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In this work, we present a four-parameter lifetime model that can be used to model 

reliability issues, fatigue life studies, and survival data called the Type II Topp-

Leone Inverse Power Lomax distribution. It has the Type II inverse Lomax, Inverse 

Power Lomax, and Inverse Lomax distributions as sub-models. Some of its statistical 

properties, including complete and incomplete moments, generating functions, 

characteristics functions, mean residual life, mean inactivity time, Renyi entropy, 

Tsallis entropy, order statistics, stress-strength reliability, and weighted probability 

moment, have formal formulas that we have developed. The model's parameters are 

estimated using the maximum likelihood estimation technique. The effectiveness of 

maximum likelihood estimators is evaluated in terms of absolute bias and simulation 

study standard error. Two lifetime data sets are used to demonstrate how the new 

model can be applied. Using the same comparative criteria, the proposed distribution 

offers a better fit than a few well-known distributions.  

 

Keywords: Absolute Bias, Characteristic function, Maximum Likelihood Estimation, 

Type II Topp-Leone Inverse Power Lomax distribution, Tsallis Entropy.  

 

  

1. Introduction 

Numerous notable distributions have been developed throughout the past century to 

be used as models in applied sciences. In terms of usefulness, the so-called 

generalized beta distribution introduced by Eugene et al. (2002) and Jones (2004) 

tops the list. The key characteristic of the generalized beta distribution's is that it is 

extremely rich; to our knowledge, it contains more than forty named distributions. 

Various mathematical techniques have been used to add one or more parameters to a 

standard probability distribution in order to improve its fit and make it adaptable to 
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different applications in modeling statistical data. This includes: Marshal-Olkin 

generated family developed and studied by Marshall and Olkin (1997), 

Kumaraswamy-G family proposed and studied by Cordeiro and de Castro (2011); 

Alexander et al. (2012) developed and studied the McDonald-G family, Zografos and 

Balakrishnan (2009) developed gamma-G (type 1) family of distribution, gamma-G 

(type 2) was proposed and studied by Ristic and Balakrishnan (2012), gamma-G 

(type 3) was developed by Torabi and Hedesh (2012); Amini et al. (2012) studied log 

gamma-G family; Exponentiated generalized-G was developed by Cordeiro et al. 

(2011), Alzaatreh et al. (2013) proposed and developed the Transformed-

Transformer (T-X); Exponentiated (T-X) was studied by Alzaghal et al. (2013), 

Weibull-G family was developed by Bourguignon et al. (2014). The Exponentiated 

half logistic generated family was studied by Cordeiro et al. (2014), the Gompertz-G 

generator was developed by Ghosh et al. (2016). The Cauchy family was studied by 

Alizadeh eta al. (2015), the type II Topp-Leone- G family was developed by Elgarhy 

et al. (2018), Reyad et al. (2019) proposed the exponentiated generalized Topp-

Leone-G family, the Sine Topp-Leone-G family of distributions was studied and 

developed by Abdulhakim A. Al-Babtain et al. (2020), Jamal and Chesneau (2020) 

proposed and studied the Sin Kumaraswamy-G family of distribution), the Topp-

Leone Marshall-Olkin-G Family of Distributions was developed by Fastel Chipepa 

et al.(2020) .This study explores the tractability of the type II Topp-Leone-G family 

to develop a new generalization of the Inverse Power Lomax distribution called the 

Type II Topp-Leone Inverse Power Lomax distribution with greater scope/areas of 

applications.  

The cumulative density function (CDF) of Type II Top-Leone-G family of 

distributions is given by   

𝐹(𝑥; 𝑣, 𝛹) = 1 − [1 − 𝐽(𝑥; 𝛹)2]𝑣,       𝑥 ∈ ℝ,                                                                  (1) 

The associated 𝑃𝐷𝐹 corresponding to (1) is given by  

𝑓(𝑥; 𝑣, 𝛹) = 2𝑣𝑗(𝑥; 𝛹)𝐽(𝑥; 𝛹)[1 − 𝐽(𝑥; 𝛹)2]𝑣−1,       𝑥 ∈ ℝ,                                      (2) 

Where 𝑣 is a positive shape parameter and 𝐽(𝑥; 𝛹) is the 𝐶𝐷𝐹 of a baseline 

continuous distribution which sometimes may depend on a parameter vector 𝛹. 

Elgarhy et al. (2018), described (𝑇𝐼𝐼𝑇𝐿 − 𝐺) family as a simplified version of the 

Kumaraswamy-G family. The added shape parameter 𝑣 is to possibly control the tail 

weight and skewness of the 𝐶𝐷𝐹 of baseline distribution. 

The main motivation of this article is to develop a four-parameter distribution that 

extends the three-parameter distribution to be useful for modeling lifetime data with 

a variety of shapes of the hazard function that the three-parameter distribution cannot 

handle. Also, it provides a good parametric fit to skewed data that cannot be properly 

fitted by distribution and is a suitable model in several areas such as medicine, 

insurance, biomedical studies, reliability, and seismography. This distribution is 

known as the Type-II Topp-Leone Inverse Power Lomax distribution, which is more 

flexible and tractable in modeling lifetime data than the Inverse Power Lomax 

distribution. 
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2. Type II Top-Leone Inverse Power Lomax distribution 

The Inverse Power Lomax (𝐼𝑃𝐿) distribution, is one of the Distributions that is 

particularly appealing, is the subject of study in this paper. Mathematically, it can 

also be written as distribution of 𝑌 = 𝑋−1, where X represents a random variable 

following the well-known Inverse Power Lomax distribution (see Amal and Marwa, 

2018). Consequently, the 𝐼𝑃𝐿 distribution's cumulative distribution function (CDF) is 

given by 

𝐽(𝑥; 𝜆, 𝑏, 𝜁) = (1 +
𝑥−𝑏

𝜆
)

−𝜁

                                                                                                (3) 

The 𝑃𝐷𝐹 that corresponds to (1) is given as 

𝑗(𝑥; 𝜆, 𝑏, 𝜁) =
𝑏𝜁

𝜆
𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−𝜁−1

                                                                           (4) 

There are numerous uses of inverted distributions, including econometrics, biological 

sciences, survey sampling, engineering sciences, and challenges in medical research 

and life testing. 

The CDF of the four-parameter Type II Top-Leone Inverse Power Lomax 

(𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿) distribution is obtained by plugging (3) in (1) and is given by  

𝐹(𝑥; 𝜆, 𝑏, 𝜁, 𝑣) = 1 − [1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣

,       𝑥 ∈ ℝ,                                               (5) 

And the corresponding PDF to (5) is given by 

𝑓(𝑥; 𝜆, 𝑏, 𝜁, 𝑣) =
2𝑏𝜁𝑣

𝜆
𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−2𝜁−1

[1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣−1

                 (6) 

Where 𝑏, 𝜁, 𝑣 are positive shape parameters and 𝜆 is a scale parameter. Some 

important probability distribution are special cases of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution such as 

the Type II Top-Leone Inverse Lomax (𝑇𝐼𝐼𝑇𝐿𝐼𝐿) distribution (𝑏 = 1), inverse 

Power Lomax (𝐼𝑃𝐿) distribution (𝑣 = 1), Inverse Lomax (𝐼𝐿) distribution (𝑏 = 𝑣 =
1). Several authors have used the Type II Top-Leone family of distributions to 

modify the standard probability distribution to induce flexibility and enhance its 

areas of application in modeling lifetime time data. Such work includes: the type II 

Topp-Leone generalized inverse Rayleigh distribution by Yahia and Mohammed 

(2019); the type II Topp-Leone power Lomax distribution by Al-Marzouki et al. 

(2020); the type II Topp-Leone inverse exponential distribution by Al-Marzouki 

(2021); the type II Topp-Leone generalized inverted exponential distribution by Al-

Saiary and Al-Jadaani (2022); and the type II Topp-Leone Bur XII distribution by 

Ogunde et al. (2023), among many others. The graphs of the PDF and the CDF of 
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𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is presented is Figures 1 as drawn below for various values of 

the parameters of the distribution. 

