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Procedures are introduced and discussed for increasing the computational and statistical efficiency of 
polynomial transformations used in Monte Carlo or simulation studies. Comparisons are also made 
between polynomials of order three and five in terms of (a) computational and statistical efficiency, (b) 
the skew and kurtosis boundary, and (c) boundaries for Pearson correlations. It is also shown how ranked 
data can be simulated for specified Spearman correlations and sample sizes. Potential consequences of 
nonmonotonic transformations on rank correlations are also discussed. 
Key words: Correlated data, cumulants, Monte Carlo methods, polynomial transformations, nonnormality 

Introduction Y
1
 
m =
A common practice used to investigate the 
relative Type I error and power properties of 
competing statistical procedures under non-
normality is the method of Monte Carlo. For 
example, consider the following polynomial 
transformation in general form 

Y=cm+∑c
1iZii=1 (1) 
Z1 ~ NID(0,1), and i∈={1,2,...,m}. 

Setting m=3, Fleishman (1978) derived a
system of four equations that would solve for
the 
four coefficients c0,...,c3 in (1) for a

specified 
non-normal distribution. Specifically, these 
coefficients are determined by

simultaneously 
solving this system of equations for the firstfour 
standardized cumulants of a distribution. The 
coefficients are subsequently entered into (1)to 
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generate with the specified cumulants.
Equation (1) was extended to 5 by Headrick 
(2002) for controlling the first six
standardized 
cumulants from a specified probability
density 
function. 

The third-order polynomial (Fleishman, 
1978) and the fifth-order polynomial
(Headrick, 
2002) transformations were also extended
for 
the purpose of generating multivariate non-
normal distributions (Headrick, 2002,
Equation, 
26; Headrick & Sawilowsky, 1999, Equation
9; 
Vale & Maurelli, 1983, Equation 11). These 
extensions have been demonstrated to be
quite 
useful when there is a need for correlated
non-
normal data sets in a Monte Carlo study. 

Some examples include analysis of 
covariance (Harwell & Serlin, 1988; Headrick
& 
Sawilowsky, 1999; Headrick & Vineyard,
2001; 
Klockers & Moses, 2002), hierarchical linear 
models (Shieh, 2000), regression (Harwell & 
Serlin, 1989; Headrick & Rotou, 2001; 
Whittaker, Fauladi, & Williams, 2002)
repeated 
measures (Beasley & Zumbo, 2003;
Harwell & 
Serlin, 1997), and multivariate
nonparametric 
tests (Beasley, 2002; Habib & Harwell,
1989). 
The multivariate extension of the fifth-order
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Although the primary advantages of the 
third and fifth-order polynomials are their
ease of execution and computationally
efficiency, there are limitations to these
transformations. More specifically, the
primary limitations are (a) the
transformations are limited in terms of the
possible combinations of skew and kurtosis,
(b) the polynomials are not, in general,
monotonic transformations and therefore
have the potential to produce biased rank
correlation coefficients, and (c) distributions
with bivariate non-normal structures may
have lower and upper boundary points (−a,
a) for Pearson correlations (r) 
such that r∈[−1<−a,a<+1] and
where it is 
possible, for example, that a<0.70. It should 

be noted that the distribution of Y1, in
general, is 
not exact. Headrick (2004) has derived the 
probability density function and distribution
function for Y1 when the transformation
between Y1 and Z1 is monotic. 

In view of the above, the purposes of the 
study are to introduce and discuss methods
that 
minimize the limitations of the polynomial 
transformations and to develop a procedure
for 
simulating rank correlations. More
specifically, 
the intent is to (a) derive and discuss
methods 
for improving computational and statistical 
efficiency for a Monte Carlo study, (b)
compare 
and contrast the third and fifth order 
polynomials in terms of the skew and
kurtosis 
boundary and in terms of boundaries for
Pearson 
correlations, (c) provide a method for
simulating 
Spearman rank correlations with specified 
samples sizes, and (d) discuss the potential 
effects of nonmonotonic transformations on
rank 
correlations. 

Improving Computational and Statistical 
Efficiency 
Consider (1) with m=5 as 

Y23451=c0+c1Z1+c2Z1+c3Z1+c4Z1+c5Z1

If the algorithm used to generate Y1 is coded
in the manner as in (3) instead of (2) then the
run time of a Monte Carlo or simulation study
can be substantially reduced. To illustrate
(briefly), on a Pentium-based PC it took
approximately 25 seconds of computer time
to draw 100,000 
random samples of size n=550 from an 
approximate exponential distribution using
(3). 
On the other hand, using (2), the sample size
had 
to be reduced to n=100 to obtain the
same 
100,000 draws within the same 25 second
time period. Thus, a considerable gain in
computational efficiency can be realized by
using (3) in lieu of (2). 

