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Confidence intervals (CIs) for the correlation were investigated with interest on how 

bootstrap CIs perform with non-normal distribution pairings across correlation 

magnitudes. The bootstrap CIs had acceptable performance if one of the variables 

was normal or if sample size was greater than 200 if the paired variables were non-

normal.  
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1. Introduction 

The Pearson product-moment correlation (henceforth referred to as the correlation) is 

a popular and important statistic that captures the linear relationship between two 

variables. The correlation has been used for over 100 years and has desirable 

properties that allow it to contribute as a foundational piece to other statistics and 

statistical models like the t-test, regression, MANOVA, etc. (Hald, 2007). One such 

useful property is that the correlation has a range of 1 1−   . The utility of this 

range is that it allows for a standardized method of interpreting the linear 

relationships between a pair of variables. 

The correlation is generally well understood when 0 = , but research about the 

correlation across its range has been inconsistent. This is due to the correlation 

having a mutable distribution based on its magnitude. In fact, the correlation only has 

a symmetric distribution when 0 =  and is skewed otherwise (See Figure 1). This 

means that although the breadth of research on 0 =  is useful, it may not always be 

applicable to cases where 0  . One such important situation is in research 

applications where the presence of an effect is of interest (i.e., 0  ). In addition, 

precision is important for research applications and can be demonstrated via 

confidence intervals (CIs). However, the mutable nature of the distribution of the 

correlation makes CI estimation difficult as well. Attempts have been made to make 

correlation CIs possible but have yielded mixed results. 
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Figure 1. The range restriction effect of the distribution of the correlation. 

 

 

Fisher (1915) first developed a correlation CI for when 0   via the Fisher 

z-transformation and it was subsequently evaluated by Zeller and Levine (1974) 

under several simulation conditions. The authors investigated the (a) distribution 

shape, (b) correlation strength ( 0, =  .32, .71, .95), and (c) sample size ( 15,n =  50, 

100) with .01 =  and .05. For distribution shape, the distribution was the same for 

both variables and the authors investigated the normal, uniform, J, bimodal, and a 

leptokurtic, but no skewness and kurtosis details were provided for these 

distributions. Results were based on 3,000 simulation replications. One consistent 

finding was that the correlation estimates slightly underestimated the true correlation, 

but this was ultimately negligible when 15n  . In addition, the Fisher 

z-transformation correlation CI was shown to be robust to the mild non-normal 

distributions investigated (e.g., uniform, J, bimodal, and leptokurtic). These results 

were consistent for .01 =  and .05. 

Additional research on the robustness of the Fisher z-transformation CI for the 

correlation was conducted by Berry and Mielke (2000). The authors investigated (a) 

distribution shape, (b) correlation strength ( 0, =  .4, .6, .8), and (c) sample size          

( 10,n =  20, 40, 80) with .10, =  .05, and .01. For distribution shape, the distribution 

was the same for both variables and the authors investigated the normal, 3 

generalized logistic, and 3 symmetric kappa distributions. The generalized logistic 

distributions were defined by 

( )
( )1/ 1 /

1
x xe e

f x

   

 

− +

   
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   

,                                                                                     (1) 

where 1, =  .1, .01. In this context, 1   results in negative skew and 1   results in 

positive skew. The symmetric kappa distribution was defined by 
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where 2, =  3, 25. In this context, 2 =  represents a distribution similar to a t 

distribution with 2 degrees of freedom, 3 =  is a heavy tailed distribution, and 

25 =  is similar to a uniform distribution. The authors provided no skewness and 

kurtosis details for these distributions. Results were based on 1,000,000 simulation 

replications. The results showed that Fisher z-transformation CIs had appropriate 

coverage probability when 0 =  and .01 =  and .05 and for all distribution shapes. 

However, the coverage probability was consistently underestimated when 

distribution shapes were non-normal and 0  . Furthermore, these problems were 

not remedied with increased sample size but made more severe. These results were 

consistent for .01, =  .05, and .10.  