Figure 1. The graph of the density and distribution function of the TIITLIPL 
distribution 

 

 

An expression for the survival function (𝑆(𝑥)), hazard function (ℎ(𝑥)), cumulative 

hazard function £((𝑥)) and reversed hazard function (𝑟(𝑥)) are respectively, given 

as 

𝑆(𝑥; 𝜆, 𝑏, 𝜁, 𝑣) = 1 − 𝐹(𝑥) = [1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣

,                                                    (7) 

ℎ(𝑥; 𝜆, 𝑏, 𝜁, 𝑣) =

2𝑏𝜁𝑣

𝜆
𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−2𝜁−1

[1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣−1

[1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣 ,                       (8) 

£(𝑥; 𝜆, 𝑏, 𝜁, 𝑣) = 𝑙𝑜𝑔 (1 − [1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣

)    ,                                                 (9) 

and  

𝑟(𝑥; 𝜆, 𝑏, 𝜁, 𝑣) =

2𝑏𝜁𝑣

𝜆
𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−2𝜁−1

[1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣−1

[1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣   ,   𝑥 > 0,    (10) 
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The graphs of the hazard function of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is presented is Figures 2, 

as drawn below for various values of the parameters of the distribution. 

 

 

Figure 2. The graph of hazard function of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution 

 

 

2.1 Quantiles of the 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

Some important features and characteristics of a distribution can be examined 

through its moments and quantiles, such as skewness, dispersion, and kurtosis. Also, 

the quantiles of a distribution can be used to generate data from a distribution. The 

𝑢𝑡ℎ quantile (𝑥𝑢) of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is determined by solving this 

quantity: 

𝐹(𝑥𝑢) = u, 

Hence solving equation (5) we obtain 

𝑥𝑢 = [𝜆 {[1 − (1 − 𝑢)
1

𝑣⁄ ]}
−1

2𝜁⁄
− 1]

−1
𝑏⁄

.                                                                   (11) 

 

In particular, the 𝑢𝑡ℎ quantile for 𝑢 ∈ (0,1) for 𝑢 =  0.5, 0.75, we obtain the middle 

quartile (median) and the upper quartile of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution given 

respectively, by  
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𝑥0.5 = [𝜆 {[1 − (0.5)
1

𝑣⁄ ]}
−1

2𝜁⁄
− 1]

−1
𝑏⁄

,                                                                      (12) 

and 

𝑥0.75 = [𝜆 {[1 − (0.25)
1

𝑣⁄ ]}
−1

2𝜁⁄
− 1]

−1
𝑏⁄

.                                                                 (13) 

An expression for the mode of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution can be derived by solving the 

following equation 
𝛿

𝛿𝑥
(𝑙𝑜𝑔[𝐹(𝑥; 𝜆, 𝑏, 𝜁, 𝑣)]) = 0. 

(
𝑏 − 1

𝑥
) =

𝑏(2𝜁 + 1)𝑥−𝑏−1

𝜆 (1 +
𝑥−𝑏

𝜆
)

+
2𝜁𝑏𝑥−𝑏−1(𝑣 − 1)

𝜆 (1 +
𝑥−𝑏

𝜆
) [1 − (1 +

𝑥−𝑏

𝜆
)

𝜁

]

= 0 

2.2 Skewness and Kurtosis Based on Quantile Function for 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 

distribution 

The moments of distribution offer an empirical approach to evaluating the skewness 

and kurtosis of a distribution. However, some cases arise when the moments of 

distribution do not exist. This is a situation with a heavy tail distribution, such as the 

distribution. In particular, to measure the skewness of the distribution, we consider 

Bowley measures of the skewness coefficient defined by 

𝜌 =
𝑞(0.75; 𝜆, 𝑏, 𝜁, 𝑣) + 𝑞(0.25; 𝜆, 𝑏, 𝜁, 𝑣) − 2𝑞(0.5; 𝜆, 𝑏, 𝜁, 𝑣)

𝑞(0.75; 𝜆, 𝑏, 𝜁, 𝑣) − 𝑞(0.25; 𝜆, 𝑏, 𝜁, 𝑣)
 

To estimate the value of kurtosis, we use the Moor’s kurtosis (𝐾) coefficient defined 

by 

𝐾

=
𝑞(0.875; 𝜆, 𝑏, 𝜁, 𝑣) − 𝑞(0.625; 𝜆, 𝑏, 𝜁, 𝑣) + 𝑞(0.325; 𝜆, 𝑏, 𝜁, 𝑣) − 𝑞(0.125; 𝜆, 𝑏, 𝜁, 𝑣)

𝑞(0.75; 𝜆, 𝑏, 𝜁, 𝑣) − 𝑞(0.25; 𝜆, 𝑏, 𝜁, 𝑣)
 

Here, it could be observed that 𝜌 is a measure of symmetry of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 

distribution and K measures the heaviness of the tail distribution of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model, 

whether it is heavy-tailed or light-tailed 

Table 1 drawn below presents the numerical values of the quartiles, Bowley 

Skewness (𝜌) coefficient, and Moor’s coefficient (𝐾) of kurtosis of 𝑇𝐼𝐼𝑇𝐼𝑃𝐿 for 

hypothetical values of the parameters of the distribution taken the value of 𝑣 = 1.3. 
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Table 1.  Quartiles, Skewness and Kurtosis of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution 

 𝜁, 𝑏 𝑞0.25 𝑞0.5 𝑞0.625 𝑞0.75 𝑞0.875 𝜌 𝐾 

 

𝜆 = 5.0 

1.2,1.5 0.3511 0.5866 0.7580 1.0268 1.6027 0.3030 1.5645 

1.8,2.5 0.6592 0.8763 1.0143 1.2093 1.5707 0.2107 1.4070 

3.5,3.5 0.9279 1.1199 1.2370 1.3965 1.6768 0.1805  1.3602 

5.5,5.0 1.0478 1.1905 1.2746 1.3860 1.5737 0.1561 1.3285 

 

𝜆 = 10 

1.2,1.5 0.2211 0.3696 0.4775 0.6468 1.0096 0.3023  1.5645 

1.8,2.5 0.4996 0.6641 0.7687 0.9165 1.1904 0.2108 1.4068 

3.5,3.5 0.7612 0.9187 1.0147 1.1456 1.3756 0.1805 1.3605 

5.5,5.0 0.9122 1.0364 1.1096 1.2066 1.3699 0.1563 1.3281 

 

𝜆 = 15 

1.2,1.5 0.2270 0.3482 0.4312 0.4936 0.7705 0.0908 1.7033 

1.8,2.5 0.4248 0.5647 0.6536 0.7793 1.0122 0.2107 1.4071 

3.5,3.5 0.6780 0.8182 0.9037 1.0203 1.2251 0.1805 1.3608 

5.5,5.0 0.8411 0.9556 1.0231 1.1126 1.2633 0.1565 1.3300 

 

2.3 Expansion for the density function 

Here, we provide an expression for the expansion of density function of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿. 

Consider the binomial series expansion given by 

(1 − 𝑧)𝑡−1 = ∑(−1)𝑖 (
𝑡 − 1

𝑖
) 𝑧𝑖

∞

𝑖=0

.                                                                                  (14) 

 for |z| < 1 and t > 0 is a real non-integer. Using the binomial series in equation (14), 

we obtain an expression for the pdf of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model in equation (6) as 

𝑓(𝑥; 𝑏, 𝜁, 𝑣, 𝜆) =
2𝑏𝜁𝑣

λ
∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−[2𝜁(𝑖+1)+1]

,               (15) 

                           = ∑ €𝑖𝑔𝜆,𝑏,𝜁(𝑖+1)(𝑥),

∞

𝑖=0

 

Where, 
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𝑔𝜆,𝑏,𝜁(𝑖+1)(𝑥) =
2𝑏𝜁

λ
(𝑖 + 1)𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−[2𝜁(𝑖+1)+1]

, 

Is the 𝐼𝑃𝐿 density with parameters 𝜆, 𝑏 and 𝜁(𝑖 + 1). 

€𝑖 =
𝑣

(𝑖 + 1)
∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
). 

upon integration, we derive the same mixture representation for the cumulative 

distribution function of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 as 

𝐹(𝑥; 𝑏, 𝜁, 𝑣, 𝜆) = ∑ €𝑖𝐺𝜆,𝑏,𝜁(𝑖+1)(𝑥).

