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The paper proposes a new four parameter distribution called Generalized inverted 

Kumaraswamy- Rayleigh Distribution. Various properties of the proposed 

distribution including moments, mean deviation about mean and median, entropy, L-

moments, stress-strength reliability etc. are obtained. The parameter estimation is 

carried out using Maximum likelihood estimation procedure. Finally, two real life 

data sets are incorporated to illustrate the usefulness and flexibility of the proposed 

model.  

 

Keywords: Inverted Kumaraswamy distribution, Rayleigh Distribution, moments, 

entropy and MLE.  

 

  

1. Introduction 

Statistical distributions are prevalent in many areas such as physics, computer 

science, insurance, communication etc. Due to the random nature of the data arising 

in different fields, the well- established distributions fail to provide an acceptable fit. 

Hence, several new generalizations of existing models have been proposed. For 

example “Marshal-Olkhin- G family” by Marshal and Olkhin (1997), 

“Kumaraswamy family-G” by Cordiero et al. (2013),“The gamma generated family” 

by Zografos and Balakrisnan (2009), “A new method of Generating Families of 

distributions” by Alzaghal et al. (2013), “Kumaraswamy Transmuted-G family of 

distribution” by Afify et al. (2016a), “Kumaraswamy odd log logistic Distribution” 

by Alizadeh et al.(2015a), “Weibull-G” by Bourguignon et al. (2014), 

“Kumaraswamy Marshal-Olkhin” by Alizadeh et al. (2015b), Generalized 

Transmute-G family” by Nofal et al. (2015),“Burr X-G” by Yousuf et al. (2016), 

“The Transmuted Geometric-G family” by Afify et al. (2016b), “Type I Half logistic 

family” by Cordeiro et al. (2016) etc. 

The inverted Kumaraswamy Distribution (IKwD) was introduced by Al-Fattah 

(2017). He expounded some of the properties of IKwD. Recently, Jamal et al. (2018) 

proposed “Generalized Inverted Kumaraswamy Generated Family of Distribution” 

(GIKw-G). 
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The cdf and pdf of a GIKw-G family are given by (1) and (2) respectively. 

𝑀(𝑥) = {1 − (1 − 𝐹𝛾(𝑥))
𝛼
}
𝛽
;  𝛼, 𝛽, 𝛾 > 0                                                    (1) 

𝑚(𝑥) = 𝛼𝛽𝛾𝑓(𝑥)𝐹𝛾−1(𝑥)(1 − 𝐹𝛾(𝑥))𝛼−1{1 − (1 − 𝐹𝛾(𝑥)) 𝛼}𝛽−1             (2) 

where 𝐹(𝑥) and 𝑓(𝑥)are the cdf and pdf of baseline distribution respectively. 

The Rayleigh Distribution was introduced by Rayleigh (1980). Siddiqui (1962) 

studied properties of Rayleigh distribution. Some other authors who also studied this 

model are Merovci et al. (2013), Ahmad et al. (2014), Howlader and Hossian (1995), 

Malik et al. (2019) etc.  

The main aim of this paper is to generalize RD using GIKw-G family so that the 

flexibility of RD can be enhanced in terms of density function and hazard rate. The 

new distribution is named GIKw-Rayleigh Distribution (GIKw-RD). The new 

distribution exhibits more complex shapes of hazard rate function (hrf) and also 

outperforms some well-known distributions in terms of two real life data sets. The 

rest of the paper is organized as follows: In Section 2, the pdf, cdf and the associated 

reliability measures of the new model are obtained. Section 3 and 4 deal with the 

structural properties and stress strength reliability of the proposed model are derived. 

The L-moments and estimation of parameters are discussed in section 5 and 6 

respectively. Finally in section 7, the applicability of the model   is established by 

using two real life data sets. 