Suppose two standardized random 
variables Y1 and Y2 based on (3) are

generated. 
A method that is useful to improve the 
efficiency of the estimate of

(Y1+Y2)2 is by 
inducing a negative correlation on Y1 and Y2.
To 
demonstrate, if Y1 and Y2 were identically 
distributed, then 
Y + Y

⎡
⎢⎣

⎤
⎥=⎦

Var121Corr[Y,Y]+12. (4) 
2 2 2
 
By inspection of (4) it would be advantageous if 
Y1 and Y2 were negatively correlated. 

Assume that a monotone relationship 
between Z1 and Yi for i=
Y Y

1,2 exists. To induce 

a negative correlation on 1 and 2 it is only 
necessary to simultaneously reverse the signs of 
the coefficients with odd subscripts in Y2 as

Y1=f1(c0,c1,c2,c3,c4,c5,Z1) (5)

Y2=f2(c0,−c1,c2,−c3,c4,−c5,Z1). (6)

Because the structure between Yi and Z1 is 
standard bivariate normal, the correlation 
between Y1 and Y2 can be defined as 

ρ = Y[1YEY1Y22]. (7) 

Expanding (7) and taking expectations using
the moments from the standard normal
density yields 



67 TODD C. HEADRICK 

Table 1. Confidence Intervals (CI’s) on the 
estimate of (Y1+Y2)2 with and without a 
negative correlation induced. Y1 and Y2 are 
approximate exponential distributions with 
population means of γ1=5. The CI’s are 
based on 50,000 sample estimates. 

1 2

61(3
14

5c5 ) +
63c

c

2

0

c

2

2

c21+2c0(c23c4)

10c2c−5(c237c244
c c

c3c5

−

+

+ −

− +

+

+

ρ1π2X60.641X5. (9) 2
 
Thus, the approximation given by (8) for the 
exponential distribution is very close to the exact 
result given in (9). 

Presented in Table 1 below are 
confidence intervals from a Monte Carlo 
simulation study that demonstrate the advantage 
of inducing a negative correlation on Y1 and Y2. 
By inspection of Table 1 when Y1 and Y2 are 
uncorrelated it takes over 2.5 times the sample 
size to obtain a confidence interval that has 
approximately the same width as the data with 
an induced negative correlation. Thus, whenever 
possible it is advantageous to induce a negative 
correlation to improve the computational and 
statistical efficiency of a Monte Carlo study. 

ρY1Y =2 
3( 25)).
 (8) 

Thus, the correlation between Y1 and Y2 can

be 
determined by evaluating (8) using specified 
values for c0,...,c5. For example, evaluating

(8) 
using the coefficients that approximate the 
exponential density (see Headrick, 2002,

Table 
1) gives ρY≅−0.647. 
1Y2

The method of inducing a negative 
correlation between Y1 and Y2 is analogous
to 
the method used on distributions generated
by 
the inverse transform method. More
specifically, consider generating X1 and X2
from the single 
parameter exponential family withdistribution 
function G and with an inverse distribution
function denoted as −1. Let X1=G−1(V) and 
X  =  G−1 −V  ∼

Corr[Y,Y]
0.000 
−  

Sample Size
n=10 

95% C.I.
[4.552, 5.448] 

X X

= − ≅ −

G
V U2(1) where (0,1). Define the

parameters for the first and second moments as 
θ and θ2. From the definition of the product 
moment of correlation exists 

=θ2
∫ − =θ2 −π2

1 2

1
E[X1X2] ln vln(1 v)dv
0

 
As such, the correlation between 

(2

 and 

6). 

 is 

0.647
 

0.000 
−  

 
n=26 

0.647 [4.841, 5.158] 

Statistical efficiency can also be 
improved when using the fifth-order polynomial 
in lieu of the third-order polynomial. For 
example, consider approximating the uniform 
distribution. The kurtosis for this distribution is 
theoretically −1.20. However, the lower-
boundary of kurtosis for the third-order 
polynomial is −1.15132(Headrick & 
Sawilowsky, 2000) whereas the fifth-order poly- 
nomial can generate this distribution with the 
required kurtosis (Headrick, 2002, Table 1). 
Presented in Table 2 is a comparison between 
the two polynomials’ approximations to the 
uniform distribution. By inspection of the values 
of RMSE in Table 2, it is evident that the fifth-
order polynomial is superior in its 
approximation to the standardized cumulants of 
this distribution. 
Lower Boundary Points of Kurtosis 

The lower boundary points of kurtosis is 
another topic of concern because neither the 
third nor the fifth-order polynomial 
transformations span the entire skew (γ3) and 
kurtosis (γ4) plane given by the general 
expression 