The discrepancy in the literature about efficacy of the Fisher z-transformation CI 

indicates a need for investigation on other correlation CI methods. Additionally, 

there is interest on the effect non-normal data has on the CI estimates as such data 

are common in research applications (Blanca, Arnau, Lopez-Montiel, Bono, & 

Bendayan, 2013). This has led to investigating the viability of the bootstrap for CI 

estimation as the bootstrap does not have distributional assumptions (Efron & 

Tibshirani, 1993). Two bootstrap CIs of interest are the Percentile Bootstrap (PB) 

and the Bias-Corrected and Accelerated (BCa) CIs. 

An early application of the bootstrap CI for the correlation was presented by 

Lunneborg (1985). Lunneborg explored the potential of the bootstrap for estimating 

correlation CIs using SAT verbal and math scores from a pseudorandom sample of 

25 college freshman. In this study, the PB CI, based on 500 bootstrap samples, was 

compared to the Fisher z-transformation CI with a an undisclosed α. The SAT scores 

were used because (a) they are real data, (b) the verbal and math scores are known to 

be bivariate normal, and (c) the verbal-math ρ is large enough such that useful CIs 

can be estimated for the small pseudorandom sample ( 25n = ). The CIs from both 

methods were similar under bivariate normality. 

In contrast, another early simulation study of the bootstrap CI for the correlation was 

conducted by Rasmussen (1987). Of interest was the impact of a non-normal 

distribution on the bootstrap CI for testing 0 = . This was done by investigating (a) 

distribution shape (normal and lognormal) and (b) sample size ( 5,n =  15, 30, 60) 

with .01 =  and .05. For distribution shape, the distribution for the variable pairings 

took the following two forms: normal-normal or normal-lognormal. The PB CI, 

based on 500 bootstrap samples, was compared to the Fisher z-transformation CI. 

Results were based on 1,000 simulation replications. However, the results ran 

counter to Lunneborg’s research (1985) as they showed a lack of parity between the 

Fisher z-transformation and the PB CI. In this case, the PB CIs demonstrated an 

overall increase in type I error rate and narrower CIs compared to the Fisher 

z-transformation CI under all conditions, including when the variable pairing was 

normal-normal. Going from .05 =  to .01 =  further highlighted this issue. 

However, Rasmussen noted that the situation did improve with larger sample sizes 

but was not able to explore this beyond n = 60 due to costs in computational power at 

the time. 
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In two recent studies, Padilla and Veprinksy (2012, 2014) developed PB and BCa 

CIs for the deattenuated correlation. An estimated correlation can become weaker 

(attenuated) than what may be true in the population due to measurement error 

(Spearman, 1904). Spearman (1904) developed a correction for this attenuation 

known as the deattenuated (or disattenuated) correlation (Muchinsky, 1996), but 

research on this correlation and its corresponding CIs is rare. Padilla and Veprinksy 

addressed this gap by investigating the bootstrap CIs for the deattenuated correlation 

under four simulation conditions: the (a) distribution shape, (b) strength of the 

correlation ( .10, =  .20, .30, .40, .50), (c) reliability of both variables in the 

correlation ( .50,ij =  .60, .70, .80, .90), (d) and sample size ( 50,n =  100, 150, 200, 

250, 300) with .05 = . All bootstrap CIs were based on 2,000 bootstrap samples. 

For distribution shape, both variables had the same distribution from the following 

distributions investigated:  

• normal (skewness = 0, kurtosis = 0) 

• uniform (skewness = 0, kurtosis = -1.20) 

• triangular (skewness = 0, kurtosis = -0.60) 

• beta (skewness = -0.85, kurtosis = 0.22) 

• Laplace (skewness = 0, kurtosis = 3) 

• Pareto (skewness = 2.81, kurtosis = 14.83) 

Results were based on 1,000 simulation replications. Overall, the PB and BCa CIs 

had good coverage under all simulation conditions with negligible differences 

between the two CIs. Even so, the BCa CI tended to have slightly better coverage 

than the PB CI. The one exception was that neither CI performed well with the 

Pareto distribution. However, the Pareto distribution investigated was skewed and 

highly peaked (kurtosis = 14.83). Such distributions have range restrictions, and it is 

well known that distributions with range restrictions attenuate the correlation due to 

less variability. 