∞

𝑖=0

 

Where 𝐺𝜆,𝑏,𝜁(𝑖+1)(𝑥)  is the 𝐶𝐷𝐹 of the 𝐼𝑃𝐿 density with parameters 𝜆, 𝑏 and 

𝜁(𝑖 + 1). The new model is more flexible and tractable and very useful in modeling 

data exhibiting different shapes of the hazard rate function. 

Section 3 provides some precise statistical expressions for the ordinary and the 

incomplete moments and mean residual life, mean inactivity time, moment 

generating function, weighted probability moment, strength stress reliability, and 

order statistics of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution. In the Section 4 we derived an 

expression for the Renyi and Tsallis entropy of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution. For the 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution, we carried out simulation study, maximum likelihood 

estimations of the parameters of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model and real-life data applications 

in section 5. In Section 6, we conclude. 

 

3. Statistical Properties of the 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

3.1 The ordinary and incomplete moments of 𝑻𝑰𝑰𝑻𝑰𝑷𝑳 distribution 

Moments are the anticipated outcome of a particular function of a random variable. 

Due to the mathematical tractability of the various kinds of moments of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 

distribution, the moments can be calculated directly. In a similar vein, Bonferroni 

and Lorenz curves, the mean waiting time, and the mean residual life can be 

computed using the first incomplete moment. Thus, the 𝑟𝑡ℎ ordinary moment of a 

distribution is given by 

𝜇𝑟
′ = 𝐸(𝑥)𝑟 

Thus the 𝑠𝑡ℎ moment of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is given by 

𝜇𝑟
′ = ∫ 𝑥𝑟𝑓(𝑥; 𝑏, 𝜁, 𝑣, 𝜆)𝑑𝑥

∞

−∞

,                                                                                            (16) 

Putting equation (15) in (16), we have   
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𝜇𝑟
′ =

2𝑏𝜁𝑣

λ
∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) ∫ 𝑥𝑟−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−[2𝜁(𝑖+1)+1]

𝑑𝑥

∞

−∞

,                      (17) 

by applying change of variables, 𝑦 =
𝑥−𝑏

𝜆
, 𝑥−𝑏 = 𝑥−𝑏𝑦, 𝑑𝑥 =

− 1
𝑏⁄ 𝜆−1

𝑏⁄ 𝑦−1
𝑏⁄ −1𝑑𝑦 then plogging it in (17), we have 

𝜇𝑟
′ =

2𝜁𝑣

λ
∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

𝑏−𝑟
𝑏⁄ ∫ 𝑦

−𝑟
𝑏⁄ (1 + 𝑦)−[2𝜁(𝑖+1)+1]𝑑𝑦,

∞

0

                        (18) 

Consequently, taken 𝑦 = 𝑗(1 − 𝑗)−1, 𝑑𝑦 = (1 − 𝑗)−2𝑑𝑗, then from equation (18), we 

obtain 

𝜇𝑟
′ = 2𝜁𝑣 ∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

−𝑟
𝑏⁄ ∫ 𝑗

−𝑟
𝑏⁄ (1 − 𝑗)

𝑟
𝑏⁄ −2𝜁(𝑖+1)−3𝑑𝑗

1

0

 ,                         (19) 

an expression for the 𝑟𝑡ℎ moments of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is given by 

𝜇𝑟
′ = 2𝜁𝑣 ∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

−𝑟
𝑏⁄ 𝐵 [{1 − 𝑟

𝑏⁄ }, {𝑟
𝑏⁄ − 2𝜁(𝑖 + 1) − 1}].             (20) 

Where 𝐵(. , . ) is an incomplete beta function. It should be noted that the mean (𝜇1
′ ) 

and the variance (𝜎2 = 𝜇2
′ − {𝜇1

′ }2) of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 can respectively, be obtained by 

taking 𝑟 = 1,2.  

Also, the 𝑟𝑡ℎ central moment of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution can also be obtained using the 

relation 

𝜇𝑟 = ∫ (𝑥 − 𝜇)𝑟

∞

−∞

𝑓(𝑥; 𝑏, 𝜁, 𝑣, 𝜆)𝑑𝑥.                                                                                 (21) 

Using the binomial expression given in (14) to summarize (21), we have 

𝜇𝑟 = ∑ (
𝑟

𝑝
) (−1)𝑝𝜇𝑝𝜇𝑟−𝑝.

′

𝑟

𝑝=0

                                                                                             (22) 

It can be observed that 𝜎2 = 𝜇2. Further, many important quantities can be obtained, 

namely, the 𝑟𝑡ℎ cumulant of 𝑋 given by  

K𝑟 = 𝜇𝑟 − ∑ (
𝑟 − 1

𝑝 − 1
) K𝑝𝜇𝑟−𝑝.

′

𝑟−1

𝑝=1

                                                                                       (23) 

Taken K1 = 𝜇1
′ , the Pearson measures of skewness and kurtosis of 𝑋 is respectively 

represented by 𝛾1 =
𝜇3

𝜇2

3
2⁄⁄  and £ =

𝜇4
𝜇2

2⁄ . Table 2 drawn below presents the first 
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six moments, variance (𝝈𝟐), skewness (𝛶1)  and kurtosis (£) of type II Top-Leone 

Inverse power Lomax distribution for various hypothetical values parameters 𝑏, and 

𝝀 also for fixed value of parameters   𝜁 = 6.5, and 𝑣 = 6.5. 

 

Table 2. First six moments, 𝜎2, 𝛶1, and £ of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution 

𝑴𝒐𝒎𝒆𝒏𝒕𝒔 𝝀 = 𝟏. 𝟎, 

𝒃 = 𝟔. 𝟎 

𝝀 = 𝟐. 𝟑, 

𝒃 = 𝟖. 𝟓 

𝝀 = 𝟑. 𝟖, 

𝒃 = 𝟏𝟎. 𝟓 

𝝀 = 𝟒. 𝟖, 

𝒃 = 𝟏𝟒. 𝟓 

𝝀 = 𝟔. 𝟓, 

𝒃 = 𝟏𝟒. 𝟓 

𝝀 = 𝟖. 𝟓, 

𝒃 = 𝟏𝟔. 𝟎 

𝝁𝟏
′  0.7404 0.8472 0.9902 1.0132 1.0355 1.0516 

𝝁𝟐
′  0.5093 0.8427 0.9818 1.0285 1.0741 1.1073 

𝝁𝟑
′  0.3213 0.7666 0.9754 1.0462 1.1160 1.1670 

𝝁𝟒
′  0.1851 0.6939 0.9709 1.0664 1.1613 1.2311 

𝝁𝟓
′  0.0987 0.6259 0.9689 1.0892 1.2101 1.2993 

𝝁𝟔
′  0.0509 0.5638 0.9695 1.1148 1.2624 1.3717 

𝝈𝟐 𝑁𝐴𝑁 1.1249 0.0013 0.0019 0.0018 0.0014 

𝜸𝟏 𝑁𝐴𝑁 -3.6010 13.5766 2.6203 -0.5154 -8.4388 

£ 4.7333 11.0556 −397.3983 -57.6332 -32.4179 273.3821 

 

It could be observed from Table 2 that the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution can be used to 

model any kind of data, positively or negatively skewed, platykurtic, mesokurtic or 

leptokurtic. 

3.2 Incomplete moments of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

Incomplete moments of the income distribution form an important characteristic for 

measuring inequality. For example, the Lorenz and Bonferroni curves can be 

determined using the incomplete moments of the income distribution. The 

incomplete moments of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is given by 

𝛾𝑟
′(𝑡) = ∫ 𝑥𝑟𝑓(𝑥; 𝑏, 𝜁, 𝑣, 𝜆)𝑑𝑥.