γ≥γ2
43−2. (10) 

[4.715,

5.252]

[4.726,

5.273] 



 
Table 2. Estimates of the first six
standardized cumulants of the uniform
density and the Root Mean Square Errors
for the third and fifth-order polynomials. 
Estimates (γˆî) are based on a sample
size of 
n=50 and averaged across 50,000 
repetitions. The same random numbers

were 
used in both polynomials. 
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Standardized Parameters 

Uniform Distribution (γi) γˆî RMSE 
Third-Order Polynomial 

γ=0.0 0.000 
10.142 

γ
2=1.0 1.000 0.132 

γ
3=0.0 0.002 0.338 

γ=6/5 1
4−−1.152 1.673 

γ
5=0.0 0.095 15.771 

γ
6=48/7 8.711 161.61 

Fifth-Order Polynomial 
γ 1=0.0 0.000 0.142 
γ

2=1.0 1.000 0.127 
γ

3=0.0 0.001 0.278 
γ

4=−6/5 −1.200 0.354 
γ

5=0.0 0.006 0.897 
γ

6=48/7 6.841 3.301 
1

The lower boundary of kurtosis for the third-
order polynomial is −1.15132. 

Proof (Eq. 10). For any random variable with 
finite values of γi define 
i

E[X  −  E[X  ]]i  ⎛γiEX−E[X]⎞i==. (11) σ ⎜ ⎟X ⎝ σX ⎠
 
Without loss of generality, it can be assumed 
that the random variable X is standardized such 
that E[X]=0 and σE[X2X=]=1 in (11). 
From the covariance (or Schwarz) inequality 
there is E[XW]2≤E[X2]E[W2]. If the two 
random variables in the covariance inequality 

( 2 )2 E( )2E[XX 1] E[X2] [X2−1]
(32E[XX]E[X42X+1]
[32EX]E[X4]1 

γ2
3γ41, thus
γγ2
431, and where
 
subtracting a constant of 3, such that kurtosis for 
the normal distribution is zero, gives (10) (It can 
also be shown that the equality condition in (10) 
is not possible. However, in the context of this 
paper, the matter is trivial). 

Presented in Table 3 are the lower 
boundary points of kurtosis for both 
polynomials. The values of minimum kurtosis 
(γ, γ∗4′4) were obtained by minimizing Equation 
14 (Headrick & Sawilowsky, 2000) and 
Equation 36 (Headrick, 2002) using the 
command ‘NMinimize’ (Mathematica, 
Wolfram, 2003, version 5.0). By inspection of 
Table 3, it is evident that the fifth-order 
polynomial spans a much larger space in the 
plane defined by (10) than the third-order 
polynomial. 

Pearson Correlations 
As mentioned, the third and fifth-order 

polynomial transformations are computationally 
efficient algorithms for generating multivariate 
non-normal distributions. In general, and in 
terms of the fifth-order polynomial, the approach 
taken is to solve the equation given in Headrick 
(2002, Equation, 26) for pairwise intermediate 
correlations between k variables. 

The intermediate correlations are 
subsequently assembled into a correlation matrix 
and factored (e.g., a Cholesky factorization). 
The components from the factorization are used 
to generate multivariate standard normal random 
deviates correlated at an intermediate level. 
These deviates are then transformed by the 
polynomials to produce the specified non-
normal distributions with the desired 
intercorrelations. 

−

−

≤

≤

≤

≤
≥

×

−

−

−
+

(

(

)
)
)
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There are limitations in simulating 
multivariate distributions using the polynomial 
transformations. Specifically, the third and fifth-
order polynomials may have lower and upper 
boundary points (−a, a) for correlations (r) 
such that r∈[−1<−a,a<+1]. In the context of 
the bivariate case, this problem is most 
pronounced when one distribution is symmetric 
and the other skewed. 
For example, suppose the distributions are 
approximate chi-square (1df) and normal. The 
boundaries of correlation for the third-order 
polynomial are a=±.67481 whereas the 
boundaries for the fifth-order polynomial are 
a=±.82024. As another example, if the normal 
distribution is replaced by the coefficients for 
the uniform distribution, then the boundaries for 
bivariate correlation are a=±.623033 and 
a=±.738553 for the third and fifth-order 
polynomials, respectively. Thus, the fifth-order 
polynomial can be a remedy for cases where it is 
needed to simulate the often used correlation of 
r=.70 when the distributional conditions make 
it impossible for the third-order polynomial. 