In a subsequent study, Bishara and Hittner (2017) investigated several CIs for the 

correlation. Of interest was the impact of various types and combinations of 

distributions on the correlation CIs. The following correlation CIs were investigated: 

the 1) Fisher z-transformation, 2) Spearman rank-order with Fieller’s SE, 3) 

Spearman rank-order with Wright’s SE, 4) Box-Cox transformation, 5) ranked 

inverse normal transformation (RIN), 6) nonparametric bootstrap, 7) nonparametric 

bootstrap with asymptotic adjustment (AA), 8) nonparametric bootstrap BCa, 9) 

observed imposed bootstrap, 10) observed imposed bootstrap with AA, and 11) 

observed imposed bootstrap with BCa. All bootstrap CIs were based on 9,999 

bootstrap samples. The performance of the CIs was investigated through a simulation 

with the following four conditions: (a) distribution shape, (b) distribution pairing, (d) 

correlation strength ( 0, =  .5), and (c) sample size ( 10,n =  20, 40, 80, 160) with 

.05 = . The distributions investigated were a result of a combination of skewness      

( 1 4, = −  –3, –2, –1, 0, 1, 2, 3, 4) and kurtosis ( 2 1, = −  0, 2, 4, 6, 8, 10, 20, 30, 40) 
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whose feasibility was limited by the lower bound of kurtosis being determined by the 

squared skewness 

2

2 1 2  −    (3) 

This resulted in 46 skewness and kurtosis combinations being investigated. The 

distribution pairings investigated either had both variables come from the same 

distribution or had one variable come from a normal distribution and the other from a 

non-normal distribution. Overall, 920 simulation scenarios were investigated. Results 

were based on 10,000 simulation replications. 

The primary findings were that the RIN followed by the Spearman rank-order with 

Fieller’s SE CIs had the best performance when data were non-normal. Of the 

remaining CI methods, only the observed imposed bootstrap with BCa had good 

enough performance when data were non-normal. However, it tended to exceed 95% 

coverage by generating somewhat long CIs. The advantage it has is that it keeps the 

correlation in the scale of the original variables. This is not the case for the RIN and 

Spearman rank-order with Fieller’s SE as both transform the original variables. All 

the remaining methods did not have good CI coverage when data were non-normal 

with the Fisher z-transformation CI having the least favorable performance, and the 

situation was made worse by increasing the sample size when .5 = . 

When the variable pairing included a normal distribution, all CIs generally 

performed better. However, the transformation methods still outperformed the 

bootstrap methods in this case. In this situation, the only bootstrap CI methods that 

were comparable to the transformation methods’ performance were the observed 

imposed bootstrap with AA and observed imposed bootstrap with BCa. 

Given previous mixed findings, the goal of the current study is to clearly understand 

under which conditions the correlation CIs from previous studies are robust. The 

main conditions of interest are correlation magnitude and distribution of data. The 

following CI methods were investigated. 

1.1 Confidence Interval Estimation 

Fisher z-transformation CI. CIs constructed via the Fisher z-transformation (1915) 

start with 

1 1
ln

2 1

r
z

r

+   
=    

−   
   (4) 

and assume that the transformed correlation is a standard normal variate. This allows 

for a 100(1 )%−  CI to be defined as  

( )/2z z SE z  ,   (5) 

where 

( )
1

3
SE z

n
=

−
   (6) 
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is the standard error of z. 

Spearman Rank-Order with Fieller’s SE CI. CIs constructed via the Spearman Rank-

Order (1904) have 1ix  and 2ix  separately transformed into ascending ranks. From 

here, the correlation is computed. The CI is then constructed by the Fisher 

z-transformation defined by equations 4 5− , where 

1.03
( )

3
SE z

n
=

−
   (7) 

is Fieller’s (1957) standard error. 

Ranked Inverse Normal Transformation (RIN) CI. In this method, 1ix  and 2ix  are 

separately transformed through Bliss’s (1967) rankit transformation defined as 

1 .5
( ) rx

f x
n

 − − 
=  

 
,   (8) 

where 1−  is the inverse cumulative distribution function and rx  is the ascending 

rank of each ix  value. The CI is then computed through Fisher’s z-transformation 

with equations 4 6− . The utility of this process is that it will convert the data into an 

approximately normal distribution. 