𝑡

−∞

                                                                                       (24) 

Putting equation (15) in (24), we have   

𝛾𝑟
′(𝑡) =

2𝑏𝜁𝑣

λ
∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) ∫ 𝑥𝑟−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−[2𝜁(𝑖+1)+1]

𝑑𝑥

𝑡

−∞

,                 (25) 
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by applying change of variables, 𝑦 =
𝑥−𝑏

𝜆
, 𝑥−𝑏 = 𝑥−𝑏𝑦, 𝑑𝑥 =

− 1
𝑏⁄ 𝜆−1

𝑏⁄ 𝑦−1
𝑏⁄ −1𝑑𝑦 then plogging it in (25), we have 

𝛾𝑟
′(𝑡) =

2𝜁𝑣

λ
∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

𝑏−𝑟
𝑏⁄ ∫ 𝑦

−𝑟
𝑏⁄ (1 + 𝑦)−[2𝜁(𝑖+1)+1]𝑑𝑦,

𝑡

0

                   (26) 

Consequently, taken 𝑦 = 𝑗(1 − 𝑗)−1, 𝑑𝑦 = (1 − 𝑗)−2𝑑𝑗, then from equation (26), we 

obtain 

𝛾𝑟
′(𝑡) = 2𝜁𝑣 ∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

−𝑟
𝑏⁄ ∫ 𝑗

−𝑟
𝑏⁄ (1 − 𝑗)

𝑟
𝑏⁄ −2𝜁(𝑖+1)−3𝑑𝑗

1

0

,                     (27) 

an expression for the 𝑟𝑡ℎ incomplete moments of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is given by 

𝛾𝑟
′(𝑡) = 2𝜁𝑣 ∑(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

−𝑟
𝑏⁄ 𝐵 [{1 − 𝑟

𝑏⁄ }, {𝑟
𝑏⁄ − 2𝜁(𝑖 + 1) − 1};

𝑡−𝑏

𝜆
].  

(28) 

By determining the first incomplete moments, we can obtain an expression for the 

mean residual life and the mean activity time for 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution as follows: 

The mean residual life [𝛤𝑀𝑅𝐿(𝑡)] of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is  

 𝛤𝑀𝑅𝐿(𝑡) =
1 − 𝛾1

′(𝑡)

𝑆(𝑡) − 𝑡
, 

=
1 − 2𝜁𝑣 ∑ (−1)𝑖𝑣−1

𝑖=0 (𝑣−1
𝑖

)𝜆
−1

𝑏⁄ 𝐵 [{1 − 1
𝑏⁄ }, {1

𝑏⁄ − 2𝜁(𝑖 + 1) − 1};
𝑡−𝑏

𝜆
]      

[1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣

− 𝑡

, 

The mean inactivity time ([𝛤𝑀𝐼𝑇(𝑡)] of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is  

𝛤𝑀𝐼𝑇(𝑡) = 𝑡 −
𝛾𝑟

′(𝑡)

𝐹(𝑡)
, 

= 𝑡 −
2𝜁𝑣 ∑ (−1)𝑖𝑣−1

𝑖=0 (𝑣−1
𝑖

)𝜆
−1

𝑏⁄ 𝐵 [{1 − 1
𝑏⁄ }, {1

𝑏⁄ − 2𝜁(𝑖 + 1) − 1};
𝑡−𝑏

𝜆
]

1 − [1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣 . 

3.3 Moment generating function of TIITLIPL distribution 

Many important features of a distribution can be derived using its moment 

generating function and moments. Let X denote a random variable with the 

probability density function (6). By definition, the moment generating function of 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution can be obtained by using the relation 
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𝑀𝑥(𝑡) = 𝐸(𝑒𝑡𝑥) = ∑
𝑡𝑟

𝑟!
𝐸(𝑋𝑟)

∞

𝑟=1

                                                                                      (29) 

= ∑ ∑
𝑡𝑟

𝑟!
2𝜁𝑣(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

−𝑟
𝑏⁄ 𝐵 [{1 − 𝑟

𝑏⁄ }, {𝑟
𝑏⁄ − 2𝜁(𝑖 + 1) − 1}]

∞

𝑟=1

 

The characteristic function is obtained by replacing 𝑡 with 𝑖𝑡 in (29). Thus, the 

characteristic moments for 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is given as  

𝝋(𝒕) = ∑
(𝑖𝑡)𝑟

𝑟!
𝐸(𝑋𝑟),

∞

𝑟=1

                                                                                                     (30) 

= ∑ ∑
(𝑖𝑡)𝑟

𝑟!
2𝜁𝑣(−1)𝑖

𝑣−1

𝑖=0

(
𝑣 − 1

𝑖
) 𝜆

−𝑟
𝑏⁄ 𝐵 [{1 − 𝑟

𝑏⁄ }, {𝑟
𝑏⁄ − 2𝜁(𝑖 + 1) − 1}] .

∞

𝑟=1

 

3.4 Weighted probability moment of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

Probability weighted moments (PWMs) can be described as the expectations of 

certain functions of a random variable, which can only be obtained when the 

ordinary moments of the random variable exist. The PWMs method can be used to 

estimate the parameters of a distribution whose inverse form cannot be expressed 

explicitly. Estimates based on PWMs are often taken to be better than standard 

moment-based estimates. Sometimes, they are used when maximum likelihood 

estimates cannot be obtained or are difficult to compute. Suppose 𝑟 and 𝑞 are two 

positive integers, then, the 𝑟𝑡ℎ, 𝑞𝑡ℎ weighted probability moments for X, i.e., 𝛾𝑟,𝑞
΄ =

𝐸(𝑋𝑟𝐹(𝑋; 𝑏, 𝑣, 𝜁, 𝜆)𝑞)is given by 

𝛾𝑟,𝑞
΄ = ∫ 𝑥𝑟

∞

−∞

𝑓(𝑥; 𝑏, 𝜁, 𝑣, 𝜆)𝐹(𝑥; 𝑏, 𝜁, 𝑣, 𝜆)𝑞𝑑𝑥.                                                             (31) 

Plugging (5) and (6) in (31), then followed by using binomial expression in (14), we 

have  

𝛾𝑟,𝑞
΄ =

2𝑏𝜁𝑣

𝜆
∑ ∑ (−1)𝑖+𝑗

𝑣(𝑖+𝑖)−1

𝑗=0

∞

𝑖=0

(
𝑞

𝑖
) (

𝑣(𝑖 + 1) − 1

𝑗
) ∫ 𝑥𝑟

∞

−∞

(1 +
𝑥−𝑏

𝜆
)

−{2𝜁(𝑗+1)+1}

𝑑𝑥, 

(32) 

Also, by applying change of variables, 𝑦 =
𝑥−𝑏

𝜆
, 𝑥−𝑏 = 𝜆𝑦, 𝑑𝑥 =

− 1
𝑏⁄ 𝜆−1

𝑏⁄ 𝑦−1
𝑏⁄ −1𝑑𝑦 then plogging it in (32), we have 

𝛾𝑟,𝑞
΄ =

2𝜁𝑣

𝜆(
𝑟+𝑏+1

𝑏
)

∑ ∑ (−1)𝑖+𝑗

𝑣(𝑖+𝑖)−1

𝑗=0

∞

𝑖=0

(
𝑞

𝑖
) (

𝑣(𝑖 + 1) − 1

𝑗
) ∫ 𝑦−(

𝑟+𝑏+1

𝑏
)

∞

−∞

(1

+ 𝑦)−{2𝜁(𝑗+1)+1}𝑑𝑥,                                                                                  (33) 



 

THE TYPE II TOPP-LEONE INVERSE POWER LOMAX DISTRIBUTION WITH 

SIMULATION AND APPLICATIONS  

 

14 

 

Consequently, taken 𝑦 = 𝑗(1 − 𝑗)−1, 𝑑𝑦 = (1 − 𝑗)−2𝑑𝑗, and substitute it in (33), 

finally we have an expression for the probability weighted moments of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 

distribution as 

𝛾𝑟,𝑞
΄ =

2𝜁𝑣

𝜆
𝑟+𝑏+1

𝑏

2𝑏𝜁𝑣

𝜆
∑ ∑ (−1)𝑖+𝑗

𝑣(𝑖+𝑖)−1

𝑗=0

∞

𝑖=0

(
𝑞

𝑖
) (

𝑣(𝑖 + 1) − 1

𝑗
) 𝐵 [

−(𝑟 + 1)

𝑏
, 2𝜁(1 + 𝑗)

+ 1 +
𝑟 + 1

𝑏
]. 