 

2. GIKw-RD 

The cdf and pdf of GIKw-RD can be obtained by putting 𝐹(𝑥) = 1 − 𝑒
−
𝑥2

𝜃2 and 

f(x) =
2𝑥

𝜃2
𝑒
− 
𝑥2

𝜃2 in (1) and (2) as follows: 

𝑀(𝑥) = {1 − (1 − (1 − 𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}

𝛽

                                                                              (3) 

𝑚(𝑥) = 𝛼𝛽𝛾 
𝑥

𝜃2
𝑒
−
𝑥2

2𝜃2 (1 − 𝑒
−
𝑥2

2𝜃2)

𝛾−1

(1 − (1 − 𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼−1

× {1 −

(1 − (1 − 𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}

𝛽−1 

                                                                                        (4) 

where .0, x  

The plots of pdf of GIKw-RD are displayed in Figure 1. 
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Figure 1. Plots of pdf of GIKw-RD 

 

 

Figure 1 suggests that GIKw-RD is unimodal and exhibits variety of shapes such as 

bathtub, constant, increasing decreasing, decreasing-increasing etc. Thus, GIKw-RD 

can be used to analyse data sets of diverse nature. 

The survival function, hrf and reverse hrf of GIKw-RD is given by (5), (6) and (7) 

respectively. The plots of hrf of GIKw-RD for different parameter combinations are 

displayed in Figure 2. 

𝑆(𝑥) = {1 − (1 − (1 − 𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}

𝛽

.                                                                       (5) 

ℎ(𝑥) =

𝛼𝛽𝛾 
𝑥

𝜃2
𝑒
−
𝑥2

2𝜃2(1−𝑒
−
𝑥2

2𝜃2)

𝛾−1

(1−(1−𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼−1

{1−(1−(1−𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}

𝛽−1 

1−{1−(1−(1−𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}

𝛽             (6) 

𝜑(𝑥) =

𝛼𝛽𝛾 
𝑥

𝜃2
𝑒
−
𝑥2

2𝜃2(1−𝑒
−
𝑥2

2𝜃2)

𝛾−1

(1−(1−𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼−1

{1−(1−(1−𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}

                                                    (7) 
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Figure 2. Plots of hrf of GIKw-RD. 

 

 

Figure 2 suggests that the hrf of GIKw-RD exhibits bathtub, reverse J and constant 

shapes. 

2.1 Mixture Representation 

The pdf and cdf of GIKw-RD can be alternatively represented as 

𝑚(𝑥) = ∑ ∑ 𝑝 𝜓(𝑝)(−1)𝑞∞
𝑞=0

∞
𝑝=0 (

𝑝 − 1
𝑞

)
𝑥

𝜃2
𝑒
−
(𝑞+1)𝑥2

2𝜃2                                               (8) 

where 𝜓(𝑝) = ∑ (
𝛽
𝑚
)(
𝛼𝑚
𝑙
) (−1)𝑙+𝑚∞

𝑚,𝑙=0 ∑ (
𝛾𝑙
𝑘
) (
𝑘
𝑝
) (−1)𝑝+𝑘∞

𝑝=𝑘 . 

𝑀(𝑥) = ∑ ∑  𝜓(𝑝)(−1)𝑞 (
𝑝 − 1
𝑞

)∞
𝑞=0

∞
𝑝=0 𝑒

−
𝑞𝑥2

2𝜃2                                                           (9) 

(8) and (9) are very useful in deriving various properties of GIKw-RD. 

2.2 Structural Properties 

2.2.1 Moments  

The 𝑟𝑡ℎ moment about origin of GIKw-RD is given as 

𝜇𝑟
′ =∑∑𝑝 𝜓(𝑝)(−1)𝑞

∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

)
𝜃𝑟2

𝑟

2Γ (
𝑟

2
+ 1)

(𝑞 + 1)(
𝑟

2
+1)

.       

where Γ(𝑎) is the gamma function. 