Bootstrap CI for the Correlation. The bootstrap for a pair of variables x and y can be 

outlined in three steps. Suppose the observed data is ( )1 2, , , n=X x x x , where 

( ),i i ix y=x  is the pair of variables. First, obtain the bth bootstrap sample with 

replacement from X; i.e., ( )( ) ( ) ( ) ( )

1 2, , , .b b b b

n=X x x x  Second, the bth estimate of the 

correlation from ( )b
X  is computed as 

( )

( )

( ) ( )

b

xyb

xy b b

x y

C
r

S S
=    (9) 

and stored where ( )b

xyC , ( )b

xS , and ( )b

yS  are the covariance and corresponding SDs for 

the bth sample, respectively. Third, compile the stored estimates (1) (2) ( ), , ..., B

xy xy xyr r r  to 

create the empirical sampling distribution (ESD) of rxy for 1, 2, ...,b B=  bootstrap 

samples. The ESD can then be summarized to obtain statistical quantities for 

inference about xyr .  

The quantities of interest here are the PB and BCa CIs. The PB CI is estimated by 

obtaining the / 2  and 1 / 2−  percentiles from the xyr  ESD where α is the 

significance levels. The BCa CI follows the same process as the PB CI, but the 

bounds are adjusted for the bias and skewness (or acceleration) of the xyr  ESD. See 

Efron and Tibshirani (1993) for details. 
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2. Methodology 

2.1 Data Generation 

A Monte Carlo simulation was used to investigate and compare the properties of the 

correlation CI methods under different simulation conditions. This simulation was 

structured in a 6 (corr. magnitude) × 11 (sample size) × 23 (distribution pairings) 

simulation design for a total of 1518 conditions. For each simulation condition, 1,000 

data replicants were obtained. Data were simulated in three steps as follows. First, 

generate normal and non-normal data according to Headrick (2002) as follows 

[
𝑥𝑖
𝑥𝑗
] ~ ([

0
0
] , [

1 𝜌𝑖𝑗
𝜌𝑖𝑗 1

]),                                                                                           (10) 

where 

2 3 4 5

0 1 2 3 4 5i i i i i i i i i i i ix c c z c z c z c z c z= + + + + + ,   (11) 

2 3 4 5

0 1 2 3 4 5j j j j j j j j j j j jx c c z c z c z c z c z= + + + + + ,   (12) 

[
𝑧𝑖
𝑧𝑗
] ~𝑁([

0
0
] , [

1 𝜌ⅈ𝑗
∗

𝜌ⅈ𝑗
∗ 1

]),    (13) 

0 5, ...,c c  are constants, and *

ij  is the intermediate correlation. Second, estimate the 

correlation CIs for each data replication in equation 10. Third, determine if the CIs 

contain the population correlation (ρ). The following simulation conditions were 

investigated. 

2.2 Conditions 

Sample Size (n). Sample size was included because CI estimation is impacted by 

sample size. The following sample sizes were investigated: n = 20, 30, 40, 50, 100, 

150, 200, 250, 300, 350, 400 as they draw parity with the previous research on the 

correlation CIs (Bishara & Hittner, 2017; Padilla & Veprinsky, 2012, 2014). The 

granularity in the lower end of the sample sizes is due to previous research 

suggesting that bootstrap CIs cease to function if sample size is too small 

(Rasmussen, 1987). 

Correlation Magnitude (ρ). Correlation magnitude was considered because the 

distribution of the correlation changes when 0   and becomes more skewed as it 

approaches ±1 (see Figure 1). Cohen (1988) advises that correlation coefficients 

equal to .10, .30, and .50 represent small, moderate, and strong correlations, 

respectively. The present investigation utilized correlation coefficients ranging from 

.00 to .50 in increments of .10 to reflect Cohen’s standards. 

Distribution Pairings (xij). The degree of non-normality in the distribution pairings 

was investigated because the Fisher method assumes multivariate normality while 

the bootstrap methods do not. Additionally, non-normal data is common in applied 

settings and there is a lack of consensus in the literature on how to approach the 

correlation when non-normality occurs. The selected distributions fall into the 
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general categories of symmetric and non-symmetric and were investigated in 

previous research (Bishara & Hittner, 2017; Padilla & Veprinsky, 2012, 2014). The 

symmetric distributions were as follows: normal, triangular, uniform, and Laplace. 