3.5 Stress strength Reliability Parameter for 𝑻𝑰𝑰𝑻𝑳𝑰𝑷L distribution 

Here, we derive the reliability 𝑅 =  𝑃𝑟(𝑌 >  𝑍) when Y and Z are independent 

random variable that follows the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃L distribution having sets of the following 

parameters (𝜆, 𝑏, 𝜁1, 𝑣1) and (𝜆, 𝑏, 𝜁2, 𝑣2), respectively. Then, the associated stress-

strength reliability parameter is given by 𝑅 = 𝑃(𝑍 <  𝑌 ). 

𝑅 = 𝑃(𝑌 < 𝑍) = ∫ 𝑓1(𝑏, 𝜁1, 𝑣1, 𝜆, )𝐹2(𝑏, 𝜁2, 𝑣2, 𝜆, )

∞

−∞

𝑑𝑥,                                            (34) 

Consequently, we can write 

𝑅 = 𝐹1(𝜆, 𝑏, 𝜁1, 𝑣1) −
2𝑏𝜁1𝑣1

𝜆
∑ (−1)𝑖+𝑗

∞

𝑖,𝑗=0

(
𝑣1 − 1

𝑖
) (

𝑣2

𝑗
) ∫ 𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−2𝜁1𝑖−2𝜁2𝑗

𝑑𝑥

∞

0

, 

(35) 

= 𝐹1(𝜆, 𝑏, 𝜁1, 𝑣1) − 2𝜁1𝑣1 ∑ (−1)𝑖+𝑗

∞

𝑖,𝑗=0

(
𝑣1 − 1

𝑖
) (

𝑣2

𝑗
) 𝐵[1,2(𝜁1𝑖 + 𝜁2𝑗) − 1].  

3.6 Order statistics of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

In statistical theory and analytical techniques, order statistics is mostly applied and 

practiced. Suppose we let 𝑋[1], 𝑋[2], … , 𝑋[𝑛] be a random variable with corresponding 

𝐶𝐷𝐹, 𝐹(𝑥). let 𝑥1:𝑛, 𝑥2:𝑛, … , 𝑥𝑛:𝑛 be the corresponding ordered 𝑟. Then, the density 

of 𝑟𝑡ℎ statistic is represented by  

𝑓𝑟:𝑛(𝑥) = Ɲ∗ ∑(−1)𝑙

𝑛−𝑟

𝑙=0

(
𝑣2

𝑗
) 𝑓(𝑥)𝐹(𝑥)𝑙+𝑟−1.                                                                 (36) 

Where, Ɲ∗ =
1

𝐵(𝑟,𝑛−𝑟+1)
 and 𝐵. ,. is the beta function. The 𝑃𝐷𝐹 of the 𝑟𝑡ℎ statistic of 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is obtained by plugging (5) and (6) in (36), correspondingly, 

we have 
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𝑓𝑟:𝑛(𝑥) = Ɲ∗
2𝑏𝜁𝑣

𝜆
∑(−1)𝑙

𝑛−𝑟

𝑙=0

(
𝑣2

𝑗
) (𝑥−𝑏−1 (1 +

𝑥−𝑏

𝜆
)

−2𝜁−1

[1

− (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣−1

) × (1 − [1 − (1 +
𝑥−𝑏

𝜆
)

−2𝜁

]

𝑣

)

𝑙+𝑟−1

  ,    (37) 

By using the binomial expansion given in (14), twice to summarize (37), we have 

𝑓𝑟:𝑛(𝑥) = Ɲ∗
2𝑏𝜁𝑣

𝜆
∑ ∑ ∑(−1)𝑙+𝑃+𝑞

∞

𝑞=0

𝑙+𝑟−1

𝑝=0

𝑛−𝑟

𝑙=0

(
𝑛

𝑙
) (

𝑙 + 𝑟 − 1

𝑝
) (

𝑣(𝑝 + 1)

𝑞
)

× 𝑥−𝑏−1 (1 +
𝑥−𝑏

𝜆
)

−2𝜁𝑞−1

,                                                                    (38) 

Finally, we have, 

𝑓𝑟:𝑛(𝑥) = Ɲ∗
2𝑏𝜁𝑣

𝜆
∑ 𝑊∗

𝑝,𝑞𝑥−𝑏−1 (1 +
𝑥−𝑏

𝜆
)

−2𝜁𝑞−1𝑛−𝑟

𝑙=0

. 

Where, 

𝑊∗
𝑝,𝑞 = ∑ ∑(−1)𝑙+𝑃+𝑞

∞

𝑞=0

𝑙+𝑟−1

𝑝=0

(
𝑛

𝑙
) (

𝑙 + 𝑟 − 1

𝑝
) (

𝑣(𝑝 + 1)

𝑞
). 

 

4. Information measures 

4.1 Renyl Entropy of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

Renyl Entropy was introduced and developed by Renyl (1961). It measures the 

uncertainty embedded in a system. The Renyl entropy of a system can be obtained by 

using  

𝐼Ʊ(𝑋) =
1

1 − Ʊ
𝑙𝑜𝑔 ∫ 𝑓(𝑥; 𝑏, 𝜁, 𝑣, 𝜆)Ʊ𝑑𝑥, Ʊ > 0 𝑎𝑛𝑑 Ʊ ≠ 0

∞

−∞

.                                   (39) 

Using binomial expansion (14) in (39) then 𝑓(𝑥)Ʊ can be written as 

𝑓(𝑥)Ʊ = (
2𝑏𝜁𝑣

𝜆
)

 Ʊ

∑(−1)𝑝 (
Ʊ(𝑣 − 1)

𝑖
)

∞

𝑖=0

𝑥−Ʊ(𝑏+1) (1 +
𝑥−𝑏

𝜆
)

−Ʊ(4𝜁+1)

,                (40) 

Therefore, the Renyl entropy of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 is as follows 

∫ 𝑓(𝑥)Ʊ

∞

−∞

= (
2𝑏𝜁𝑣

𝜆
)

 Ʊ

∑(−1)𝑝 (
Ʊ(𝑣 − 1)

𝑖
)

∞

𝑖=0

∫ 𝑥−Ʊ(𝑏+1) (1 +
𝑥−𝑏

𝜆
)

−Ʊ(4𝜁+1)

𝑑𝑥

∞

0

. 
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                = 𝐺∗ ∑(−1)𝑝 (
Ʊ(𝑣 − 1)

𝑖
)

∞

𝑖=0

𝐵 [
Ʊ(𝑏 + 1) + 𝑏 − 1

𝑏
, 𝑏(4𝜁Ʊ − 2) − Ʊ + 2], 

Where 𝐺∗ = (
2𝑏𝜁

𝜆
)

 Ʊ

𝜆Ʊ(
𝑏+Ʊ−1

𝑏
)
 

Finally, we have an expression for the Renyl entropy of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution as  

𝐼Ʊ(𝑋) =
1

1 − Ʊ
𝑙𝑜𝑔 {𝐺∗ ∑(−1)𝑝 (

Ʊ(𝑣 − 1)

𝑖
)

∞

𝑖=0

𝐵 [
Ʊ(𝑏 + 1) + 𝑏 − 1

𝑏
, 𝑏(4𝜁Ʊ − 2)

− Ʊ + 2]} ,                                                                                                 (41) 

4.2 Tsallis Entropy of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

The Tsallis entropy was initially introduced by Havrada and Charvat (1967) and later 

developed by Tsallis (1988). The Tsallis entropy of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution can be 

defined as 

𝐼𝑇
( Ʊ)

=
1

 Ʊ − 1
[1 − ∫ 𝑓𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿(𝑥; 𝑏, 𝑣, 𝜁, 𝜆) Ʊ

∞

−∞

] ,      Ʊ > 0, Ʊ ≠ 1.                           (42) 

Since, 

∫ 𝑓(𝑥)Ʊ

∞

−∞

= (
2𝑏𝜁

𝜆
)

 Ʊ

𝜆Ʊ(
𝑏+Ʊ−1

𝑏
) ∑(−1)𝑝 (

Ʊ(𝑣 − 1)

𝑖
)

∞

𝑖=0

× 𝐵 [
Ʊ(𝑏 + 1) + 𝑏 − 1

𝑏
, 𝑏(4𝜁Ʊ − 2) − Ʊ + 2], 

An expression for the Tsallis entropy of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is given as 

𝐼𝑇
( Ʊ)

=
1

 Ʊ − 1
{1 − 𝐺∗ ∑(−1)𝑝 (

Ʊ(𝑣 − 1)

𝑖
)

∞

𝑖=0

𝐵 [
Ʊ(𝑏 + 1) + 𝑏 − 1

𝑏
, 𝑏(4𝜁Ʊ − 2) − Ʊ + 2]}. 

