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Background: Tests involve distinct test parameters like reliability, validity, difficulty 

value, discriminating value, responsiveness, etc. To assess quality of test, 

relationships among the test parameters are needed. 

Method: The paper describes methods of finding discriminating value of test/scale 

(𝐷𝑖𝑠𝑐𝑇) and item (𝐷𝑖𝑠𝑐𝑖) considering the entire data and derives relationship 

between theoretically defend test reliability (𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) and 𝐷𝑖𝑠𝑐𝑇, and also with 

factorial validity (FV). Relationship also derived between FV and 𝛼𝑃𝐶𝐴 both in terms 

of eigenvalues. Transformation of discrete item scores to continuous scores 𝑃𝑖~ 

𝑁(𝜇𝑖, 𝜎𝑖) and test scores (P-scores) as ∑ 𝑃𝑖  enabling better arithmetic aggregation, 

meaningful comparisons and satisfying desired properties discussed.  

Findings:  Relationships between 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 𝐷𝑖𝑠𝑐𝑇  and also with FV was 

non-linear. Thus, one cannot increase all the parameters simultaneously. However, 

FV of standardized scores (𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠) and 𝛼𝑃𝐶𝐴 was positively related. P-scores 

facilitate parametric analysis like PCA, testing and estimation of mean, variance of 

item, test, coefficient of variation, Cronbach alpha at population level, FV in terms of 

eigen values, Reliability by𝛼𝑃𝐶𝐴, finding equivalent scores of two or more 

instruments, assessment and testing significance of responsiveness, testing of 

𝐻0: 𝑟𝑡𝑡 = 1, etc. Significance of FV can be tested by Tracy–Widom distribution. 

Conclusions:  Scores emerging from MCQ type tests or scales/questionnaire 

containing items with different number of response-categories may be transformed to 

follow normal distribution parameters of which can be estimated. Derived 

relationships of test reliability with discriminating value or with factorial validity 

have potentials to find optimal value of one parameter to maximize another 

parameter.  

 

Keywords: Discriminating value, Eigenvalue, Factorial validity, Normal distribution, 

Reliability.  
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1. Introduction 

Measurements in tests or scales often involve several distinct test parameters like 

reliability, validity, difficulty value, discriminating value, responsiveness, etc. Scales 

are instruments to measure constructs in affective domain and cognitive features like 

knowledge and understanding of concepts and topics. To assess quality of test as a 

whole, it is needed to consider relationships among the test parameters. A test must 

be valid (high value of validity) with high precision (high value of reliability), able to 

discriminate the subjects taking the test (high discriminating value) and able to 

assess changes with time (responsiveness). A test shows different combinations of 

the above said parameters. For example, a test could be highly reliable with poor 

discriminating power and of moderate validity. The same is true for the items 

included in the test.  

Discriminating value of a test (𝐷𝑖𝑠𝑐𝑇𝑒𝑠𝑡) is directly related to quality of test scores as 

a measure of the trait (McDonald, 1999). Test reliability or test validity does not 

indicate the degree of discrimination offered by a test (Hankins, 2007).  Inclusions of 

items with negative or zero discrimination value or poor item reliability are highly 

undesirable since they result in measurement disturbances and reduce test qualities. 

Item discriminating values (𝐷𝑖𝑠𝑐𝑖) are usually lower for non-homogeneous tests. 

𝐷𝑖𝑠𝑐𝑇𝑒𝑠𝑡 ranging between - 1.0 to 1.0 (Denga, 2009) indicates how the test can 

discriminate good performers from others or to see the extent to which an item or the 

entire test can discriminate the sample. In addition, several measures are used to find 

goodness of the items. Examples include item reliability by item-total correlations 

(with or without that item) (Tzuriel and Samuels, 2000), bi-serial correlation 

between an item score and test scores of all subjects (𝑟𝑏𝑠) (Ebel and Frisbie, 1991), 

point bi-serial correlation (𝑟𝑝𝑏𝑠) reflecting predictive validity of the test (Henrysson, 

1971), Spearman’s rank correlation, etc. However, 𝑟𝑏𝑠 tends to favor items of 

average difficulty. Researchers tend to differ on cut-off value of item-total 

correlation, below which items may be deleted. For example, Kehoe (1995) 

suggested restructuring of the items which have item-total correlation less than 0.15 

since such items do not measure the same ability as does the test. But, Popham 

(2008) suggested rejecting the items with 𝑟𝑝𝑏𝑠 ≤ 0.19. 

Responsiveness is the ability of a tool to accurately detect changes in the purported 

construct (s) across time.  Naturally it involves longitudinal data to assess changes in 

score of one or a group of individuals.  Mokkink et al. (2021) considered 

responsiveness as longitudinal validity, as it relates to the degree to which an 

instrument is able to measure change in the construct to be measured. Other relevant 

issue is finding the equivalent score of test-2 for a given score of test-1 where the 

two tests have different length (number of items), width (number of response-

categories) and distribution of scores.  

Need is felt to have reliable method of computing quality parameters of test and 

items and find their relationships under classical test theory (CTT). Model based 

complex Item Response Theory (IRT) was not considered primarily for its 

requirement of large sample size, testing whether the data fits the model and number 
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of strict assumptions including a curvilinear relationship between item score and 

construct score against a simple linear relationship between them by CTT.   

The paper derives relationships of test reliability as per definition (ratio of true score 

variance and observed score variance) with factorial validity, and 

difficulty/discriminating value of items and tests without sacrificing any portion of 

data. Transformation of discrete item scores to continuous scores 𝑃𝑖~ 𝑁(𝜇𝑖, 𝜎𝑖) and 

test scores (P-scores) as ∑ 𝑃𝑖  enabling better arithmetic aggregation, meaningful 

comparisons and satisfying desired properties discussed. Thus, the approach is an 

improvement over observation made by Rudner and Schafes, (2002) who mentioned 

that it is impossible to calculate reliability as per theoretical definition since true 

scores of individuals taking the test are unknown.  

 

2. Literature survey 

2.1 Reliability: 

Test reliability (𝑟𝑡𝑡) is defined as ratio of true score variance (𝑆𝑇
2) and observed score 

variance  

(𝑆𝑋
2) i. e. 𝑟𝑡𝑡 =  

𝑆𝑇
2

𝑆𝑋
2                     (1) 

However, in practice, test reliability is found by different approaches ignoring the 

definition. Popular methods of reporting test reliability requiring a single 

administration are: Cronbach alpha, Inter-item reliability, Split-half reliability for 

internal consistency to assess how well different items measure the same 

characteristic (Utwin, 1995). Test-retest reliability requiring two administrations is 

focused on stability. Inter-rater reliability indicates degree of agreement among the 

raters who rate, code, or assess the same phenomenon independently.  Different 

approaches, based on different set of assumptions, result in different values of 

reliability and require different interpretations.  

