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Beta-Normal Distribution: Bimodality Properties and Application 
 

          Felix Famoye                                  Carl Lee                                   Nicholas Eugene 
 Department of Mathematics            Department of Mathematics           Computer Science & Mathematics 
 Central Michigan University           Central Michigan University                   Coppin State College 

 
 
The beta-normal distribution is characterized by four parameters that jointly describe the location, the 
scale and the shape properties. The beta-normal distribution can be unimodal or bimodal. This paper 
studies the bimodality properties of the beta-normal distribution. The region of bimodality in the 
parameter space is obtained. The beta-normal distribution is applied to fit a numerical bimodal data set. 
The beta-normal fits are compared with the fits of mixture-normal distribution through simulation. 
 
Key words: Bimodal region, percentiles, curve estimation, egg size distribution 
 
 

Introduction 
 

Bimodal distributions occur in many 
areas of science. Withington et al. (2000), in 
their study of cardiopulmonary bypass in infants 
showed that plasma vecuronium and vecuronium 
clearance requirements have bimodal 
distributions. They concluded that their findings 
on bimodal distributions for plasma vecuronium 
and vecuronium clearance requirements 
highlight the need for individual monitoring of 
neuromuscular blockade. Espinoza et al. (2001) 
discussed the importance of bimodal 
distributions in the study of size distribution of 
metals in aerosols. Bimodal distributions also 
occur in the study of genetic diversity (Freeland 
et al., 2000), in the study of agricultural farm 
size distribution (Wolf & Sumner, 2001), in the 
study of atmospheric pressure (Zangvil et al., 
2001), and in the study of anabolic steroids on 
animals (Isaacson, 2000). 
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 Let ( )F x  be the cumulative distribution 
function (CDF) of a random variable X. The 
cumulative distribution function for a 
generalized class of distributions for the random 
variable X can be defined as the logit of the beta 
random variable given by 
 

( ) 1 1
0

 
( )( ) (1 ) ,  0 , .
( ) ( )

F xG x t t dtα βα β α βα β
− −Γ += − < <∞∫Γ Γ

 (1.1) 
 
Eugene et al. (2002) considered ( )F x  as the 
CDF of the normal distribution with parameters 
µ and σ. Thus, the random variable X has the 
beta-normal distribution with probability density 
function (pdf) 
 

1 1
1( )( ) ( ) 1 ( ) ( )

( ) ( )
x x xg x

α βµ µ µσ
σ σ σ

α β φα β
− −

−− − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

Γ += Φ −Φ
Γ Γ

    (1.2) 
 

where 
x µφ

σ
−⎛ ⎞

⎜ ⎟
⎝ ⎠

 is the normal pdf and 

x µ
σ
−⎛ ⎞Φ ⎜ ⎟

⎝ ⎠
 is the normal CDF. We denote the 

beta-normal distribution with parameters α, β, µ, 

and σ as BN (α, β, µ, σ). 
 The distribution in (1.2) may be 
symmetric, skewed to the left, or skewed to the 
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right. The distribution may be unimodal or 
bimodal. Eugene et al. (2002) discussed the 
shape properties of the unimodal beta-normal 
distribution. Furthermore, they considered the 
estimation of its parameters by the method of 
maximum likelihood. 

In the analysis of bimodal data, a 
mixture of two normal densities is often used as 
a model (e.g., Cobb et al., 1983). The mixture of 
normal distribution is used as a model to analyze 
bimodal data because the mixture of normal 
densities can take on bimodal shapes depending 
on the parameters of the distribution. 
Eisenberger (1964) showed how the parameters 
of a mixture of normal distributions determine 
its shape. When a mixture assumption is not 
required or justified the beta-normal distribution 
can serve as a model to analyze data since only 
one distribution has to be used and one less 
parameter to estimate. 

In the rest of the paper, we provide some 
bimodality properties of the beta-normal 
distribution. We obtain the region of bimodality 
in the parameter space. We also illustrate the 
application of beta-normal distribution to a 
numerical data set that exhibits two modes and 
compare the fit with mixture-normal 
distribution. A simulation study is conducted to 
compare the performance between beta-normal 
and mixture-normal distributions in fitting 
bimodal data. 
 
Bimodality Properties 

In this section, some results on the 
bimodality properties of beta-normal distribution 
are obtained. 
 