(43) 

 

5. Simulation study for 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 model 

Here, we carried out a simulation study to examine the behaviour of the MLEs of the 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model. We generated 𝑁 = 1000 random samples of size 𝑛 =
50, 100,200,300,400 and 500 from 𝑋. Two sets of parameters were used. The 

MLEs, absolute bias (𝐴𝐵), standard error (𝑆𝐸), and the mean square error (𝑀𝑆𝐸) of 

𝑏, 𝑣, 𝜁, and 𝜆 were obtained. The numerical results were presented in Table 3 and 4 

for (𝑏 = 0.3, 𝑣 = 0.4, 𝜁 = 0.5, and 𝜆 = 0.6) and (𝑏 = 0.5, 𝑣 = 1.4, 𝜁 = 1.5, and 𝜆 =
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1.6), respectively. From the results obtained, it could be observed that as the number 

of samples (𝑛) increases the mean square error approaches zero. This indicates that 

MLEs are consistent in estimating the values of the parameters of the TIITLIPL 

model. 

 

Table 3. 𝑀𝐿𝐸𝑠, 𝐴𝐵, 𝑆𝐸, and 𝑀𝑆𝐸 of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒏 𝑴𝑳 𝑨𝑩 𝑺𝑬 𝑴𝑺𝑬 

 

 

𝜆 = 0.3 

50 0.8780 0.5780 0.3575 0.4619 

100 0.6408 0.3408 0.3538 0.4228 

200 0.5385 0.2385 0.1751 0.2320 

300 0.4656 0.1656 0.1816 0.0604 

400 0.3969 0.0969 0.1461 0.0307 

500 0.3718 0.0718 0.1129 0.0179 

 

 

𝑏 = 0.5 

50 0.7115 0.2115 0.5159 0.3109 

100 0.4038 0.0962 0.3385 0.1238 

200 0.5275 0.0275 0.2547 0.0656 

300 0.4094 0.0906 0.1871 0.0432 

400 0.4473 0.0527 0.1409 0.0226 

500 0.4809 0.0191 0.1183 0.0144 

 

 

𝜁 = 0.4 

50 0.2288 0.1712 0.6486 0.4499 

100 0.4879 0.0879 0.6239 0.3969 

200 0.2886 0.1114 0.4997 0.2621 

300 0.3351 0.0649 0.3858 0.1531 

400 0.3141 0.0859 0.1662 0.0358 

500 0.3666 0.0334 0.1127 0.0138 

 

 

𝑣 = 0.6 

50 0.3945 0.2055 0.6523 0.4677 

100 0.6834 0.0834 0.6428 0.4205 

200 0.5783 0.0247 0.3638 0.3644 



 

THE TYPE II TOPP-LEONE INVERSE POWER LOMAX DISTRIBUTION WITH 

SIMULATION AND APPLICATIONS  

 

18 

 

300 0.6128 0.0128 0.3471 0.1206 

400 0.7318 0.1318 0.3115 0.1144 

500 0.6487 0.0487 0.2161 0.0491 

 

Table 4. 𝑀𝐿𝐸𝑠, 𝐴𝐵, 𝑆𝐸, and 𝑀𝑆𝐸 of 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model 

𝑷𝒂𝒓𝒂𝒎𝒆𝒕𝒆𝒓 𝒏 𝑴𝑳 𝑨𝑩 𝑺𝑬 𝑴𝑺𝑬 

 

 

𝜆 = 0.5 

50 2.5658 2.0658 4.3356 20.8632 

100 3.2955 2.7955 1.7214 10.7780 

200 1.5855 1.0855 0.6935 1.6593 

300 1.4164 0.9164 0.5317 1.1225 

400 1.1780 0.6780 0.5037 0.7134 

500 1.2128 0.7128 0.4225 0.6866 

 

 

𝑏 = 1.5 

50 2.0143 0.5143 2.2208 5.1965 

100 0.5269 2.1998 1.8726 8.3458 

200 1.3125 0.7850 1.7084 2.3246 

300 0.9892 0.4471 1.1821 1.5973 

400 1.1640 0.6783 0.6219 0.8469 

500 1.4275 0.8698 0.2593 0.8238 

 

 

𝜁 = 1.4 

50 0.4216  0.9784 10.3213 107.4865 

100 3.5998 2.1798 7.5113 61.1712 

200 0.6150 0.5101 6.1251 2.3246 

300 0.9529 0.5251 4.7949 1.5973 

400 0.7217 0.4219 2.8494 0.8469 

500 0.5302 0.2388 1.1805 0.8238 

 50 0.9886 0.6114 10.6138 113.0265 
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𝑣 = 1.6 

100 2.7982 1.1982 8.5113 73.8779 

200 2.1101 0.5101 6.1251 37.7771 

300 2.1251 0.5251 4.7949 23.2668 

400 2.0219 0.4219 2.8494 8.2971 

500 1.8388 0.2388 1.1805 1.4506 

 

5.2 Maximum likelihood estimation of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 distribution 

Suppose 𝑥1, 𝑥2, … , 𝑥𝑛 be a positive real number drawn from X. Then, the log-

likelihood function for 𝜉 = (𝑏, 𝑣, 𝜁, 𝜆) is given by 

𝑙(𝜉) = 𝑙𝑜𝑔 (
2𝑏𝜁𝑣

𝜆
) − (𝑏 + 1) ∑ 𝑙𝑜𝑔(𝑥𝑖)

𝑛

𝑖=1

− (2𝜁 + 1) ∑ (1 +
𝑥𝑖

−𝑏

𝜆
)

𝑛

𝑖=1

+ (𝒗 − 𝟏) ∑ 𝒍𝒐𝒈

𝒏

𝒊=𝟏

[1 − (1 +
𝒙𝒊

−𝑏

𝜆
)

−2𝜁

].                                           (44) 

The element of the score vector of 𝜉, say 𝜉 = (�̂�, 𝑣, 𝜁, �̂�), associated to (42) which 

exemplify the log-likelihood of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 model, �̂�, 𝑣, 𝜁,  and �̂� can be obtained 

as the solution to the simultaneous equations: 
𝜕𝑙(𝜉)

𝜕𝜁
= 0,

𝜕𝑙(𝜉)

𝜕𝜆
,

𝜕𝑙(𝜉)

𝜕𝑏
 and 

𝜕𝑙(𝜉)

𝜕𝑏
, in 

relation to the parameters. Here, the partial derivatives can be determined as follows: 

𝜕𝑙(𝜉)

𝜕𝜁
=

𝑛

𝜁
− 2 ∑ (1 +

𝒙𝒊
−𝑏

𝜆
)

𝑛

𝑖=1

− 2(𝑣 − 1) ∑
(1 +

𝒙𝒊
−𝑏

𝜆
)

−2𝜁

𝑙𝑜𝑔 (1 +
𝒙𝒊

−𝑏

𝜆
)

[1 − (1 +
𝒙𝒊

−𝑏

𝜆
)

−2𝜁

]   

𝑛

𝑖=1

,      (45) 

𝜕𝑙(𝜉)

𝜕𝜆
= −

𝑛

𝜆
+ (2𝜁 + 1) ∑

𝒙𝒊
−𝑏

𝜆2 (1 +
𝒙𝒊

−𝑏

𝜆
)

𝑛

𝑖=1

+ (𝒗 − 𝟏) ∑
𝒙𝒊

−𝑏 (1 +
𝒙𝒊

−𝑏

𝜆
)