Test-retest reliability (𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡) is the correlation of scores emerging from two 

administrations of the test on the same group of individuals under the same 

conditions with a time gap, assuming true scores of an individual remain unchanged 

during the time gap. However, factors like practice effect, learning effect during the 

time gap, errors in the testing situations, etc. can influence 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 values 

depending on time gap, for which there is no consensus. Thus, the assumption of 

unchanged true scores may not hold in reality. Focus could be to measure similarity 

of ranks of individuals or agreement of individual scores in two administrations. 

Interpretation of 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 could be problematic since correlation is different from 

agreement. Clearly, 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 is a necessary but not sufficient condition to 

demonstrate agreements. Berchtold (2016) preferred correlation than agreement. 

Jelenchick et al. (2012) used correlation, and not agreement to find 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 of 

Internet Addiction Test (IAT) developed by Young (1998). Average IAT scores in 

2nd administration decreased from the 1st administration and t-statistic was - 6.34 

https://journals.sagepub.com/doi/full/10.1177/2059799116672875#bibr8-2059799116672875
https://journals.sagepub.com/doi/full/10.1177/2059799116672875#bibr25-2059799116672875
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with 677 df, p < 0.001. Negative value of t-statistic is an evidence against the 

𝐻0: 𝜇1𝑠𝑡 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛 = 𝜇2𝑛𝑑 𝑎𝑑𝑚𝑖𝑛𝑖𝑠𝑡𝑟𝑎𝑡𝑖𝑜𝑛. Shifting from theoretical reliability as 

in (1), debate on stability and agreement continues for 𝑟𝑇𝑒𝑠𝑡−𝑟𝑒𝑡𝑒𝑡 

Parallel test or split-half reliability considers correlation of two parallel sub-tests 

resulting from dichotomization of the test scores. Split-half reliability depends 

heavily on method of dichotomization.  Different splits give different values of split-

half reliability. In addition, test of parallelism of the sub-tests are required.    

Inter-item reliability takes average of inter-item correlations for assessment of extent 

to which items on a test/scale are assessing the same content (Cohen & 

Swerdlik, 2005). Such average depends significantly on magnitude and direction of 

correlations. Intuitively, average of 𝑟𝑥𝑦 = 1 and 𝑟𝑝𝑞 = −1 is zero. However, 

correlations are not additive (Garcia, 2012). Average of item-total correlations was 

disfavoured (Field, 2003). Fisher’s Z-transformation 𝑍𝑟 =
1

2
 𝑙𝑜𝑔𝑒[

1+𝑟

1−𝑟
] following 

Normal distribution may be undertaken for meaningful average of correlations. 

Taking inverse function of 𝑍𝑟 one can get  �̅�𝑛 = 
𝑒2�̅�𝑛−1

𝑒2�̅�𝑛+1
  which accounts for sign of 

the correlations (Bewick et al. 2003). However, Fisher’s Z-transformation to 

correlations, violating bivariate normality, may give spurious results (Zimmerman et 

al. 2003).  

Alternatively, consider vectors 𝑿𝑛×1 and 𝒀𝑛×1for variables X and Y; find deviation 

score vectors x and y where 𝑥𝑖 = 𝑋𝑖 − �̅� and 𝑦𝑖 = 𝑌𝑖 − �̅�. Let 𝜃  be the angle 

between the vectors x and y, then  𝑟𝑋𝑌 = 𝐶𝑜𝑠𝜃𝑥𝑦=
𝑥𝑇𝑦

‖𝑥‖‖𝑦‖
 where length of the vector x 

and y are ‖𝑥‖ = √∑ 𝑥𝑖
2𝑛

𝑖=1 ;  ‖𝑌‖ = √∑ 𝑦𝑖
2𝑛

𝑖=1   respectively and 𝑥𝑇𝑦 denotes dot 

product of x and y = ∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1  . However, the triangle inequality law is not satisfied 

by 𝐶𝑜𝑠𝜃𝑥𝑦 i.e. 𝐶𝑜𝑠𝜃𝑋𝑌 +  𝐶𝑜𝑠𝜃𝑌𝑍 ≥ 𝐶𝑜𝑠𝜃𝑋𝑍 is not always true for 𝑋≠𝑌≠𝑍.  

Normalizing k-vectors to unit length, Rao (1973) gave a method of finding mean and 

dispersion of angles ∅1, ∅2, … … … , ∅𝑘, as mean or most preferred direction is ∅̅ =

𝐶𝑜𝑡−1 ∑ 𝐶𝑜𝑠∅𝑖
𝑘
𝑖=1

∑ 𝑆𝑖𝑛∅𝑖
𝑘
𝑖=1

  and the dispersion = √1 − 𝑟2 where 𝑟2 = (
∑ 𝐶𝑜𝑠∅𝑖

𝑘
)2 +  (

∑ 𝑆𝑖𝑛∅𝑖

𝑘
)2.  

Cos (∅̅) gives the average of 𝐶𝑜𝑠𝜃𝑖𝑗′𝑠 i.e. average of 𝑟𝑋𝑌′𝑠 

Cronbach alpha of an instrument with m-items is 𝛼 =
𝑚

𝑚−1
[1 −

𝑆𝑢𝑚 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑇𝑒𝑠𝑡 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
].  

Equivalently, alpha in terms of covariance is   

𝛼 =
𝑚 (𝐴𝑣.𝑖𝑛𝑡𝑒𝑟−𝑖𝑡𝑒𝑚 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚𝑠)

𝐴𝑣.𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒+(𝑚−1)(𝐴𝑣.  𝑖𝑛𝑡𝑒𝑟−𝑖𝑡𝑒𝑚 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑎𝑚𝑜𝑛𝑔 𝑡ℎ𝑒 𝑖𝑡𝑒𝑚𝑠)
 or following Cortina, 

(1993) 

𝛼 =  𝑚2[
𝑚𝑒𝑎𝑛 𝑖𝑛𝑡𝑒𝑟−𝑖𝑡𝑒𝑚 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝑠𝑢𝑚 𝑜𝑓 𝑎𝑙𝑙 𝑡ℎ𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒−𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥
] 

Clearly,  𝛼 increases with increase in m. 

https://link.springer.com/referenceworkentry/10.1007/978-94-007-0753-5_1493#ref-CR9979
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Cronbach alpha assumes all items are equivalent test units, test is one-dimensional, 

items are tau-equivalent i.e. all the factor loadings are same or equivalently the off-

diagonal elements of the variance–covariance matrix of the component scores are 

same (Ogasawara, 2006). However, same factor loadings may not fit well to 

cognitive tasks, due to their designs and scoring algorithms (Pronk et al. 2022). If 

items are not essentially tau-equivalent, they measure different constructs, and alpha 

is underestimated. In addition, alpha requires uncorrelated errors and normality. 