Fact: A mode of the ( ,  ,  ,  )BN α β µ σ  is any 
point 0 0( ,  )x x α β=  that satisfies 
 

{ }
0 0

0 0 0 0

( 1)
 

( ) ( )
2 .

1 ( ) ( )[1 ( )]

x x
x x x x

µ µασ σ
µ µ µ

σ σ σ

σφ φ σ
α β µ

− −−
= − − −− − + +

−Φ Φ −Φ
                                                                      (2.1) 
 
Proof: Differentiating ( ,  ,  ,  )BN α β µ σ  in 
(1.2) with respect to x, setting it equal to zero, 
and solving for x gives the result in (2.1). 
 

Corollary 1: If α = β and one mode of 
( ,  ,  ,  )BN α β µ σ  is at 0x , then the other mode 

is at the point 02 xµ− . 
 
Proof: If ( ,  ,  ,  )BN α β µ σ  is unimodal, then 

the only mode occurs at the point 0x = µ. For 
bimodal case, we need to show that if we replace 

0x  with 02 xµ− , then equation (2.1) remains 
the same. When α β= , equation (2.1) becomes 
 

{ }
0

0
0 0 0

1 2  
( )( 1)

( ) .
( )[1 ( )]

x
xx x x

µ
µσ

µ µ σ
σ σ

σφ α
µ

−
−= −− −

−
Φ +

Φ −Φ

        (2.2) 
 
If 0x  in (2.2) is replaced with 02 xµ − , we 
obtain 
 

{ }
0

0
0 0 0

1 2
( )( 1)

2 ( )
( )[1 ( )]

x
xx x x

µ
µσ

µ µ σ
σ σ

σφ α
µ µ

−
−= −− −

−
− Φ +

Φ −Φ

          (2.3) 
 

By using 0 0x xµ µφ φ
σ σ
− −⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 and 

0 01x xµ µ
σ σ
− −⎛ ⎞ ⎛ ⎞Φ = − Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 in (2.3) and on 

simplification, we get the result in (2.2). 
 
Corollary 2: If ( ,  ,  ,  )BN α β µ σ  has a mode at 

0x , then ( ,  ,  ,  )BN β α µ σ  has a mode at 

02 xµ− . 
 
Proof: We need to show that if we replace α 

with β, and 02 xµ−  with 0x , equation (2.1) 
remains the same. Equation (2.1) can be written 
as 
 

{ }
0

0
0 0 0

 
( )

(2 ) ( ) ( 1) .
( )[1 ( )]

x
xx x x

µ
µσ

µ µ σ
σ σ

σφ
α β α µ

−
−= +− − − − Φ + −

Φ −Φ

 (2.4) 
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If 0x  is replaced with 02 xµ −  and α is replaced 

with β in (2.4), using 0 0x xµ µφ φ
σ σ
− −⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

and 0 01x xµ µ
σ σ
− −⎛ ⎞ ⎛ ⎞Φ = − Φ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
, and on 

simplification, we obtain the result in (2.4). 
 
Corollary 3: The modal point 0( ,  )x α β  is an 

increasing function of α and a decreasing 

function of β. 
 
Proof: Differentiating the result in (2.1) with 
respect to α and β gives 
 

0
0

0

( )( , ) 0
( )

x
x

x

µ
σ
µ

σ

σφα β
α

−

−
∂ = >∂ Φ

 

 
and 

0
0

0

( )( , ) 0
1 ( )

x
x

x

µ
σ
µ

σ

σφα β
β

−

−
−∂ = <∂ −Φ

. 

 

Hence 0( , )x α β  is an increasing function of α 

and a decreasing function of β. 
  
 Eugene et al. (2002) showed that the 
beta-normal distribution is symmetric about µ 
when α = β. From this result and corollary 3, the 
modal value is greater than µ if α > β. Also, the 
modal value is less than µ if α < β. The beta-
normal distribution has a very distinct property 
in that it can be used to describe both bimodal 
and unimodal data. 
 