−2𝜁

𝜆2 (1 +
𝒙𝒊

−𝑏

𝜆
) [1 − (1 +

𝒙𝒊
−𝑏

𝜆
)

−2𝜁

]

𝒏

𝒊=𝟏

,                             (46) 

𝜕𝑙(𝜉)

𝜕𝑏
=

𝑛

𝑏
− ∑ 𝒍𝒐𝒈(𝒙𝒊)

𝒏

𝒊=𝟏

− (2𝜁 + 1) ∑
𝒙𝒊

−𝑏 log(𝒙𝒊)

(1 +
𝒙𝒊

−𝑏

𝜆
)

𝑛

𝑖=1

+ 2𝜁(𝑣 − 1) ∑
𝒙𝒊

−𝑏 log(𝒙𝒊)

[1 − (1 +
𝒙𝒊

−𝑏

𝜆
)

−2𝜁

]   

,

𝑛

𝑖=1

                                             (47) 
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and 

𝜕𝑙(𝜉)

𝜕𝑣
=

𝑛

𝑣
+ ∑ 𝒍𝒐𝒈

𝒏

𝒊=𝟏

[1 − (1 +
𝒙𝒊

−𝑏

𝜆
)

−2𝜁

].                                                                  (48) 

It could be observed from (48) that the following relation exist between the MLEs: 

𝑣 = −
1

𝑛
∑ 𝑙𝑜𝑔

𝑛

𝑖=1

[1 − (1 +
𝑥𝑖

−�̂�

�̂�
)

−2�̂�

]. 

Analytical expressions for the MLEs cannot be found, of course. To get an 

approximate numerical solution, we can apply nonlinear optimization techniques like 

the Newton-Raphson algorithm. Based on some regularity assumptions, for large, the 

sub-adjacent distribution of can be approximated by a multivariate normal 

distribution Ɲ4 (04, 𝐽(𝜉 )
−1

), where 𝐽(𝜉 ) = 〈−
𝜕2𝑙(𝜉)

𝜕𝑝𝜕𝑞
〉(𝑝,𝑞)𝜀〈𝑏,𝑣,𝜁𝜆〉2 ⃒𝜉=�̂� . The 4 × 4 

information matrix is given by 

𝐽(𝜉 ) =

|

|

|

𝜕2𝑙(𝜉)

𝜕𝑏𝜕𝑏

𝜕2𝑙(𝜉)

𝜕𝑏𝜕𝑣

𝜕2𝑙(𝜉)

𝜕𝑏𝜕𝜁

𝜕2𝑙(𝜉)

𝜕𝑏𝜕𝜆

𝜕2𝑙(𝜉)

𝜕𝑣𝜕𝑏

𝜕2𝑙(𝜉)

𝜕𝑣𝜕𝑣

𝜕2𝑙(𝜉)

𝜕𝑣𝜕𝜁

𝜕2𝑙(𝜉)

𝜕𝑣𝜕𝜆

𝜕2𝑙(𝜉)

𝜕𝜁𝜕𝑏

𝜕2𝑙(𝜉)

𝜕𝜁𝜕𝑣

𝜕2𝑙(𝜉)

𝜕𝜁𝜕𝜁

𝜕2𝑙(𝜉)

𝜕𝜁𝜕𝜆

𝜕2𝑙(𝜉)

𝜕𝜆𝜕𝑏

𝜕2𝑙(𝜉)

𝜕𝜆𝜕𝑣

𝜕2𝑙(𝜉)

𝜕𝜆𝜕𝑏𝜁

𝜕2𝑙(𝜉)

𝜕𝜆𝜕𝑏𝜆

|

|

|

, 

We can obtain the maximum values of the unrestricted and restricted log-likelihoods 

to construct the LR statistics for testing some sub-models of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 

distribution. For example, we may use the LR statistic to determine if the fit using 

the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution is statistically “better” than a fit using the Type II Topp-

Leone Inverse Power Lomax (𝑇𝐼𝐼𝑇𝐿𝐼𝐿) and 𝐼𝑃𝐿 distributions for a given data set. In 

any case, hypothesis testing of the type 𝐻0: 𝜉 = 𝜉0 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻1: 𝜉 ≠ 𝜉0 can be carried 

out by using any of the three asymptotically applicable statistics. For example, the 

test of 𝐻0: 𝑣 = 1 𝑣𝑒𝑟𝑠𝑢𝑠 𝐻1: 𝑣 ≠ 1 𝑖𝑠 𝑛𝑜𝑡 𝑡𝑟𝑢𝑒 is equivalent to compare the 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 with the 𝐼𝑃𝐿 distribution and the likelihood ratio statistics reduce to  

𝑤 = 2{𝑙(�̂�, 𝑣, 𝜁, �̂�) − 𝑙(�̌�, 1̌, 𝜁,  �̌�)}. 

Where, �̂�, 𝑣, 𝜁and �̂� are the MLEs under  𝐻1 and �̌�, 𝜁 and  �̌� are the MLEs under 𝐻0. 

The approximate 100(1 − 𝛹)% two-sided confidence intervals for 𝑏, 𝑣, 𝜁 𝑎𝑛𝑑 𝜆 are 

given by: 

�̂� ± 𝑍𝛹

2

√І𝑏𝑏
−1(𝜉), �̂� ± 𝑍𝛹

2

√І𝑣𝑣
−1(𝜉),    �̂� ± 𝑍𝛹

2

√І𝜁𝜁
−1(𝜉),     𝑎𝑛𝑑    �̂� ± 𝑍𝛹

2

√І𝜆𝜆
−1(𝜉), 
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respectively. Where І𝑏𝑏
−1(𝜉), І𝑣𝑣

−1(𝜉), І𝜁𝜁
−1(𝜉) and І𝜆𝜆

−1(𝜉) are diagonal elements of  

І𝑛
−1(𝜉), and 𝑍𝜁

2

 is the upper  
𝛹

2

𝑡ℎ
 percentile of the distribution of the standard normal. 

5.3 Applications of 𝑻𝑰𝑰𝑻𝑳𝑰𝑷𝑳 model to lifetime data 

The section presents practical applications of the 𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 distribution using two 

lifetime datasets. The comparison of the of Type II Top-Leone Inverse Power Lomax 

distribution is made with Type II Top-Leone Inverse Lomax (𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿), Inverse 

Power Lomax (𝐼𝑃𝐿) and Inverse Lomax (𝐼𝐿) distribution. Many accuracy measures 

including Akaike Information Criterion (AKAIC), Consistent Akaike Information 

criterion (CAKAIC), Hanan-Quin Information Criterion (HAQIC), Anderson-

Darling test (AD), Cramer-von Mises test (CV), and Kolmogorov Smirnoff (KS) 

statistic are being estimated.  

Data set I comprises the failure time of 36 appliances subjected to automatic life test. 

The data can be found in Lawless (1982). 

Data set II is available on https://www.ecan.govt.nz/data/riverflow/. 

The exploratory data analysis of the data sets is given in Table 5. This shows that 

data I is positively skewed and over-dispersed with excess kurtosis of 1.0359 

(leptokurtic). Also, data II is positively skewed and over-dispersed with excess 

kurtosis of 12.04 (Leptokurtic). Table 6 and 8 gives the MLEs of the models 

considered and Table 7 and 9 gives different measures of fit. Figure 3 presents the 

Total time on Test (TTT) plot for data set 1 and II which shows that the two data sets 

exhibit non-monotone failure rate. Boxplots for data set I and II are given in Figure 

4. The fitted densities for the data sets are given in Figure 5. It can be deduced from 

these figures that the 𝐾𝐺𝐼𝐿 distribution fits these three data sets better than other 

competitive models considered. 

The likelihood ratio (LR) test was carried out for the sub-models 𝑇𝐼𝐼𝑇𝐿𝐼𝐿, 𝐼𝑃𝐿 and 

𝐼𝐿 of the 𝐾𝐺𝐼𝐿 distribution for 𝑏 = 1, 𝑣 = 1, and 𝑏 =  𝑣 =  1, respectively. Table 10 

provides the reports on the LR tests for the two datasets and it is evident from the 

results obtained that the 𝑇𝐼𝐼𝑇𝐿𝐼𝐿 model have a better fit than its sub-models.  