However, many scales reports alpha despite finding several factors from Principal 

component analysis (PCA) or Factor analysis (FA). For example, ACT reports seven 

sub-scores and find internal scale score reliability for the sub-scores, averaged across 

five administrations (ACT, 1997). Huang and Tang (2013) computed eigenvalue and 

alpha for each of four factors (perceived usefulness (PU), perceived playfulness (PP), 

and resistance to change (RTC) of Mobile English learning satisfaction (MELS) and 

the construct with highest eigenvalue (6.027) had the maximum alpha (0.895). Use 

of alpha goes hand-in-hand with PCA since alpha has something to do with the 

factor structure of the test (De Hooge et al. 2007). Using results of PCA, Ten Berge 

and Hofstee, (1999) proposed test reliability. 

𝛼𝑃𝐶𝐴 = (
𝑚

𝑚−1
) ( 1 −

1

𝜆1
)                    (2) 

where 𝜆1 is the first (largest) eigenvalue of correlation matrix of m-number of items. 

Clearly, 𝜆1 gives maximum value of alpha for any linear combination of the m-items 

of the test. Mean value of alphas for factor scores of different subgroups were 

computed (Hampson et al. 2015). 𝛼𝑃𝐶𝐴 for different dimensions like Extraversion, 

Agreeableness, Conscientiousness, Emotional Stability and Intellect/Openness of 

Childhood Big Five personality measures were found (Edmonds et al., 2013). Thus, 

different methods of finding reliability may give different values of reliability even 

from the same data. 

Several statistical techniques, estimation and testing of hypothesis, PCA, etc. assume 

normally distributed scores. In practice, normally distributed data are rare in 

education and social science. Chakrabartty (2022) transferred discrete item scores 

(𝑋𝑖) to continuous equidistant scores (𝐸𝑖) followed by standardization (𝑍𝑖) to follow 

𝑁(0,1) and further linear transformation to proposed scores (𝑃𝑖) in a desired score 

range, say [1, 100] following𝑁(𝜇𝑖, 𝜎𝑖) and test/scale scores (P-scores) as sum of 𝑃𝑖𝑠 

i.e. convolution of the item scores which also follows normal distribution. ∑ 𝑃𝑖  is 

more meaningful because of similarity of distribution of item scores and the resultant 

sum also follows normal distribution. Such P-scores satisfy desired properties like 

meaningful arithmetic aggregation, undertaking parametric statistical analysis like 

PCA, FA, ANOVA, statistical inferences like estimation and testing hypothesis of 

equality of means across time and space. For normally distributed test scores𝑃, true 

score of an individual with 𝑃 = 𝑃0 is estimated by 𝑃0 ± 𝑆𝐸𝑀 where 𝑆𝐸𝑀 =Sample 

𝑆𝐸 (Chakrabartty, 2022).  

Kristof (1963) found distribution of alpha coefficient assuming that the off-diagonal 

elements of the variance-covariance matrix and that of the diagonal elements have 

the same values (known as compound symmetry) under normality. Normally 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2792363/#CR9
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distributed P-scores help to estimate variance of i-th item (𝜎𝑖
2) and test variance (𝜎𝑋

2) 

and estimate Cronbach alpha at population level as 

�̂� =
𝑚

𝑚−1
(1 −  

∑ 𝜎𝑖
2𝑚

𝑖=1

𝜎𝑋
2 )                                                                                      (3) 

If the item scores are transformed to follow 𝑁(0,1), �̂� = 
𝑚

𝑚−1
(1 −  

𝑚

𝜎𝑋
2) and 

estimation of 𝜎𝑋
2 can be found from convolution of distributions of standardized item 

scores. In general, distribution of �̂� can be found using sample variance of P-scores 

following 𝜒2-distribution with (n-1) degrees of freedom(df); sum of 𝜒2 variables 

follows 𝜒2-distribution and 
𝑈 𝑛1⁄

𝑉 𝑛2⁄
 ~ F-distribution with 𝑛1 and 𝑛2 df where 𝑈~𝜒𝑛1

2  

and V ~𝜒𝑛2
2 (Larsen & Marx, 2010).  

Chakrabartty (2022) suggested method to find test reliability (𝑟𝑡𝑡) as per its 

definition from single administration of the test. It involves dichotomizing a test to g-

th and h-th sub-tests each containing 𝑚
2⁄  -items where the subtests are parallel i.e. 

true score of i-th person in two subtests are equal (𝑇𝑖𝑔 = 𝑇𝑖ℎ) and error SD of the 

sub-tests are equal (𝑆𝑒𝑔 = 𝑆𝑒ℎ). Consider sub-tests scores as n-dimensional vectors 

𝑋𝑔 and 𝑋ℎ with length ‖𝑋𝑔‖ and ‖𝑋ℎ‖ where ‖𝑋𝑔‖ = √∑ 𝑋𝑖𝑔
2

𝑚
2⁄

𝑖=1
 and ‖𝑋ℎ‖ =

√∑ 𝑋𝑖ℎ
2

𝑚
2⁄

𝑖=1
.  Let 𝜃𝑔ℎ be the angle between 𝑋𝑔 and 𝑋ℎ.  