The non-symmetric distribution were as follows: beta ( 4, =  1.25 = ), beta ( 4, =  

1.5 = ), chi-square ( 16df = ), chi-square ( 4df = ), chi-square ( 3df = ), chi-square (

2df = ), chi-square ( 1df = ), and Pareto. Table 1 gives the constants used to generate 

these distributions and Figure 2 displays these distributions.  

Investigation of the distributions also considered the pairwise nature of the variables 

involved in the correlation. This dictated four main types of distribution pairings. In 

the first pairing, the variables had the same symmetric distribution (e.g., both 

variables were uniform). Similarly, in the second pairing, the variables had the same 

non-symmetric distribution (e.g., both variables were Pareto). In the third pairing, 

one variable was always normal and the other was symmetric (e.g., one variable was 

normal and the other Laplace). In the third pairing, a normal-normal paring was not 

included. In the fourth pairing, one variable was always normal and the other was 

non-symmetric (e.g., one variable was normal and the other Pareto). 

2.3 Criteria for Evaluating CIs 

The 100(1 )%−  CI coverage was assessed using Bradley’s (1978) criterion. The 

criterion is defined as *1 1.5 1 1 0.5  −  −  − , where α* is the true probability of 

Type I error. CI coverage is defined as the proportion of CIs that contain the true 

population correlation ρ. As such, acceptable coverage for .05 =  is given by 

 .925, .975 . Bootstrap based CIs were estimated from a total of 2,000 bootstrap 

samples. 

 

Table 1. Constants for Headrick’s (2002) fifth-order polynomial transformation 

method 

Distribution Skew Kurtosis 0c  1c  2c  3c  4c  5c  

Normal 

Triangular 

Uniform 

Laplace 

Beta (a=4, b=1.25) 

Beta (a=4, b=1.5) 

Chi-Square (df=16) 

Chi-Square (df=4) 

Chi-Square (df=3) 

Chi-Square (df=2) 

Chi-Square (df=1) 

Pareto 

.000 

.000 

.000 

.000 

-.848 

-.694 

.710 

1.410 

1.630 

2.000 

2.830 

2.811 

.000 

-.600 

-1.200 

3.000 

.221 

.069 

.750 

3.000 

4.000 

6.000 

12.000 

14.828 

.000 

.000 

.000 

.000 

.199 

.163 

-.117 

-.228 

-.259 

-.308 

-.398 

-.346 

1.000 

1.081 

1.347 

0.728 

1.071 

1.089 

.976 

.901 

.867 

.801 

.621 

.712 

.000 

.000 

.000 

.000 

-.229 

-.187 

.117 

.232 

.265 

.319 

.417 

.347 

.000 

-.029 

-.140 

.096 

-.041 

-.044 

.004 

.015 

.021 

.034 

.068 

.028 

.000 

.000 

.000 

.000 

.010 

.008 

.000 

-.001 

-.002 

-.004 

-.006 

.000 

.000 

-.002 

.002 

-.002 

.001 

.001 

.000 

.000 

.000 

.000 

.000 

.004 
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Figure 2. Distributions considered for this study. 
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Figure 2. Continued. Distributions considered for this study. 
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3. Results 

The major impact on CI coverage was a non-symmetric distribution paired with 

itself. Additionally, sample size generally had a noticeable stabilizing effect on CI 

coverage with minimal trend changes in CI coverage when 200n  . As such, the 

results are presented in terms of 200n   for when a non-symmetric distribution is 

paired with itself. Results for the Spearman and RIN CIs are not presented as they 

had consistent acceptable coverage. The following results are displayed in Figures 3 

to 6 and summarized in Table 2 for 20 200n = − . 

3.1 Sample Size of 20 

The Fisher z-transformation CI had acceptable coverage when skewness 1.41 . 

However, the Fisher z-transformation CI broke down as skewness increased. The PB 

CI did not have acceptable coverage. The BCa had acceptable coverage when 

skewness 0.848 .  

3.2 Sample Size of 30 

The Fisher z-transformation CI had acceptable coverage when skewness 0.848 . 