2.2.2 Mean  

The mean of GIKw-RD given as 
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𝜇1
′ =∑∑𝑝 𝜓(𝑝)(−1)𝑞

∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

)
𝜃2

1

2Γ (
3

2
)

(𝑞 + 1)(
3

2
)
.       

2.2.3 Variance 

The variance instead of GIKw-RD given as 

𝜇𝑟 =∑∑𝑝 𝜓(𝑝)(−1)𝑞
∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

)
2𝜃2

(𝑞 + 1)2

− {∑∑𝑝 𝜓(𝑝)(−1)𝑞
∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

)
𝜃2

1

2Γ (
3

2
)

(𝑞 + 1)(
3

2
)
}

2

. 

2.2.4 Incomplete Moment 

The 𝑛𝑡ℎincomplete moment about origin of GIKw-RD is given as 

𝜇(𝑛)
′ =∑∑𝑝 𝜓(𝑝)(−1)𝑞

∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

)
𝜃𝑛2

𝑛

2  γ (
𝑛

2
+ 1,

(𝑞+1)𝑠2

2𝜃2
)

(𝑞 + 1)(
𝑛

2
+1)

.   

where 𝛾(𝑎, 𝑏) is the lower incomplete gamma function. 

2.2.5 Mean Deviation (MD) about Mean and Median 

The MD about mean of GIKw-RD is given as 

𝐷(𝜇) = 2∑∑
𝑝

𝑞 + 1
 𝜓(𝑝)(−1)𝑞

∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

){𝜇 γ (1,
(𝑞 + 1)𝜇2

2𝜃2
)

− (
𝜃 2

1

2 γ (
3

2
,
(𝑞+1)𝜇2

2𝜃2
)

(𝑞 + 1)
1

2

)}.  

Also, the MD about Median of GIKw-RD is of the following form 

𝐷(𝑀) = 𝜇 − 2∑∑𝑝 𝜓(𝑝)(−1)𝑞
∞

𝑞=0

∞

𝑝=0

(
𝑝 − 1
𝑞

)
𝜃 2

1

2 γ (
3

2
,
(𝑞+1)𝜇2

2𝜃2
)

(𝑞 + 1)
3

2

.  

2.2.6 Mean Residual Life (MRL) and Mean Waiting Time (MWT). 

The MRL and MWT for GIKw-RD are given by (16) and (17) respectively. 

𝑀𝑅𝐿 =

1 − ∑ ∑ 𝑝 𝜓(𝑝)(−1)𝑞∞
𝑞=0

∞
𝑝=0 (

𝑝 − 1
𝑞

)
𝜃2

1
2 γ(

3

2
,
(𝑞+1)𝑠2

2𝜃2
)

(𝑞+1)
(
3
2
)

1 − ∑ ∑ 𝑝 𝜓(𝑝)(−1)𝑞∞
𝑞=0

∞
𝑝=0 (

𝑝 − 1
𝑞

)
𝑡

𝜃2
𝑒
−
(𝑞+1)𝑡2

2𝜃2

− 𝑡 ,    
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𝑀𝑊𝑇 = 𝑡 −

∑ ∑ 𝑝 𝜓(𝑝)(−1)𝑞∞
𝑞=0

∞
𝑝=0 (

𝑝 − 1
𝑞

)
𝜃2

1
2 γ(

3

2
,
(𝑞+1)𝑠2

2𝜃2
)

(𝑞+1)
(
3
2
)

∑ ∑ 𝑝 𝜓(𝑝)(−1)𝑞∞
𝑞=0

∞
𝑝=0 (

𝑝 − 1
𝑞

)
𝑡

𝜃2
𝑒
−
(𝑞+1)𝑡2

2𝜃2

.    