Here, 𝑋𝑖𝑔 − 𝑋𝑖ℎ = 𝐸𝑖𝑔 − 𝐸𝑖ℎ  

⟹ ‖𝑋𝑔‖
2
+ ‖𝑋ℎ‖2 −2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ = ‖𝐸𝑔‖

2
+ ‖𝐸ℎ‖2 −2‖𝐸𝑔‖‖𝐸ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ

(𝐸)
 

where 𝜃𝑔ℎ
(𝐸)

 is the angle between the vectors 𝐸𝑔 and 𝐸ℎ 

⟹ ‖𝑋𝑔‖
2
+ ‖𝑋ℎ‖2 −2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ = ‖𝐸𝑔‖

2
+ ‖𝐸ℎ‖2 = 𝑛𝑆𝐸

2  since correlation 

between error scores of two parallel tests is zero and 𝑆𝐸
2 =

1

𝑛
(𝐸𝑖𝑔 + 𝐸𝑖ℎ)2= 

1

𝑛
(‖𝐸𝑔‖

2
+ ‖𝐸ℎ‖2) 

⟹ 𝑆𝐸
2 =  

1

𝑛
(‖𝑋𝑔‖

2
+ ‖𝑋ℎ‖2 −2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ)     (4) 

⟹ 𝑆𝑇
2 =  𝑆𝑋

2 − 𝑆𝐸
2 and 

𝑟𝑡𝑡 = 1 −
‖𝑋𝑔‖

2
+ ‖𝑋ℎ‖2−2‖𝑋𝑔‖‖𝑋ℎ‖𝐶𝑜𝑠𝜃𝑔ℎ

𝑛𝑆𝑋
2        (5) 

Equation (5) gives test reliability and (4) gives value of error variance (square of 

standard error of measurement) 

Considering ‖𝑋𝑔‖ = ‖𝑋ℎ‖ as they are parallel, equation (4) and (5) can be simplified 

as 

𝑆𝐸
2 =  

2‖𝑋𝑔‖
2

(1−𝐶𝑜𝑠𝜃𝑔ℎ)

𝑛
                    (6) 
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and  

𝑟𝑡𝑡 = 1 −
2‖𝑋𝑔‖

2
(1−𝐶𝑜𝑠𝜃𝑔ℎ)

𝑛𝑆𝑋
2                                (7) 

Theoretical reliability 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 as defined above is different from split-half 

reliability(𝑟𝑔ℎ).  For a selection test with m= 50 and n= 911, Chakrabartty (2021) 

found 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 = 0.56 which exceeded the Split-half reliability (𝑟𝑔ℎ =0.38) but 

was lower than Cronbach 𝛼 (0.78). 

Transformation of  item and test scores to normally distributed P-scores before 

dichotomization,  helps to test 𝐻0: 𝑟𝑡𝑡 = 1 which is equivalent to 𝐻0: 𝜎𝑋
2 = 𝜎𝑇

2 by F-

test using test statistic 𝐹 =
𝑆𝑋

2

𝑆𝑇
2 and reject 𝐻0 if 𝐹 > 𝐹 𝛼,(𝑛−1,𝑛−1).  Confidence interval 

of 𝑟𝑡𝑡 =
𝜎𝑇

2

𝜎𝑋
2 is given by 

𝑆𝑇
2 𝑆𝑋

2⁄

𝐹𝛼 2⁄
 ≤ 

𝜎𝑇
2

𝜎𝑋
2 ≤

𝑆𝑇
2 𝑆𝑋

2⁄

𝐹1−(𝛼 2)⁄
. In addition, testing 𝐻0: �̅�𝑔 = �̅�𝑔by t-test 

and 𝐻0: 𝜎𝑋𝑔
2  = 𝜎𝑋𝑔

2  by F-test help to test whether g-th and h-th sub-tests are parallel. 

Other tests to show g-th and h-th sub-tests are parallel could be testing equality of 

regression lines 𝑋 =  𝛼1 + 𝛽1𝑋𝑔  and 𝑋 =  𝛼2 + 𝛽2𝑋ℎ by ANOVA or by Mahalanobis 

𝐷2 = 𝑑𝑇𝑆−1𝑑 where 𝑑𝑖 = 𝑋𝑔𝑖
̅̅ ̅̅ − 𝑋ℎ𝑖

̅̅ ̅̅  for the i-th item.  

The approach of finding reliability as per definition can be extended to find 

reliability of a battery of tests to measure a finite number of constructs. After 

administration of the battery consisting of K-tests to n-individuals, values of 𝑆𝑋
2, 

𝑆𝐸
2, 𝑆𝑇    

2 and  𝑟𝑡𝑡 for each constituent test can be computed. If battery score is taken as 

sum of score of K-tests, battery reliability is 

𝑟𝑡𝑡(𝑏𝑎𝑡𝑡𝑒𝑟𝑦) =
∑ 𝑟𝑡𝑡(𝑖)𝑆𝑋𝑖

2𝐾
𝑖=1 + ∑ ∑ 2𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾

𝑗=1
𝐾
𝑖=1,𝑖≠𝑗

∑ 𝑆𝑋𝑖
2 + ∑ ∑ 2𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾

𝑗=1
𝐾
𝑖=1,𝑖≠𝑗

𝐾
𝑖=1

     (8) 

If 𝑊1, 𝑊2, … … . . 𝑊𝐾 are the weights to K-constituent tests of a battery where 𝑊𝑖 ≥
0  ∀ 𝑖 = 1,2,3, … . 𝐾  and ∑ 𝑊𝑖 = 1 and the battery score be 𝑌𝑖 = ∑ 𝑊𝑖𝑋𝑖

𝐾
𝑖=1 . Here, 

𝑣𝑎𝑟(𝑌) =    ∑ 𝑊𝑖
2𝑣𝑎𝑟(𝑋𝑖)

𝐾
𝑖=1  and the battery reliability is 

𝑟𝑡𝑡(𝑏𝑎𝑡𝑡𝑒𝑟𝑦) =  
∑ 𝑟𝑡𝑡(𝑖)𝑊𝑖

2𝑆𝑋𝑖
2 + ∑ ∑ 2𝑊𝑖𝑊𝑗𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾

𝑗=1
𝐾
𝑖=1,𝑖≠𝑗  𝐾

𝑖=1

∑ 𝑊𝑖
2𝑆𝑋𝑖

2 + ∑ ∑ 2𝑊𝑖𝑊𝑗𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝐾
𝑗=1

𝐾
𝑖=1,𝑖≠𝑗  𝐾

𝑖=1

        (9) 

2.2 Validity: 

For a measurement to be valid, it has to be reliable. While validity is associated with 

accuracy, reliability is about consistency. Therefore, an unreliable measurement 

cannot be valid. However, a measurement can be reliable without being valid.  

Test validity is often measured by correlating test score (X) with a criterion score (Y). 

If 𝑟𝑋𝑌 = 0.65 (say), then 0.65 is the validity of X and also of Y. If  𝑟𝑋𝑌 is still more, 

test (X) may not be required. Moreover, 𝑟𝑋𝑌 could be influenced by factors like dis-

similarity in dimensions covered, factor structures of X and Y, different score ranges, 

sample heterogeneity, etc. For a selection test, homogeneity of the selected 

individuals may lower the validity. For example, 𝑟𝑋𝑌was  - 0.93302 for 0 ≤ 𝑋 ≤ 3.9 

and X ~N (0, 1) and 𝑌 =
1

√2𝜋
 𝑒

−1

2
𝑋2

. However, for−3.9 ≤ 𝑋 ≤ 3.9,   𝑟𝑋𝑌= 0.00036. 
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Thus, truncated values of one or more variables (or homogeneity of data) may distort 

correlation between two variables. In other words, truncated score can underestimate 

or overestimate the validity. Validity of parametric analyses of scales generating 

Likert-type data is often unclear (Lantz, 2013).  