Region of Bimodality 

The beta-normal distribution becomes 
bimodal for certain values of the parameters α 
and β, and the analytical solution of α and β , 
where the distribution becomes bimodal, cannot 
be solved algebraically. A numerical solution is 
obtained, however, by solving the number of 
roots of the derivative of BN(α, β, µ, σ ). Table 
1 shows a grid of values where the distribution 
is bimodal. The “2” in Table 1 indicates that the 
beta-normal distribution has two turning points 
which implies that the distribution is bimodal 
and the “1” indicates that the beta-normal 
distribution has one turning point which implies 
that the distribution is unimodal. 
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Table 1. Number of turning points of ( ,  ,  0,  1)BN α β  for various values of α and β 
 

Beta 
Alpha 

.01 
 

.02 
 

.03 
 

.04 
 

.05
 

.06
 

.07
 

.08
 

.09
 

.10
 

.11
 

.12
 

.13
 

.14
 

.15
 

.16
 

.17 
 

.18 
 

.19 
 

.02 
 

.21
 

.22
 

.01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.02 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.03 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.04 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.05 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.06 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.07 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1

.08 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

.09 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1
.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

.11 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

.12 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1

.13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

.14 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

.15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

.16 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1

.17 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1

.18 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 1

.19 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 1 1
.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1

.21 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1

.22 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.23 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.24 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

.26 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 
Note: “2” indicates where bimodality occurs and “1” indicates where unimodality occurs 
 
 Numerically, the largest value of α or β that gives bimodal property is approximately 0.214. 
Figure 1 shows a plot of the boundary region of α and β values where BN ( α, β, 0,1) is bimodal. 
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Figure 1. Plot of bimodal region for beta-normal distribution BN ( α, β, 0, 1) 
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Corollary 4: The bimodal property of BN (α, β, 

µ, σ) is independent of the parameters µ and σ. 
 
Proof: The mode(s) of ( ,  ,  ,  )BN α β µ σ  is at 
the point 0 0( ,  )x x α β=  given in (2.1). On re-

writing (2.1), one obtains (2.4). On taking the µ 
on the right hand side of (2.4) to the left hand 
side, dividing through by σ, and replacing 

0( ) /x µ σ−  by 0z , one obtains 
 

{ }0
0 0

0 0

( )
(2 ) ( ) ( 1)

( )[1 ( )]
z

z z
z z

= − − Φ + −
Φ − Φ

φ
α β α

          (2.5) 
 
which is independent of parameters µ and σ. 

In corollary 4, we showed that the 
bimodal property of ( ,  ,  ,  )BN α β µ σ  is robust 

against the parameters µ and σ. In other words, 

regardless of the values of µ and σ, the α and β 
range for the bimodality of ( ,  ,  ,  )BN α β µ σ  
remains the same. To get more accurate values 

of the pairs of (α, β) values that lie on the 
boundary of the region where the beta-normal 
distribution becomes bimodal, regression lines 
were drawn to estimate each boundary. The 
regression line that traced the boundaries of 
Figure 1 was approximated using curve 
estimation. For the values of α in the interval 
[0.01, 0.1943), the values of β at the upper 
boundary in Figure 1 were estimated by 

2ˆ 0.8591 0.0453 0.1603β α α= + + . For α in 

the interval [0.1943, 0.214] we estimated β 

values by 2ˆ 4.4113 1.1966 0.2675β α α= − + . 

For the values of α in the interval [0.16, 0.1785), 

the values of β at the lower boundary were 
estimated by 
 

2ˆ 116.15 45.4657 4.2908β α α= − + − . 
 
For α in the interval [0.1785, 0.214] we obtained 
the equation  
 

2ˆ 41.972 18.9913 1.9281β α α= − + −  
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to estimate the value of β. 

If ( ,  ,  ,  )BN α β µ σ  is unimodal, the 
distribution is skewed to the right whenever α > 
β and it is skewed to the left whenever α < β. If 

( ,  ,  ,  )BN α β µ σ  is bimodal, the distribution is 
skewed to the right when α < β and it is skewed 
to the left when α > β. Thus, the beta-normal 
distribution provides great flexibility in 
modeling symmetric, skewed and bimodal 
distributions. 
 
Percentile of beta-normal distribution 

Let ( )CBN t  denote the cumulative 
probability of the beta-normal distribution up to 
a point t, which is given by 
 

1 1 1  .

( )( )
( ) ( )

[ ( )] [1 ( )] ( )
t

x x x dx

CBN t

α βµ µ µσ
σ σ σ

α β
α β

φ− − −

−∞

− − −

Γ += Γ Γ

Φ −Φ∫

 (2.6) 

 
The percentiles in Table 2 are computed by 
solving (2.6) for t such that ( )CBN t  takes the 
values 0.50, 0.75, 0.90, 0.95, and 0.99. 