2.3 Stress Strength Reliability 

If 𝑋1~𝐺𝐼𝐾𝑤 − 𝑅𝐷(𝛼, 𝛽, 𝛾, 𝜃1) and 𝑋2~𝐺𝐼𝐾𝑤 − 𝑅𝐷(𝛼, 𝛽, 𝛾, 𝜃2), then the stress 

strength reliability denoted by R for GIKw-RD can be obtained as  

𝑅 = ∑ ∑ 𝛼𝛽𝛾(−1)𝑝+𝑞+𝑟(−1)𝑠+𝑢+𝑣∞
𝑠,𝑢,𝑣=0

∞
𝑝,𝑞,𝑟=0 (

𝑝 − 1
𝑝

) (
𝛽
𝑞
) (
𝛼𝑝 + 𝛼 − 1

𝑟
) ×

(
𝛼𝑞
𝑠
) (
𝛾 + 𝛾𝑟
𝑢

) (
𝛾𝑠
𝑣
)∫

𝑥

𝜃1
2

∞

0
𝑒
−
1

2
(
𝑢

𝜃1
2+

𝑣

𝜃2
2+1)

𝑑𝑥.                                                            (10) 

Upon solving (10) we get, 

𝑅

= ∑ ∑
𝛼𝛽𝛾

𝜃1
2
(−1)𝑝+𝑞+𝑟(−1)𝑠+𝑢+𝑣

∞

𝑠,𝑢,𝑣=0

∞

𝑝,𝑞,𝑟=0

(
𝑝 − 1
𝑝

) (
𝛽
𝑞
) (
𝛼𝑝 + 𝛼 − 1

𝑟
) (
𝛼𝑞
𝑠
) (
𝛾 + 𝛾𝑟
𝑢

) (
𝛾𝑠
𝑣
)        

× (
𝑢

𝜃1
2 +

𝑣

𝜃2
2 + 1)      

2.4 L-Moments 

The L-Moments can be computed using the formula given below: 

𝐸(𝑋𝑖:𝑛
𝑟 ) = ∫ 𝑥𝑟

∞

0
𝑚𝑖:𝑛(𝑥)𝑑𝑥.                                                                                    (11) 

We have   

𝑚𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
𝑀𝑖−1(𝑥)[1 − 𝑀(𝑥)]𝑛−𝑖𝑚(𝑥). 

𝑚𝑖:𝑛(𝑥) =
𝑛!

(𝑖 − 1)! (𝑛 − 𝑖)!
∑ (

𝑛 − 𝑖
𝑢
)

𝑛−𝑖

𝑢=0

(−1)𝑢𝑀𝑢+𝑖−1(𝑥)𝑚(𝑥). 

𝑚𝑖:𝑛(𝑥)

= ∑ ∑ 𝛼𝛽𝛾(−1)𝑢+𝑣(−1)𝑤+𝑧
∞

𝑤,𝑧=0

∞

𝑢,𝑣=0

(
𝑛 − 𝑖
𝑣
) (
2𝛽 − 1
𝑢

) (
𝛼𝑢 + 𝛼 − 1

𝑤
) (
𝛾𝑤
𝑧
) 𝑒

−
𝑧𝑥2

2𝜃2 . 

(12) 

Substituting (12) in (11) and solving we get 

𝐸(𝑋𝑖:𝑛
𝑟 )

= ∑ ∑ 𝛼𝛽𝛾(−1)𝑢+𝑣(−1)𝑤+𝑧
∞

𝑤,𝑧=0

∞

𝑢,𝑣=0

(
𝑛 − 𝑖
𝑣
) (
2𝛽 − 1
𝑢

) (
𝛼𝑢 + 𝛼 − 1

𝑤
) (
𝛾𝑤
𝑧
)
𝜃𝑟2

𝑟

2
−1Γ(

𝑟

2
)

(𝑧)
(
𝑟

2
)
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Theorem: If 𝑋~𝐺𝐼𝐾𝑤 − 𝑅𝐷(𝛼, 𝛽, 𝛾, 𝜃)then the Renyi and Mathai- Haubold entropy 

for GIKw-RD is respectively given by 

𝐼𝛿 =
1

1 − 𝛿
𝑙𝑜𝑔

{
 
 