Better could be to find test validity from a single administration considering scores 

of all individuals who took the test by factorial validity (FV) expressed as 

FV=  
𝜆1

∑ 𝜆𝑖
                    (10) 

where 𝜆1 is the highest eigenvalue corresponding to the main factor for which the 

scale was developed. Clearly, FV will be high for unidimensional tests giving high 

value of 𝜆1. Factorial validity reflects validity of the main factor for which the test 

was developed and accounts for   
𝜆1

∑ 𝜆𝑖
 × 100 percent of overall variability. Such 

factorial validity from single administration of a test avoids the problems of 

construct validity and is independent of criterion scale (Parkerson et al. 2013).  

Normally distributed P-scores enables undertaking of PCA and computations of 𝜆𝑖’s 

and component loadings of items (the eigenvector × √the eigenvalue ) which can 

be interpreted as the correlation of the item with the principal component or item 

validity. In addition, factorial validity is simple to comprehend; Item validity is given 

in terms of component loading where sum of item validities ≠ Scale validity.  

In the context of Statistical Physics and Signal processing, Nadler (2011) found that 

𝑈 =
𝜆1

∑ 𝜆𝑖
=

𝜆1

𝑇
  follows a Tracy–Widom (TW) distribution, where T=∑ 𝜆𝑖 is the trace 

of the variance-covariance matrix = Sum of item variances. Tracy–Widom (TW) 

distribution is a probability distribution of the normalized largest eigenvalue of 

a random Hermitian matrix whose entries are independently Gaussian-distributed. 

Data analysis in various fields including Psychological measurements can derive 

benefit from the use of TW statistic, especially when testing the significance of the 

largest or other eigenvalues are involved.  

2.3 Difficulty value and Discriminating value:  

Difficulty value of i-th item (𝑝𝑖) is the proportion of individuals giving correct 

answer to the item and is calculated as 𝑝𝑖 =  
𝐶𝑖

𝑛
  where 𝐶𝑖 denotes number of persons 

giving correct answer to the i-th item and n is the total number of persons taking the 

test. Clearly,0 ≤ 𝑝𝑖 ≤ 1.   To maximize test reliability, items with homogeneous 

item-difficulty could be preferred, but most standardized tests use items showing 

wide range of difficulty values. Discriminating value of i-th item 𝐷𝑖𝑠𝑐𝑖 is 

traditionally calculated as 
𝑈𝐺−𝐿𝐺

𝑛
  where UG denotes number of persons in the upper 

27% who answered the item correctly and LG denotes the lower 27% who correctly 

answered the item. However, assessing quality of items or test ignoring 46% of data 

is not desirable.  

 𝐷𝑖𝑠𝑐𝑖 indicates ability of an item to distinguish between examines with high trait 

level and with low trait level (Ferrando, 2012). Discriminating value of a test/scale 

https://en.wikipedia.org/wiki/Eigenvalue
https://en.wikipedia.org/wiki/Gaussian_unitary_ensemble
https://en.wikipedia.org/wiki/Hermitian_matrix
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reflects ability to differentiate or discriminate the sample from “preferred” and “non- 

preferred” or “high achievers” and “poor achievers”, etc. 𝐷𝑖𝑠𝑐𝑖 depends on whether 

the item is easy or difficult or moderately difficult. Relationship between item 

difficulty values (𝐷𝑖𝑓𝑓𝑖) of of MCQ type test based on the entire data and 

𝐷𝑖𝑠𝑐𝑖 based on 54% of the data gave contrasting results. While Rao, et al. (2016) 

found 𝑟𝐷𝑖𝑓𝑓𝑖,𝐷𝑖𝑠𝑐𝑖
 = 0.56, Sim and Rasiah (2006) found positive 𝑟𝐷𝑖𝑓𝑓𝑖,𝐷𝑖𝑠𝑐𝑖

 at the 

“easy end” (percentage 𝐷𝑖𝑓𝑓𝑖 ≥ 80%), and negative value at “difficult end” 

(percentage 𝐷𝑖𝑓𝑓𝑖  ≤ 20%) and dome-shaped curve when all items are considered. 

Negative 𝐷𝑖𝑠𝑐𝑖 indicates that more number of individuals in 𝐿𝐺 could answer the i-th 

item correctly than the number of individuals in 𝑈𝐺.  

Item discrimination by point-biserial coefficient (𝑟𝑝𝑏𝑠) shows degree to which an 

individual item is measuring the same thing as the rest of the items. Items with low 

or negative discrimination values may be rewarded or deleted. Classification of items 

as “good”, “fair” and “poor” based on discrimination value ≥ 0.30, between 0.10 

and0.30; and ≤ 0.10 respectively appears to be arbitrary and may be questioned.  

Non-availability of relationship between 𝐷𝑖𝑓𝑓𝑖 and 𝐷𝑖𝑠𝑐𝑖 and their relationships with 

test parameters fail to reflect impact of deletion of one or more items on test 

reliability (𝑟𝑡𝑡) or discriminating value of the test (𝐷𝑖𝑠𝑐𝑇) or difficulty value of the 

test (𝐷𝑖𝑓𝑓𝑇). Chauhan, et al. (2013) suggested further study to investigate correlation 

between difficulty index and discriminative index. For a MCQ test with m-items (1 

for correct answer and 0 otherwise) administered to n-respondents, Chakrabartty 

(2021) considered an item score follows Binomial distribution with parameters n and 

p where p is the probability of correct answer and is equal to 𝐷𝑖𝑓𝑓𝑖 = 
𝑘

𝑛
  where k 

denotes number of correct answer to the i-th item and mean and SD of the item are 

𝑛𝑝 and √𝑛𝑝𝑞 respectively, where 𝑞 = 1 − 𝑝 =
𝑛−𝑘

𝑛
 and proposed following 

measures:  