Like before, the Fisher z-transformation CI broke down as skewness increased. The 

PB CI was able to maintain acceptable coverage for skewness 0.71 . As before, the 

BCa had acceptable coverage when skewness 0.848 . 

3.3 Sample Size of 40 

The Fisher z-transformation CI had acceptable coverage when skewness 0.848  but 

broke down as skewness increased. The PB CI had acceptable coverage when 

skewness 1.41 . The BCa had acceptable coverage when skewness 0.848 .  

3.4 Sample Size of 50 

The Fisher z-transformation CI had acceptable coverage when skewness 0.848  but 

broke down as skewness increased. The PB CI had acceptable coverage when 

skewness 1.63 . The BCa had acceptable coverage when skewness 0.848 .  

3.5 Sample Size of 100 

The Fisher z-transformation CI had acceptable coverage when skewness 1.41  but 

broke down as skewness increased. The PB CI had acceptable coverage when 

skewness 2 . The BCa had acceptable coverage when skewness 1.41 .  

3.6 Sample Size of 150 

The Fisher z-transformation CI had acceptable coverage when skewness 0.848  but 

broke down as skewness increased. The PB CI was generally able to maintain 

acceptable coverage when skewness 2.83 . The exceptions for the PB CI were when 
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skewness 1.63=  or when skewness 2.811= . The BCa CI had acceptable coverage 

when skewness 1.41 . 

3.7 Sample Size of 200 or More 

The Fisher z-transformation CI had acceptable coverage when skewness 0.848  but 

broke down as skewness increased. The PB CI had acceptable coverage when 

skewness 2.83 . The BCa CI had acceptable coverage when skewness 2 . 

3.8 Summary of Results for Sample Size of 20 to 200 

In general, the Fisher z-transformation had acceptable coverage when 

skewness 0.848  for 30 200n = − . The only exceptions are when skewness 1.41  for 

20n =  and 100. The PB CI did not have acceptable coverage when 20n = . However, 

it had acceptable coverage with subsequent sample sizes of 30 200n = −  for 

skewness 0.710  to skewness 2.83 ; i.e., increasing the sample size allowed for 

more deviation from normality. Finally, the BCa CI had acceptable coverage when 

skewness 0.848  for 20 100n = − . However, increasing the sample size to 100n =  

and 200 attained acceptable coverage for skewness 1.41  and skewness 2 , 

respectively. 

 

Table 2. Summary of Acceptable Coverage for Paired Non-Normal Distributions 

with Sample Size 200 . 

Method  n Skewness Kurtosis Distribution 

Fisher 

z-transformation 

20 

30 

40 

50 

100 

150 

200 

≤ |1.410| 

≤ |0.848| 

≤ |0.848| 

≤ |0.848| 

≤ |1.410| 

≤ |0.848| 

≤ |0.848| 

≤ |3.000| 

≤ |0.221| 

≤ |0.221| 

≤ |0.221| 

≤ |3.000| 

≤ |0.221| 

≤ |0.221| 

Chi-Square(df = 4) 

Beta(α = 4, β = 1.25) 

Beta(α = 4, β = 1.25) 

Beta(α = 4, β = 1.25) 

Chi-Square(df = 4) 

Beta(α = 4, β = 1.25) 

Beta(α = 4, β = 1.25) 

PB 20 

30 

40 

50 

100 

150 

200 

NA 

≤ |0.710| 

≤ |1.410| 

≤ |1.630| 

≤ |2.000| 

≤ |2.830| 

≤ |2.830| 

NA 

≤ |0.750| 

≤ |3.000| 

≤ |4.000| 

≤ |6.000| 

≤ |12.00| 

≤ |12.00| 

NA 

Chi-Square(df = 16) 

Chi-Square(df = 4) 

Chi-Square(df = 3) 

Chi-Square(df = 2) 

Chi-Square(df = 1) 

Chi-Square(df = 1) 

BCa 20 

30 

40 

50 

100 

150 

200 

≤ |0.848| 

≤ |0.848| 

≤ |0.848| 

≤ |0.848| 

≤ |1.410| 

≤ |1.410| 

≤ |2.000| 

≤ |0.221| 

≤ |0.221| 

≤ |0.221| 

≤ |0.221| 

≤ |3.000| 

≤ |3.000| 

≤ |6.000| 

Beta(α = 4, β = 1.25) 