 
 ∑(𝛼𝛽𝛾)𝛿

∞

𝑝=0

∑∑(
𝛿(𝛽 − 1)

𝑝
)

∞

𝑢=0

𝑢

𝑞=0

(
𝛿𝛼 + 𝛼𝑝 − 𝛿

𝑞 
)

(
𝛿(𝛾 − 1) + 𝛾𝑞

𝑢
)
2
𝛿

2
−1

𝜃
3𝛿

2

Γ (
𝛿

2
)

(𝛿 + 𝑢)
𝛿

2 }
 
 

 
 

 ; 𝛿 > 0, 𝛿 ≠ 1. 

𝑔𝑀𝐻(𝑥) =
1

1−𝛿
𝑙𝑜𝑔

[
 
 
 
 

{
 
 

 
 ∑ (𝛼𝛽𝛾)2−𝛿∞

𝑝=0 ∑ ∑ (
𝛿(𝛽 − 1)

𝑝
)∞

𝑢=0
𝑢
𝑞=0 (

𝛿𝛼 + 𝛼𝑝 − 𝛿
𝑞 

)

(𝛿
(𝛾 − 1) + 𝛾𝑞

𝑢
)
2
𝛿
2
−1

𝜃
3𝛿
2

Γ(
𝛿

2
)

(𝛿+𝑢)
𝛿
2 }

 
 

 
 

− 1

]
 
 
 
 

.     

Proof: The Renyi entropy is defined as 

𝐼𝛿 =
1

1−𝛿
𝑙𝑜𝑔 ∫ 𝑚𝛿(𝑥)𝑑𝑥      

∞

0
                                                                                  (13) 

where 𝛿 > 0, 𝛿 ≠ 1. 

Substituting (2) in (13) we get 

𝐼𝛿 =
1

1−𝛿
𝑙𝑜𝑔 [∫ { 𝛼𝛽𝛾𝑓(𝑥)𝐹𝛾−1(𝑥)(1 − 𝐹𝛾(𝑥))𝛼−1{1 − (1 − 𝐹𝛾(𝑥))𝛼}𝛽−1}

𝛿
𝑑𝑥

∞

0
]. 

𝐼𝛿 =
1

1−𝛿
𝑙𝑜𝑔 [∫ { 𝛼𝛽𝛾𝑓(𝑥)𝐹𝛾−1(𝑥)(1 − 𝐹𝛾(𝑥))𝛼−1{1 − (1 − 𝐹𝛾(𝑥))𝛼}𝛽−1}

𝛿
𝑑𝑥

∞

0
]. 

𝐼𝛿 =
1

1−𝛿
𝑙𝑜𝑔[(𝛼𝛽𝛾)𝛿 ∫ 𝑓𝛿(𝑥)𝐹𝛿(𝛾−1)(𝑥)(1 − 𝐹𝛾(𝑥))𝛿(𝛼−1){1 − (1 −

∞

0

𝐹𝛾(𝑥))𝛼}𝛿(𝛽−1)𝑑𝑥]. 

𝐼𝛿 =
1

1 − 𝛿
𝑙𝑜𝑔

{
 
 

 
 ∑(𝛼𝛽𝛾)𝛿

∞

𝑝=0

∑∑(
𝛿(𝛽 − 1)

𝑝
)

∞

𝑢=0

𝑢

𝑞=0

(
𝛿𝛼 + 𝛼𝑝 − 𝛿

𝑞 
) (𝛿

(𝛾 − 1) + 𝛾𝑞
𝑢

)

∫
𝑥𝛿

𝜃2𝛿
𝑒
−
(𝛿+𝑢)𝑥2

2𝜃2

∞

0 }
 
 

 
 

 

𝐼𝛿 =
1

1 − 𝛿
𝑙𝑜𝑔

{
 
 