- 𝐷𝑖𝑓𝑓𝑖 = 
𝑘

𝑛
  and 0 ≤ 𝐷𝑖𝑓𝑓𝑖  ≤ 1  

- 𝐷𝑖𝑓𝑓𝑇 =  
∑ 𝐷𝑖𝑓𝑓𝑖

𝑚
𝑖=1

𝑚
  since �̅�=

∑ 𝑘𝑖
𝑚
𝑖=1

𝑛
    

- 𝐷𝑖𝑠𝑐𝑖 = Coefficient of variation (CV) = 
𝑆𝐷

𝑀𝑒𝑎𝑛
 = 

𝑆𝑋𝑖

𝑋𝑖̅̅ ̅
 = 

√𝑛𝑝𝑞

𝑛𝑝
 = √

𝑞

𝑛𝑝
 = √

𝑞

𝑘
 = √

𝑛−𝑘

𝑛𝑘
   

𝐷𝑖𝑠𝑐𝑖
2 =

𝑛

𝑘
− 1= 

1

𝐷𝑖𝑓𝑓𝑖
− 1= 

1−𝐷𝑖𝑓𝑓𝑖

𝐷𝑖𝑓𝑓𝑖
   

𝐷𝑖𝑠𝑐𝑇 = 
𝑆𝑋

�̅�
 = CV of test scores and 0 ≤ 𝐷𝑖𝑠𝑐𝑇  ≤ 1  

The following may be noted: 

1. 0 ≤ 𝐷𝑖𝑓𝑓𝑖≤1. 𝐷𝑖𝑓𝑓𝑖 increases monotonically with increase in k. The 𝐷𝑖𝑓𝑓𝑖 curve is 

positively slopped. 
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2. 𝐷𝑖𝑠𝑐𝑖 = 0 ⟹ 𝑛 = 𝑘 i.e. the i-th item was passed by all the subjects. 𝐷𝑖𝑠𝑐𝑖 =

1 ⟹ 𝑘 =
𝑛

𝑛+1
 which is a fraction. Thus, 0 ≤ 𝐷𝑖𝑠𝑐𝑖 < 1. 𝐷𝑖𝑠𝑐𝑖 decreases with 

increase in k. Thus, 𝐷𝑖𝑠𝑐𝑖 curve is negatively sloped 

3. If 𝑋�̅� = 𝑋�̅� (𝑖≠𝑗), the item with lower SD will have lower CV and lower𝐷𝑖𝑠𝑐𝑖.  

4. Sum of item variances ∑ 𝑆𝑋𝑖

2 =𝑚
𝑖=1 ∑ 𝑋�̅�

2
𝐷𝑖𝑠𝑐𝑖

2𝑚
𝑖=1 ⟹Cronbach 𝛼 =

𝑚

𝑚−1
(1 −

 
∑ 𝑋𝑖̅̅ ̅2

𝐷𝑖𝑠𝑐𝑖
2𝑚

𝑖=1

�̅�2𝐷𝑖𝑠𝑐𝑇
2 ) 

5. Intersection of 𝐷𝑖𝑓𝑓𝑖 curve and 𝐷𝑖𝑠𝑐𝑖 curve (𝑘0) is the solution of 𝐷𝑖𝑓𝑓𝑖 = 𝐷𝑖𝑠𝑐𝑖 

i.e. 
𝑘

𝑛
  =√

𝑛−𝑘

𝑘
  ⟺ 𝑘3 = 𝑛(𝑛 − 𝑘) 

𝑘0 could be taken as the value (to the nearest integer) where the negatively slopped 

𝐷𝑖𝑠𝑐𝑖 curve intersects with the positively slopped 𝐷𝑖𝑓𝑓𝑖 curve. The point 𝑘0 is the 

central point for getting acceptance region of items says (𝑘0 ± ∆) where ∆ could be 

chosen as SD or 2SD of distribution of item difficulty values or item discriminating 

values, depending on original number of items, type of test, whether to measure 

single dimension or multi dimensions and also considering relationship between test 

discrimination and test reliability. 

Empirically, Chakrabartty (2021) found correlation between 𝐷𝑖𝑓𝑓𝑖 and 𝐷𝑖𝑠𝑐𝑖 = (-) 

0.58.  

Graphs showing difficulty values and percentage discriminating values of items are 

given in Figure 1 

 

 

Figure 1. Item difficulty values and percentage discriminating values of items 
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Shifting 𝑘0 to the right will increase proportion of items with high difficulty 

values (and low discriminating values). Thus, value of  𝑘0  may be considered while 

deleting number of items from the test.  

Chaktabartty (2020) extended the concept of 𝐷𝑖𝑠𝑐𝑖 and 𝐷𝑖𝑠𝑐𝑇 to scale containing 

Likert items from a single administration. The author compared seven dissimilarity 

measures Euclidian distance, Kullback- Leibler measure, Angular separation, 

Bhattacharyya measure, Hellinger discrimination, Chi-square measure and 

Coefficient of variation and found measures given by CV performs best in terms of 

satisfaction of desired properties. In addition, unbiased estimation of population CV 

is possible for normally distributed data (Sokal and Rohlf, 1995). Statistical 

inferences for CV for normally distributed data are often based on McKay‟s Chi-

square approximation for the CV (Forkman, 2013). 

 

3. Relationships 

Mathematical relationships among item statistics and test parameters are derived as 

follows: 

3.1 Difficulty and discriminating values: 

i) 𝐷𝑖𝑓𝑓𝑇   and 𝐷𝑖𝑓𝑓𝑖
′𝑠: 𝐷𝑖𝑓𝑓𝑇 =  

∑ 𝐷𝑖𝑓𝑓𝑖
𝑚
𝑖=1

𝑚
               (11) 

ii) 𝐷𝑖𝑓𝑓𝑖 and 𝐷𝑖𝑠𝑐𝑖: 𝐷𝑖𝑠𝑐𝑖
2 =

𝑛

𝑘
− 1= 

1

𝐷𝑖𝑓𝑓𝑖
− 1= 

1−𝐷𝑖𝑓𝑓𝑖

𝐷𝑖𝑓𝑓𝑖
             (12) 

iii) 𝐷𝑖𝑓𝑓𝑇  . 𝐷𝑖𝑠𝑐𝑇 =  
𝑆𝑋

𝑚
                  (13) 

iv) 𝑟𝑡𝑡 (𝐷𝑖𝑠𝑐𝑇)2 = 
𝑆𝑇

2

𝑆𝑋
2 

𝑆𝑋
2

�̅�2  = (
𝑆𝑇

�̅�
)2 = (

𝑆𝑇

�̅�
)2   since �̅� =  �̅�             (14) 

Thus, product of test reliability and square of test discriminating value is equal to 

square of CV of true scores. 𝑆𝑇
2can be obtained as 𝑆𝑋

2 − 𝑆𝐸
2 where 𝑆𝐸

2 is given by 

equation (4) or by (6) for parallel tests.  