Beta(α = 4, β = 1.25) 

Beta(α = 4, β = 1.25) 

Beta(α = 4, β = 1.25) 

Chi-Square(df = 4)   

Chi-Square(df = 4) 

Chi-Square(df = 2) 
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Figure 3. Distribution of 95% CI coverage for non-symmetric with non-
symmetric distribution pairings by sample size of 20 40− . Fisher 

z-transformation (FSH), percentile bootstrap (PB), bias-corrected and 
accelerated bootstrap (BCa). Bootstrap methods (PB and BCa) were based 
on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are 

at the acceptable coverage of  .925, . 975 . 
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Figure 4. Distribution of 95% CI coverage for non-symmetric with non-
symmetric distribution pairings by sample size of 50 150− . Fisher 

z-transformation (FSH), percentile bootstrap (PB), bias-corrected and 
accelerated bootstrap (BCa). Bootstrap methods (PB and BCa) were based 
on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are 

at the acceptable coverage of  .925, . 975 . 

  



 

ESTIMATION OF CORRELATION CONFIDENCE INTERVALS VIA THE 

BOOTSTRAP: NON NORMAL DISTRIBUTIONS  

 

16 

 

 

Figure 5. Distribution of 95% CI coverage for non-symmetric with non-
symmetric distribution pairings by sample size of 200 300− . Fisher 

z-transformation (FSH), percentile bootstrap (PB), bias-corrected and 
accelerated bootstrap (BCa). Bootstrap methods (PB and BCa) were based 
on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are 

at the acceptable coverage of  .925, . 975 . 
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Figure 6. Distribution of 95% CI coverage for non-symmetric with non-
symmetric distribution pairings by sample size of 350 400− . Fisher 

z-transformation (FSH), percentile bootstrap (PB), bias-corrected and 
accelerated bootstrap (BCa). Bootstrap methods (PB and BCa) were based 
on 2,000 bootstrap samples. The dashed line is at .95 and the solid lines are 

at the acceptable coverage of  .925, . 975 . 

 

 

4. Conclusion 

Developing and researching correlation CIs has been a challenge. Much of this 

challenge stems from the mutable nature of the distribution for the correlation. 

Additionally, further complications may arise from the distribution of each variable 

in the correlation. Multiple studies in the past have attempted to determine how 

robust the correlation is to these conditions but have yielded mixed results (Berry & 

Mielke, 2000; Lunneborg, 1985; Padilla & Veprinsky, 2012, 2014; Rasmussen, 

1987; Zeller & Levine, 1974). To address this discrepancy, the goal of the current 

study was to expand upon previous research by exploring the granularity of multiple 

sample sizes, correlation magnitudes, and distribution pairings to determine at what 

point a correlation CI would no longer be stable. This is key for applied research 

where it is essential to recognize which CI will yield optimal results. One example is 

the call to use effect sizes to help with replication concerns in the behavioral/social 

sciences (Collaboration, 2015). In such cases, providing a CI benefits applied 

research by providing precision information about the effect size (e.g., the 
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correlation). Regardless, the current study has some findings consistent with 

previous research and further expands on qualities that were not previously explored. 

The current study had similar findings with the study conducted by Bishara and 

Hittner (2017) with regards to the Spearman and RIN CIs. The two CIs had 

consistently good coverage probability across all conditions for both studies. 

However, caution is advised when using the Spearman and RIN CIs as they both use 

irreversible transformations of the correlation. As such, some reservation should be 

used when using and interpreting the Spearman and RIN CIs. 

The current study also shared similar findings to Bishara and Hittner (2017) with 

regards to the Fisher z-transformation CI. However, those findings were not 

discussed in detail in their research. Generally, the Fisher z-transformation CI had 

excellent coverage probability so long as one of the paired variables was normal. If 

this was not the case, the coverage probability performance broke down. This 

indicates that the Fisher z-transformation CI is sensitive to non-normality. In the 

present study, this is most apparent when a distribution had skewness 1.41 . The 

sensitivity to skew is also made apparent by noticing that the correlation sampling 

distribution becomes more skewed the closer the correlation gets to one or negative 

one (see Figure 1). It is also worth noting that in these cases, increases in sample size 

did not alleviate the situation but instead made it worse. It is therefore unwise to use 

the Fisher z-transformation CI if the pair of correlated variables are non-normal. 