 

Table 5. Summary statistics of data sets 

Data 𝑛 Range Lower 

quartile 

Median Upper 

quartile 

mean Var. Skew. Kurt. 

𝐷𝑎𝑡𝑎 𝐼 34 7835 479.2 2511.0 3052.8 2285.8 3865446 1.0708 4.0359 

𝐷𝑎𝑡𝑎 𝐼𝐼 70 27.07 0.66 1.11 1.89 2.82 20.68 3.16 15.04 
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(a) TTT plot to data set I                             (b) TTT plot to data set II 

Figure 3. The graphs of total test time (TTT) plots for the two data sets 

 

 

 

(a) Box plot to data set I              (b) Box plot to data set II 

Figure 4. The graphs of Box plots for the two data sets. 
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Table 6. MLEs, standard error (in braces), and confidence interval (curly bracket) of 

the parameters of the models for dataset I. 

𝑀𝑜𝑑𝑒𝑙 𝜁 𝑏 𝜆 𝑣 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 0.0051(0.0022) 

{−0.0057,0.0560} 

0.5694(0.0697) 

{0.4997,0.0639} 

0.8826(0.1709) 

{0.5476,1.2176} 

8.5847(5.4883) 

{−2.1724,19.3418} 

𝑇𝐼𝐼𝑇𝐿𝐼𝐿 −0.6008 (0.6965) 

{−1.9659,0.7643} 

−(−) 

{−} 

−15.0991(1.8302) 

{−18.6863, −11.5119} 

0.3059(0.0600) 

{0.1883,0.4235} 

𝐼𝑃𝐿 0.0029(0.0010) 

{0.0094,0.0049} 

40.8525(0.0574) 

{40.7400,40.965} 

1.2719(0.3241) 

{0.6367,1.9071} 

−(−) 

{−} 

𝐼𝐿 0.0020(0.0001) 

{0.0018,0.0022} 

−(−) 

{−} 

1.8056(0.3211) 

{1.1762,2.4350} 

−(−) 

{−} 

 

Table 7. Model selection criteria for data set I. 

𝑀𝑜𝑑𝑒𝑙 −𝑙 𝐴𝐾𝐴𝐼𝐶 𝐶𝐴𝐾𝐼𝐶 𝐻𝐴𝑄𝐼𝐶  𝐶𝑉 𝐴𝐷 𝐾𝑆 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 299.40 606.79 608.18 608.88 0.3097 1.7089 0.2302 

𝑇𝐼𝐼𝑇𝑃𝐼𝐿 319.59 645.19 645.99 646.76 0.8552 4.6301 0.3031 

𝐼𝑃𝐿 304.57 615.14 615.94 616.70 0.4237 2.3909 0.18901 

𝐼𝐿 307.25 618.45 618.84 619.49 0.4804 2.7170 0.2746 

 

Table 8. MLEs and standard error (in braces), confidence interval (curly bracket) of 

the parameters of the models for dataset II. 

𝑀𝑜𝑑𝑒𝑙 𝜁 𝑏 𝜆 𝑣 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 12.2641(0.3766) 

{11.5260,13.0022} 

6.8277(0.2990) 

{6.2417,7.4137} 

0.1051(0.0331) 

{0.0402,0.1699} 

0.1445(0.0186) 

{0.1080,0.1810} 

𝑇𝐼𝐼𝑇𝐿𝐼𝐿 2.7374(1.9884) 

{−1.1599,6.6347} 

−(−) 

{−} 

1.9170(0.9477) 

{0.0595,3.7745} 

1.5217(0.3464) 

{0.84282.2006} 

𝐼𝑃𝐿 1.9373(1.1016) 

{−0.2218,4.0964} 

1.3799(0.1867) 

{1.0140,1.7458} 

2.0704(0.8982) 

{0.3099,3.8309} 

−(−) 

{−} 

𝐼𝐿 6.2165(4.5826) 

{−2.7654,15.1984} 

−(−) 

{−} 

5.7548(3.6207) 

{−1.3418,12.8514} 

−(−) 

{−} 
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Table 9. Model selection criteria for data set II. 

𝑀𝑜𝑑𝑒𝑙 −𝑙 𝐴𝐾𝐴𝐼𝐶 𝐶𝐴𝐾𝐼𝐶 𝐻𝐴𝑄𝐼𝐶  𝐶𝑉 𝐴𝐷 𝐾𝑆 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 122.35 252.69 253.31  256.26 0.0532 0.4555 0.0848 

𝑇𝐼𝐼𝑇𝐿𝐼𝐿 126.74 259.48 259.84 262.16 0.2040 1.3062 0.1267 

𝐼𝑃𝐿 126.04 258.08 258.44 260.76 0.1782 1.1714 0.1177 

𝐼𝐿 128.59 261.19 261.37 262.97 0.1778 1.1796 0.1637 

 

Table 10. LR test for the two data sets 

𝑚𝑜𝑑𝑒𝑙 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑠𝑖𝑠 𝐿𝑅 𝑃 − 𝑣𝑎𝑙𝑢𝑒 

Data set I 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 𝑣𝑠  𝑇𝐼𝐼𝑇𝐿𝐼𝐿 𝐻0: 𝑏 = 1 𝑣𝑠. 𝐻1: 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 40.38 < 0.001 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 𝑣𝑠 𝐼𝑃𝐿 𝐻0: 𝑣 = 1 𝑣𝑠. 𝐻1: 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 10.34 < 0.00 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 𝑣𝑠  𝐼𝐿 𝐻0: 𝑏 = 𝑣 = 1 𝑣𝑠. 𝐻1: 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 15.70 < 0.001 

𝐷𝑎𝑡𝑎 𝑠𝑒𝑡 𝐼𝐼 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 𝑣𝑠  𝑇𝐼𝐼𝑇𝐿𝐼𝐿 𝐻0: 𝑏 = 1 𝑣𝑠. 𝐻1: 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 8.78 < 0.001 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 𝑣𝑠 𝐼𝑃𝐿 𝐻0: 𝑣 = 1 𝑣𝑠. 𝐻1: 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 7.38 < 0.001 

𝑇𝐼𝐼𝑇𝐿𝐼𝑃𝐿 𝑣𝑠  𝐼𝐿 𝐻0: 𝑏 = 𝑣 = 1 𝑣𝑠. 𝐻1: 𝐻0 𝑖𝑠 𝑓𝑎𝑙𝑠𝑒 12.48 < 0.001 
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Figure 5. Plots of estimated PDF for the two data sets 

 

 

5.4 Model Selection 

We carried out model selection by using goodness of fit measures including 

maximized log-likelihood (𝑙), 𝐴𝐾𝐴𝐼𝐶, 𝐶𝐴𝐾𝐴𝐼𝐶, 𝐻𝐴𝑄𝐼𝐶, 𝐴𝐷, 𝐶𝑀, and 𝐾𝑆 statistic. 

Using this goodness of fit criteria, findings from Tables 5 and 7 show that the 

proposed model gives a better fit than other models considered because it possesses 

the smallest value of 𝑙, 𝐴𝐾𝐴𝐼𝐶, 𝐶𝐴𝐾𝐴𝐼𝐶, 𝐻𝐴𝑄𝐼𝐶, 𝐴𝐷, 𝐶𝑀, and 𝐾𝑆 statistic. 

 

6. Conclusions 

In this article, we developed a new four-parameter lifetime distribution called the 

type II Topp-Leone Inverse Power Lomax distribution. Applications of the type II 

Topp-Leone Inverse Power Lomax model on two lifetime data sets showed that the 

distribution provided better fits than other competitor models, validating its modeling 

potential in terms of applicability. We also carried out simulation studies to validate 

the method of estimation used. Also, we provided some structural statistical 

properties of the new distribution: quantile function, Bowley skewness, and Moors 

kurtosis; mixture representations for the probability density; functions; ordinary 

moments; incomplete moments; mean residual life; mean inactivity time; moment 

generating function; characteristic function; probability weighted moments; stress-

strength reliability; order statistics; and Renyl and Tsallis entropy. 
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