

6.9 Comparison between 𝒚̅𝑭𝑻 and 𝒕𝟗 

𝑀(𝑡9)𝑚𝑖𝑛 −  𝑀(𝑦̅𝐹𝑇)𝑚𝑖𝑛 = [𝑌̅2 −  
𝑀1

2𝑀4+ 𝑀3
2𝑀2−𝑀1𝑀3𝑀5

4𝑀2𝑀4−𝑀5
2 ] − (𝐴Ω −  

𝐶Ω
2

𝐵Ω
 ) > 0          (62) 

𝑦̅𝐹𝑇 is better than 𝑡9,if 

(𝑌̅2𝐵Ω−𝐴Ω𝐵Ω − 𝐶Ω
2)(4𝑀2𝑀4 − 𝑀5

2) >  𝐵Ω(𝑀1
2𝑀4 +  𝑀3

2𝑀2 − 𝑀1𝑀3𝑀5) 

so, estimator 𝑦̅𝐹𝑇 is more efficient than estimator 𝑡9. 
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7. Empirical study 

For testing the performance of suggested estimator, a population of size N = 25000 

holding study variable Y and auxiliary variable X which is the synthetic records of 

human heights (in inches) and weights (in pounds) of 18 years old children. This 

population is taken from statistics online computational resource(SOCR) website. 

The characteristics of this population are given as: 

𝑌̅ = 127.04839,  𝑋̅ = 68.085086, 𝑆𝑌
2 = 135.9765320, 𝑆𝑋

2 = 3.616382, 

𝜌 = 0.5028585, 𝜆 = 0.0019600, V = 39.2539870 and  

𝜙 = 0.7850797, 𝜑 = 38.46890, (𝑝1 =0.999985, 𝑝2 = 0.5319576),  

𝑞 = −5.55051, (𝑑1 = 0.9999843, 𝑑2 = 0.0000146),   

(𝑚1 = 2.05618, 𝑚2 = 3.69878, 𝑚3 = 4.86821) 

The following steps are followed by simulation procedure: 

1) Select a random sample by SRSWOR from the population. 

2) Put measurement error u and v in Y and X respectively. 

3) After repeating above 60,000 times, it delivers sample estimates 

𝑦̅1, 𝑦̅2, 𝑦̅3 … . . 𝑦̅50000. 

4) Bias of 𝑦̅ is obtained by 𝐵(𝑦̅) =  
1

50000
∑  (𝑦̅𝑖 −50000

𝑖=1 𝑌̅ ) 

5) M. S. E. of 𝑦̅ is obtained by M(𝑦̅) =  
1

50000
∑ (𝑦̅𝑖 − 𝑌̅)250000

𝑖=1  

6) Efficiency is measured as 𝑒(𝑡) =
𝑀(𝑡1)

𝑀(𝑡)
× 100, with M(t) the MSE of any 

estimator t.  

The condition bias and MSE of estimators are calculated over 60000 repeated 

samples drawn by SRSWOR from population N = 25000. 

 

Table 1: Efficiency comparisons of the estimators 

Estimator Bias MSE Efficiency 

t1 0.094573339 0.302098176 100 

t2 0.102603524 0.27782892 108.7353239 

t3 0.091206145 0.271933683 111.0925918 

t4 0.090275474 0.279119853 108.2324218 

t5 0.091086293 0.271929184 111.0944299 

t6 0.064859797 0.299997673 100.7001731 

t7 0.129175912 0.281299365 107.3938351 
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t8 0.091100643 0.279297223 108.1636877 

t9 (1,1) 0.069585149 0.286823955 105.3252951 

t9 (1,2) 0.069583407 0.286822338 105.3258888 

t9 (1,3) 0.069581714 0.286820767 105.3264657 

t9 (1,4) 0.069580068 0.28681924 105.3270265 

t9 (2,1) 0.069586039 0.286824781 105.3249916 

t9 (2,3) 0.069584272 0.28682314 105.3255941 

t9 (3,1) 0.069586339 0.286825059 105.3248895 

t9 (3,2) 0.069585741 0.286824504 105.3250933 

t9 (3,4) 0.069584563 0.286823410 105.3254949 

t9 (4,1) 0.069586489 0.286825199 105.3248382 

t9 (4,3) 0.069585592 0.286824366 105.3251439 

𝑦̅𝐹𝑇(𝑚1) 0.050832545 0.270211850 111.8004915 

𝑦̅𝐹𝑇(𝑚2) 0.049880218 0.275985694 109.4615347 

𝑦̅𝐹𝑇(𝑚3) 0.049487639 0.268658651 112.4468447 

 

7.1 Almost unbiased estimation: 

In terms of expression (5.2), the bias of 𝑦̅𝐹𝑇 (to the first order of approximation) 

could be made zero.  

𝐵(𝑦̅𝐹𝑇) = 𝑓𝜃𝑅𝑋̅−1 𝑌̅−1(𝐶Ω𝑋̅ − 𝛽𝐵Ω𝑌̅) = 0               (63) 

the solution appears either 𝜃 = 0   

or (𝐶Ω𝑋̅ − 𝛽𝐵Ω𝑌̅) = 0                 (64) 

After simplifying (1) and (2) one can obtain cubic equations in the form of m and 

there will be six possible values of m. For the population under consideration, we get 

different values of m for unbiased  𝑦̅𝐹𝑇 as shown in table 2. 

 

Table 2: Almost unbiased estimator 𝑦̅𝐹𝑇 

Values of m Bias MSE 

𝑚1
′= 4 = 𝑚6

′ 0.0495733 0.3000982 

𝑚2
′ = 3.00081 0.0495945 0.3000815 

𝑚3
′ = 1.99960 0.0485671 0.3008991 

𝑚4
′ = 3.039245 0.0495733 0.3000982 

𝑚5
′= 1.980755 0.0495733 0.3000982 
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8. Discussion and conclusion 

This manuscript discusses the importance of improving estimation under 

measurement errors set up in survey data. Measurement errors can occur due to 

various factors such as equipment errors, errors in data recording, false information, 

self-interest and they can significantly affect survey results, leading to an ill data set. 

Therefore, it is necessary to develop estimation methods that can adjust for 

measurement errors. After studying several research papers, the decision was made 

to extend the factor-type estimator in the setup Ω. Expressions for bias, MSE, and 

optimum MSE of existing estimators and the suggested estimators are derived under 

large sample approximation up to first order. An empirical study is conducted using 

a data set of size 25000, and the bias and optimum MSE of the proposed estimator 

are compared to the mean per unit estimator, evaluating their efficiency. The factor-

type estimator performed better than some other existing estimators, as indicated by 

the results presented in Table 1. Specifically, the estimator 𝑦̅𝐹𝑇  shows greater 

efficiency and a significant reduction in mean squared error compared to other 

estimators,𝑡𝑖; i = 1, 2,.…9. Thus, the proposed estimator is considered more useful 

and advantageous. A key feature of the factor-type estimator is that there are 

multiple values of the m for which the MSE is optimal. By selecting the values with 

minimum bias, one can obtain an almost unbiased estimator. The proposed strategies 

focus on bias control at the optimum level of MSE, allowing for the selection of m 

values that provide the lowest MSE. Consequently, the proposed factor-type 

estimator is useful and has an advantage over other existing methods. 

Overall, this manuscript highlights the significance of accounting for measurement 

errors in survey data and demonstrates the superiority of the factor-type estimator in 

addressing this issue.  
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