More nuance into the qualities of the PB and BCa CIs was also found. As it stands, 

the PB and BCa CIs have issues maintaining acceptable coverage when both 

variables are non-normal and when sample sizes are small. However, the PB was 

shown to have acceptable coverage when the paired variables had skewness 2.83  

and when sample size was 200n  . In addition, the BCa was shown to have 

acceptable coverage when the paired variables had skewness 2  and when sample 

size was 200n  . This quality was not captured by Bishara and Hittner’s (2017) 

study as 160n =  was the largest sample size they investigated. Additionally, the 

required sample size for acceptable coverage is lowered to 100n   if one of the 

paired variables is normal. This is also consistent regardless of correlation 

magnitude. These finding agree with previous research that suggest that the bootstrap 

works better with increased sample size (Rasmussen, 1987). Even so, it is worth 

noting that the BCa CI performed better than the PB CI when sample sizes were 

smaller, but the PB CI outperformed the BCa CI as sample sizes were larger. 

Despite the findings gathered in the current study, there are still refinements that 

could be made to further advance the literature. Like the Bishara and Hittner (2017) 

study, the current study had a condition where a normal variable was paired with 

another variable. In the current study, such pairings typically achieved acceptable 

coverage. In future research, it may be of interest to explore if using a non-normal 

symmetric variable paired with another variable will yield acceptable coverage. If 

this is the case, it would afford researchers more flexibility in utilizing bootstrap CIs. 

It may also be of interest to combine the bootstrap with the Fisher z-transformation. 
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The Fisher z-transformation CI had excellent coverage performance when at least 

one variable was normal. Additionally, increased sample size tended to improve 

coverage performance for the bootstrap CIs. Combining these properties of the 

Fisher z-transformation and bootstrap may yield CIs that have acceptable coverage 

performance even when both paired variables are highly skewed (i.e., 

skewness 1.41 ). 

Further improvements can be made by expanding the pool of conditions explored. 

Given that the distribution of the correlation becomes more skewed as it gets closer 

to positive or negative one (see Figure 1), it may be fruitful to investigate the 

bootstrap CI coverage when the correlation is greater than .50 (i.e., .50  ). Also, 

the bootstrap CIs generally had acceptable coverage when 200n =  with improved 

performance as sample size increased. Therefore, it may be of interest to explore 

when exactly coverage is maximized (i.e., reaches a point of diminishing returns) 

and how larger sample sizes impact the correlation when it is greater than .50. As 

such, further exploration of the bootstrap may yield more promising results. 

In summary, the correlation CIs investigated in the current study generally had 

acceptable coverage probability performance but there are some considerations to 

keep in my mind. The RIN and Spearman CIs both had consistently good 

performance across all conditions but risk misinterpretation as they involve 

irreversible transformations of the correlation; which is not an issue for the other CIs. 

The Fisher z-transformation CI had excellent performance when at least one of the 

paired variables was normal regardless of the sample size investigated. However, the 

performance of the Fisher z-transformation CI was shown to break down when the 

paired variables had skewness 1.41  and increasing the sample size made the 

performance worse. The PB was shown to have acceptable coverage when the paired 

variables had skewness 2.83  and when sample size was 200n  . The BCa was 

shown to have acceptable coverage when the paired variables had skewness 2  and 

when sample size was 200n  . The sample size needed for acceptable coverage for 

the PB CI and BCa CI reduced to 100n   each if one of the paired variables was 

normal. Additionally, the BCa CI had better performance than the PB CI when 

sample sizes were smaller and the PB CI had better performance than the BCa CI 

when sample sizes were larger. Given these findings, one can confidently use the 

Fisher z-transformation CI with 20n   in the following two situations: when one of 

the paired variables is normal or if the paired variables have skewness .848 . If the 

paired variables are non-normal (i.e., skewness .848 ), the PB and BCa CIs generally 

performed well with 200n  , but the PB is recommended as it had better 

performance for more extreme non-normal paired variables (i.e., skewness 2 ). 
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