Equation (14) shows that 𝑟𝑡𝑡 is inversely proportional to 𝐷𝑖𝑠𝑐𝑇
2. Thus, it is a non-

linear negative relationship between reliability and discriminating value of a test. 

The equation does not involve number of items. However, addition or deletion of 

items may affect test variance (𝑆𝑋
2) which in turn affect both 𝑟𝑡𝑡 and 𝐷𝑖𝑠𝑐𝑇. 

Appropriate selection of items can be made to have reasonable levels of 𝐷𝑖𝑠𝑐𝑇 and 

𝑟𝑡𝑡. For example, consider the figure 1.Here deletion of items with 100𝐷𝑖𝑠𝑐𝑖 ≤ 𝑘0 

will increase 𝐷𝑖𝑠𝑐𝑇  and may give a reasonable level of 𝑟𝑡𝑡.  For scale with m-number 

of k-point items, the items with low values of item variance can be deleted. Effect of 

deletion of items in stages and resulting effect on 𝑟𝑡𝑡 and 𝐷𝑖𝑠𝑐𝑇 and also on 

Cronbach 𝛼  [expessed as =  
𝑚

𝑚−1
(1 −  

∑ 𝑋𝑖̅̅ ̅2
𝐷𝑖𝑠𝑐𝑖

2𝑚
𝑖=1

�̅�2𝐷𝑖𝑠𝑐𝑇
2 )] may be investigated 

empirically. 
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𝑟𝑝𝑏𝑠 reflects item-total correlation between an item score (dichotomous variable) and 

test score (continuous scale).Chakrabartty (2021) derived 𝑟𝑝𝑏𝑠  for the i-th item in 

terms of item statistics as 

𝑟𝑝𝑏𝑠(𝑖) =  
(𝑀𝑝𝑖−𝑀𝑞𝑖)√𝐷𝑖𝑓𝑓𝑖(1−𝐷𝑖𝑓𝑓𝑖)

�̅� 𝐷𝑖𝑠𝑐𝑇
                 (15) 

where 𝑀𝑝𝑖: Test mean for persons answering the i-th item correctly  

𝑀𝑞𝑖: Test mean for persons answering the i-th item incorrectly  

Equation (15) shows negative relationship between item-total correlation (𝑟𝑝𝑏𝑠(𝑖))  

and 𝐷𝑖𝑠𝑐𝑇. High value of 𝑟𝑝𝑏𝑠(𝑖) indicates that subjects who correctly answered the i-

th item have done well overall on the test. Thus, 𝑟𝑝𝑏𝑠(𝑖) could be taken as measure 

item reliability. Clearly, 𝑟𝑝𝑏𝑠(𝑖) ≥ 0 if (𝑀𝑝𝑖 ≥ 𝑀𝑞𝑖). Items with negative or marginal 

value of 𝑟𝑝𝑏𝑠(𝑖) may be reworded or deleted. 

3.2 Reliability and Factorial validity (FV):  

FV = 
𝜆1

∑ 𝜆𝑖
=  

𝜆1

𝑆𝑢𝑚 𝑜𝑓𝑡𝑟𝑎𝑐𝑒𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒−𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥  
 = 

𝜆1

𝑆𝑢𝑚 𝑜𝑓 𝑖𝑡𝑒𝑚 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑠
 

If item wise equidistant scores (𝐸𝑖) are standardized to 𝑍𝑖~𝑁(0,1), sum of 

eigenvalues = number of original variables (m).    

For a test with m-number of standardized items:  

• 𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠 =
𝜆1

𝑚
 

• Test variance (𝑆𝑋
2) = m + 2∑ 𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗)𝑚

𝑖≠𝑗=1  

• 𝑟𝑡𝑡 = 
𝑆𝑇

2

𝑆𝑋
2  = 

𝑆𝑇
2

∑ 𝜆𝑖+ 2 ∑ 𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝑚
𝑖≠𝑗=1

 = 
𝑆𝑇

2 
𝜆1
𝐹𝑉

+2 ∑ 𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)𝑚
𝑖≠𝑗=1

             (16) 

Equation (16) gives non-linear relationship between theoretical reliability and 

factorial validity of standardized scores, where each term of the denominator can be 

estimated from data and 𝑆𝑇
2 may be computed as 𝑆𝑋

2- 𝑆𝐸
2 where 𝑆𝐸

2 is given by (4).   

Relationship between factorial validity and reliability as per 𝛼𝑃𝐶𝐴 can be obtained 

considering equation (2) 

𝛼𝑃𝐶𝐴 = (
𝑚

𝑚−1
) ( 1 −

1

𝜆1
) = (

𝑚

𝑚−1
) ( 1 −

1

𝐹𝑉.∑ 𝜆𝑖
) = (

𝑚

𝑚−1
) ( 1 −

1

𝑚.𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠
)            (17) 

(17) indicates higher value of 𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠 increases 𝛼𝑃𝐶𝐴 

 

4. Other measures 

4.1 Responsiveness: 

Responsiveness deals with change scores (∇𝑋 =  𝑋𝑡 − 𝑋(𝑡−1)) of the instrument of 

interest (X). Illustrative hypotheses (situations) to assess responsiveness are: 
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1. Correlations between ∇𝑋 and ∇𝑌 of another instrument (Y) measuring similar 

constructs (strong relationships, say> 0.5) or ∇𝑍 of instrument measuring 

unrelated constructs ( weaker relationships, say < 0.3) (Prinsen,  et al. 2018)   

2. Expected differences in ∇𝑋 between different subgroups (known groups) like 

say persons receiving an intervention of known efficacy and persons waiting for 

the intervention. 

3. Magnitude of ∇𝑋 expected after undergoing a treatment with known efficacy on 

the construct of interest (medium effect size between 0.3 and 0.5)  

However, due to different contents and many arbitrary hypotheses, responsiveness is 

never perfect (Mokkink et al. 2021). In addition, it is necessary to know distribution 

and behavior of ∇𝑋.   