 
 ∑(𝛼𝛽𝛾)𝛿

∞

𝑝=0

∑∑(
𝛿(𝛽 − 1)

𝑝
)

∞

𝑢=0

𝑢

𝑞=0

(
𝛿𝛼 + 𝛼𝑝 − 𝛿

𝑞 
)

(
𝛿(𝛾 − 1) + 𝛾𝑞

𝑢
)
2
𝛿

2
−1

𝜃
3𝛿

2

Γ (
𝛿

2
)

(𝛿 + 𝑢)
𝛿

2 }
 
 

 
 

 

Also, the Mathai- Haubold entropy is defined as 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{∫ 𝑚2−𝛿(𝑥)𝑑𝑥 − 1

∞

0

}.      
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𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{∫ { 𝛼𝛽𝛾𝑓(𝑥)𝐹𝛾−1(𝑥)(1 − 𝐹𝛾(𝑥))𝛼−1{1

∞

0

− (1 − 𝐹𝛾(𝑥))𝛼}𝛽−1}
2−𝛿

𝑑𝑥 − 1} 

𝑔𝑀𝐻(𝑥) =
1

1 − 𝛿
{(𝛼𝛽𝛾)𝛿∫ 𝑓2−𝛿(𝑥)𝐹(2−𝛿)(𝛾−1)(𝑥)(1 − 𝐹𝛾(𝑥))(2−𝛿)(𝛼−1){1

∞

0

− (1 − 𝐹𝛾(𝑥))𝛼}(2−𝛿)(𝛽−1)𝑑𝑥     − 1}. 

𝑔𝑀𝐻(𝑥)

=
1

1 − 𝛿
𝑙𝑜𝑔

{
 
 

 
 ∑(𝛼𝛽𝛾)2−𝛿

∞

𝑝=0

∑∑(
(2 − 𝛿)(𝛽 − 1)

𝑝
)

∞

𝑢=0

𝑢

𝑞=0

(
(2 − 𝛿)(𝛼 − 1) + 𝛼𝑝

𝑞 
)

((2 − 𝛿)
(𝛾 − 1) + 𝛾𝑞
𝑢

)∫
𝑥(2−𝛿)

𝜃2(2−𝛿)
𝑒
−
(2−𝛿+𝑢)𝑥2

2𝜃2

∞

0 }
 
 

 
 

. 

𝑔𝑀𝐻(𝑥)

=
1

1 − 𝛿
𝑙𝑜𝑔

{
 
 

 
 ∑(𝛼𝛽𝛾)2−𝛿

∞

𝑝=0

∑∑(
(2 − 𝛿)(𝛽 − 1)

𝑝
)

∞

𝑢=0

𝑢

𝑞=0

(
(2 − 𝛿)(𝛼 − 1) + 𝛼𝑝

𝑞 
)

((2 − 𝛿)
(𝛾 − 1) + 𝛾𝑞
𝑢

)
2
1

2
(1−𝛿)𝜃

3

2
(𝛿−1)Γ (

3

2
−
𝛿

2
)

(2 − 𝛿 + 𝑢)
3

2
(1−𝛿) }

 
 

 
 

. 

2.5 Parameter Estimation 

Let 𝜁 = (𝛼, 𝛽, 𝛾, 𝜃)𝑇be the vector of parameters of GIKw-RD. Let 𝑙 be the log-

likelihood function computed from a random sample of size n drawn from GIKw-

RD. 

𝑙 = 𝑛𝑙𝑜𝑔𝛼 + 𝑛𝑙𝑜𝑔𝛽 + 𝑛𝑙𝑜𝑔𝛾 + 
1

𝜃2𝑛
∑ 𝑙𝑜𝑔𝑥𝑖
𝑛
𝑖=1 −

1

2𝜃2
∑ 𝑥𝑖

2𝑛
𝑖=1 + (𝛾 − 1)𝑙𝑜𝑔 (1 −

𝑒
−
𝑥2

2𝜃2) + (𝛼 − 1)𝑙𝑜𝑔 (1 − (1 − 𝑒
−
𝑥2

2𝜃2)

𝛾

) + (𝛽 − 1)𝑙𝑜𝑔 {1 − (1 − (1 −

𝑒
−
𝑥2

2𝜃2)

𝛾

)

𝛼

}.                              