 
Monotinicity and Spearman Correlations 

A monotonic relationship between Y1 
and Z1 in (3) is defined as 

Z1i>Z1j⇒Y1i>Y1j, ∀i≠j. (12) Testing for a

monotonic relationship can be 
accomplished by solving dY1dZ1=0 for Z1. If 
only complex solutions of Z1 exist then the 
transformation between Y1 and Z1 isconsidered 
globally monotonic. If real solutions of Z1

exist, 
then the transformation is considered non-
monotonic. For example, all chi-square 
distributions (df >1) approximated by fifth-order 
polynomials are globally monotonic 
transformations. The third-orderpolynomials, 
however, are not monotone

transformations for 
any approximation of the chi-square family(see 
Headrick, 2004). The concern for monotonic 
relationships becomes important whenthere is a 
need to simulate ranked data with specified 
Spearman correlations. 

Consider generating Y1 and Y2 from 
equations of the form in (3) with a Pearson 
correlation ρY. Let R(Y) and () denote 
1Y2 1 R Y2

 

Table 3. Lower boundaries of kurtosis for the third (γ4′) and fifth (γ∗4) order polynomials for a given value 
of skew (3). The coefficients 0,...,c5 are associated with the fifth-order polynomial. c

c0

γ

γ
4′

γ
3  

0.00 

0.25 
0.50 

0.75 
1.00 

1.25 
1.50 

1.75 
2.00 

 

-1.151320 
-1.045100 

-0.741671 
-0.252697 

0.424841 
1.297258 

2.370670 
3.652341 

5.151620 

γ∗
4  

-1.385081 

-1.296301 
-1.038260 

-0.614627 
-0.020321 

0.753833 
1.724592 

2.757983 
3.983870 

 

0.000000 
-0.160182 

-0.298119 
-0.419443 

-0.529477 
-0.632000 

-0.732543 
-0.503230 

-0.524421 

c1 

-1.643734 
-1.597079 

1.492904 
1.357093 

1.190353 
0.981640 

0.690295 
0.829259 

0.710491 

c2 

0.000000 
0.195003 

0.036292 
0.508113 

0.637194 
0.754682 

0.866255 
0.623359 

0.645056 

c3 

0.320242 
0.302208 

-0.266933 
-0.228251 

-0.187141 
-0.141828 

-0.087835 
0.006876 

0.048321 

c4 

0.000000 
-0.011607 

-0.021600 
-0.029554 

-0.035906 
-0.040894 

-0.044570 
-0.040043 

-0.040213 

c5 

-0.011361 
-0.010437 

0.008682 
0.006969 

0.005314 
0.003602 

0.001719 
-0.002257 

-0.004000 
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denote the ranks of Z1 and Z2. If monotonic
relationships hold for both transformations
as 
defined in (12), then ρR(Y)()=ρ()()=ρ

1RY2RZ1RZ2s 

and where ρs denotes the Spearman rank 
coefficient of correlation. 

Because the structure of Z1 and Z2 is 
standard bivariate normal, ranked data canbe 
simulated for specified values of ρs and n

by 
making use of the following expression(Moran, 
1948) 

6 ⎧

ρ⎪n−2⎛⎞⎫=−ρ⎨sin1Z1Z21+−1(⎪s⎜⎟sinρ (13) 12)⎬.π⎪ ⎩n+1 ⎝ 2 ⎠ n+1 Z Z ⎪⎭
 

More specifically, to generate R(Y1) and
R(Y2) 
with a specified rank correlation ρs and

sample 
size, one need only numerically solve (13)for 
ρ
ZZ given values of ρs and n. For example,12
suppose it is desired to generate R(Y1) and 
R(Y2) with a Spearman rank correlation of 
ρ

s=.70, n=5, and where the distributions Y1 
and Y2 are approximate exponential. For this 
example, it is appropriate to use fifth-order 
polynomial transformations because (12)

holds 
for this case. Thus, solving (13) for thespecifed 
values of ρs and n gives an intermediate 
correlation of ρZ=1Z.811202. 2
 
Conclusion 
In terms of the procedure for simulating

ranked 
data with specified Spearman correlations, it 
should be pointed out that equation (12) is a 
sufficient condition for monotonicity.However, 
the procedure will provide adequate

i l ti

These distributions could be considered 
locally monotonic because the probability
associated with drawing such values of 
Z:Z≥3.00 is only .0027. Because the
probability of obtaining such values of Z is 
very low, the amount of bias introduced
into a 
Monte Carlo or simulation study would be 
negligible. 

To provide an empirical definition of 
local monotonicity, this author conducted 
simulations using fifth-order transformations 
with many different non-normal distributions 
with nonmonotonic relationships. The 
simulation results indicated that Spearman 
correlations were close to what (13) would 
compute (ρs±.025) if the real solutions of Z 
for dYdZ=0 were Z≥1.75. 
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