Responsiveness of an instrument can be assessed using normally distributed P-scores 

of a test/scale. Percentage change of the j-th individual in the t-th period over (𝑡 −
1)-th period is given by   

 
𝑃𝑗𝑡−𝑃𝑗(𝑡−1)

𝑃𝑗(𝑡−1)
× 100                              (18) 

Similarly, for a sample, responsiveness is reflected by  

𝑃𝑡̅̅ ̅−𝑃(𝑡−1)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃(𝑡−1)̅̅ ̅̅ ̅̅ ̅̅ ̅
× 100                   (19) 

While (18) focuses on individual level, (19) deals with sample/group level. Positive 

value of (18) implies progress of the j-th individual in successive time periods, 

assuming positive relation of each item score with test score. Similarly, 
𝑃𝑡̅̅ ̅−𝑃(𝑡−1)̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑃(𝑡−1)̅̅ ̅̅ ̅̅ ̅̅ ̅
×

100 > 0 quantifies progress made by the group of individuals in the t-th period over 

the previous year. Negative value of (18) or (19) indicates deterioration and calls for 

attentions to initiate necessary corrective action. Based on (18) individuals can be 

ranked with respect to extent of progress registered by them. It is possible to test 

significance of progress or deterioration since ratio of two normally distributed 

variable follows 𝜒2 distribution.  

Progress path of one or a sample of individuals across time i.e. trajectory over time 

can be computed considering (18) and/or (19) at various values of 𝑡 =0(base period 

or starting period), 1, 2, 3, ……..and so on.  Such progress path is analogous to 

hazard function and can be used to compare progress pattern of individuals or groups 

showing effectiveness in teaching-learning environment or treatments/cares from the 

start for continuous and comprehensive evaluation. Such trajectories can help to 

identify high-risk groups and contribute to monitor progress on education.  

4.2 Integrating scales: 

Equivalent scores are required to see whether qualifying marks or cut-off marks of 

two or more tests/scales are same in classifying individuals as “Passed” or Failed” or 

“with disease” and “without diseases” where tests or scales have different test 

lengths, scores ranges and score distributions. Regression equation of the form 𝑌 =
𝛼1 + 𝛽1𝑋  is different from the regression of X on Y i.e. 𝑋 = 𝛼2 + 𝛽2𝑌. Thus, 
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relationship between X and Y will not be unique. Moreover, predicting and equating 

are different concepts.  

P-scores ~𝑁(𝜇, 𝜎)help to integrate two scales X and Y with pdf 𝑓(𝑥) and 𝑔(𝑦) in 

terms of equivalent scores (𝑥0, 𝑦0) given by  ∫ 𝑓(𝑥)𝑑𝑥 = ∫ 𝑔(𝑦)𝑑𝑦
𝑦0

−∞

𝑥0

−∞
 for a given 

value of say 𝑥0 i.e. area of the curve 𝑓(𝑥) up to 𝑥0= area of the curve 𝑔(𝑦) up to 𝑦0 

which can be solved by using standard Normal table, even if the scales differ with 

respect to number of items or dimensions (Chakrabartty, 2021b), who found 

correlation between such equivalent scores exceeded 0.99. This avoids the problems 

of linear equating or percentile equating. 

 

5. Discussions 

The paper describes methods of finding difficulty value (𝐷𝑖𝑓𝑓𝑇), discriminating value 

of test or scale (𝐷𝑖𝑠𝑐𝑇) and item (𝐷𝑖𝑠𝑐𝑖) as Coefficient of variation (CV), considering 

the entire data and derives relationships among them including non-linear negative 

relationships between theoretically defend test reliability (𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙) and 𝐷𝑖𝑠𝑐𝑇 .  
Thus, one cannot increase both reliability and discriminating value of a test. 

Cronbach alpha was expressed as function of item difficulty values and test 

discriminating value.  

Values of 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 , variance of true score (𝑆𝑇
2) and error score (𝑆𝐸

2) can be 

found by dichotomization of the test in two parallel sub-tests and considering lengths 

of vectors representing the sub-tests‖𝑋𝑔‖, ‖𝑋ℎ‖ and angle between the vectors 𝑿𝒈 

and 𝑿𝒉. 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 can be used to find reliability of a battery of tests after 

defining battery scores appropriately. 

Item reliability of MCQ type test in terms of point bi-serial correlation (𝑟𝑝𝑏𝑠) runs the 

risk of being negative if mean for persons answering the i-th item correctly < mean 

for persons answering the i-th item incorrectly. Inter-item reliability as average of 

inter-item correlations suffers from limitations since correlations are not additive. 

Methods suggested to make correlations additive or to compute mean and SD of 

several correlations.   

Relationships of factorial validity (FV) = 
𝐹𝑖𝑟𝑠𝑡 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒

𝑆𝑢𝑚 𝑜𝑓 𝑒𝑖𝑔𝑒𝑛 𝑣𝑎𝑙𝑢𝑒𝑠
  with 𝑟𝑡𝑡−𝑡ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 and 

also with 𝛼𝑃𝐶𝐴 derived. The former gives non-linear relationship between theoretical 

reliability and factorial validity of standardized scores (𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠), where each term 

can be estimated from data. However, higher value of 𝐹𝑉𝑍−𝑠𝑐𝑜𝑟𝑒𝑠 increases𝛼𝑃𝐶𝐴. 

Significance of FV can be found since FV = 
𝜆1

∑ 𝜆𝑖
  follows a Tracy–Widom (TW) 

distribution. 

Normally distributed P-scores enabling better arithmetic aggregation, meaningful 

comparisons and satisfying desired properties contribute to improve scoring of 

instruments including parametric analysis like PCA, testing and estimation of mean, 

variance of item, test or scale, coefficient of variation (CV), Cronbach alpha at 
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population level, factorial validity in terms of eigen values, Reliability by  𝛼𝑃𝐶𝐴, 

testing of 𝐻0: 𝑟𝑡𝑡 = 1, finding equivalent scores of two or more instruments.  

Such scores also help to quantify responsiveness of an instrument at individual level 

or at sample level where positive value indicates progress. In the former case, 

individuals can be ranked with respect to extent of progress registered by them. It is 

possible to test significance of progress or deterioration since ratio of two normally 

distributed variable follows 𝜒2 distribution. Progress path of one or a sample of 

individuals across time can be found by the proposed measure of responsiveness. 

Such progress paths reflect effectiveness in teaching-learning environment or 

corrective action from the start and also to identify high-risk groups and contribute to 

monitor progress in education.  

 

6. Conclusions: 

Analysis of data emerging from MCQ type tests or scales/questionnaire containing 

items with different number of response-categories may be transformed to follow 

normal distribution with estimated parameters. Derived relationships of test 

reliability with discriminating value or with factorial validity show that all the test 

parameters cannot be improved simultaneously.  However, such relationships have 

potentials to find optimal value of one parameter to maximize another parameter. 

Future studies may explore such potentials with empirical investigations. 
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