The elements of the score vector 𝑈(𝜁) =
𝜕𝑙

𝜕𝜁
= (

𝜕𝑙

𝜕𝛼
,
𝜕𝑙

𝜕𝛽
,
𝜕𝑙

𝜕𝛾
,
𝜕𝑙

𝜕𝜃
)
𝑇

upon equating to 

zero yield the ML estimates 𝛼,̂ 𝛽,̂ 𝛾 ̂and 𝜃 respectively. 
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3. Application 

In this section, the applicability of GIKw-RD is established by comparing its 

performance with two model namely RD and IKwD using two real life data sets. The 

criterion such as -2logl, AIC and SIC are used as performance comparing tools. Also 

the value of KS- Statistic and associated p value is computed. The R software has 

been used to carry out all the computations. 

The MLEs of the parameters, the associated values of comparison criterions are for 

data set 1 and 2 are presented in Table 1 and 2 respectively. Also, the relative 

histogram and plots of the fitted GIKw-RD, RD and IKwD are displayed in Figure 3 

for the two data sets.   

Data set 1: This data set corresponds to the Average Annual Percent Change in 

Private Health Insurance Premiums (All Benefits: Health Services and Supplies), 

Calendar Years 1969-2007 (SOURCE: Centres for Medicare & Medicaid Services, 

Office of the Actuary, National Health Statistics Group).  

 

Table 1. Ml estimates and values of comparison criterions for data set 1. 

 

Data set 2: This data set consists of the strength data reported by Badar and Priest 

(1982). 

 

Table 2. Ml estimates and values of comparison criterions for data set 2. 

 

Model 

 

MLE’s -2log l  AIC SIC KS-

statistic 

P-

value 

 


 ̂  



 

GIKw-RD 

 

2.902 

( 77.46) 

1.205 

(1.751) 

 

0.977 

(1.048) 

1.6177 

(22.01) 

111.50 119.50 128.07 0.0621 0.96 

RD    0.9932 

(0.063) 

 114.34 136.48 0.068 0.92 

IKwD 3.450 

( 0.361) 

8.300 

(1.974) 

- - 126.65 130.65 143.22 0.261 0.000

357 

 

Model 

 

MLE’s -2log l  AIC SIC KS-

statistic 

P-value 



 


 ̂  



 

GIKw-RD 

 

2.210 

(1.688) 

2.504 

(3.180) 

 

0.2303 

(0.224) 

3.477 

(2.41) 

115.4 123.4 130.6 0.1077 0.63 

RD - - - 1.2882 

(0.096) 

155.8 157.8 159.6 0.3530 1.5e-05 

IKwD 1.978 

( 0.328) 

1.861 

(0.403) 

- - 119.0 806.9 123.0 0.1277 0.41 
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Figure 3. (a) Plots of estimated pdf of GIKw-RD and other competitive 
models for data set 1. (b) Plots of estimated pdf of GIKw-RD and other 

competitive models for data set 2. 

 

 

4. Conclusion  

In this paper, a new four parameter lifetime distribution namely Generalized Inverted 

Kumaraswamy- Rayleigh Distribution (GIKw-RD) and its properties have been 

studied. The new distribution is compared with two well-known models using two 

real life data sets and the results are presented in Table 1 and Table 2.  From Table 1 

and Table 2, it can clearly be seen that GIKw-RD has least value of -2logl, AIC and 

SIC. Hence, we can conclude that the proposed models provides a better fit than the 

models used for comparison for the given data sets. We hope that the proposed 

model entices wider application in diverse fields. 
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