When 1β = , the result in (2.6) reduces 
to  

1 1 [ ] .

( 1)( )  
( )

[ ( )] ( ) ( )
t

x x tdx

CBN t

α αµ µ µσσ σ σ

α
α

φ− −

−∞

− − −=

Γ += Γ

Φ Φ∫
 

 
 When α = 1, (2.6) becomes 
 

1 1 .

( 1)( )  
( )

[1 ( )] ( ) 1 [1 ( )]
t x x t

CBN t

dxβ βµ µ µσ
σ σ σ

β
β

φ− −

−∞

− − −

Γ += Γ

−Φ = − −Φ∫

 

 
Notice that if we compare the values of 

the mean of the unimodal beta-normal 
distribution with its median in Table 2, the mean 
of the beta-normal distribution is always greater 
than its median whenever α > β. When the 
distribution is bimodal the mean of the beta-
normal distribution is less than its median 
whenever α > β. The percentiles in Table 2 are 
clearly increasing functions of α and decreasing 
functions of β. A graph of α versus the median 
(50th percentile) is plotted for β  = 0.1, 0.5, 1, 
and 10 in Figure 2(a). Similar graphs for the 75th 
and 90th percentiles show the same pattern in 
Figure 2(b) and Figure 2(c) respectively. 
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Table 2. Mean and percentiles of BN(α, β, 0,1) for different values of α and β 
 
α  β Mean 0.50 0.75 0.90 0.95 0.99 
  
0.05 0.05 0.0000 0.0000 4.7784 7.6544 9.2705 12.2382 
  0.10 -2.2859 -2.7789 1.6446 4.3972 5.7191 8.0155 
  0.50 -4.6527 -4.4917 -2.2674 -0.3400 0.7053 2.2795 
  1.00 -5.0344 -4.4630 -2.2795 -1.1671 -0.3625 0.9074 
  5.00 -5.5403 -5.1608 -3.3464 -2.1275 -1.5810 -0.9765 
  10.00 -5.7016 -5.2981 -3.5470 -2.4100 -1.9186 -1.2382 
 
0.10 0.05 2.2859 2.7789 5.8402 8.3706 9.8727 12.7024 
  0.10 0.0000 0.0000 3.1398 5.2216 6.3834 8.5077 
  0.50 -2.7633 -2.7086 -0.9199 0.6213 1.4295 2.7266 
  1.00 -3.2639 -3.0973 -1.5865 -0.3889 0.2501 1.3069 
  5.00 -3.9268 -3.6519 2.4222 -1.5832 -1.1778 -0.5432 
  10.00 -4.1331 -3.8377 -2.6793 -1.9194 -1.5638 -1.0233 
 
0.50 0.05 4.6527 4.4917 6.8631 9.1215 10.5189 13.2127 
  0.10 2.7633 2.7086 4.5059 6.1677 7.1840 9.1287 
  0.50 0.0000 0.0000 1.0518 1.9691 2.5031 3.4843 
  1.00 -0.7043 -0.6745 0.1573 0.8779 1.2959 2.0558 
  5.00 -1.7558 -1.6779 -1.1274 -0.6831 -0.4351 0.0028 
  10.00 -2.0809 -1.9945 -1.5095 -1.1289 -0.9204 -0.5588 
 
1.00 0.05 5.0344 4.7630 7.0477 9.2623 10.6416 13.3109 
  0.10 3.2639 3.0973 4.7630 6.3613 7.3520 9.2623 
  0.50 0.7043 0.6745 1.5341 2.3263 2.8070 3.7190 
  1.00 0.0000 0.0000 0.6745 1.2816 1.6449 2.3264 
  5.00 -1.1630 -1.1290 -0.6994 -0.3344 -0.1238 0.2582 
  10.00 -1.5388 -1.4988 -1.1290 -0.8215 -0.6468 -0.3344 
 
5.00 0.05 5.5403 5.1608 7.3275 9.4786 10.8308 13.4631 
  0.10 3.9268 3.6519 5.1547 6.6640 7.6167 9.4751 
  0.50 1.7558 1.6779 2.3038 2.9367 3.3438 4.1515 
  1.00 1.1630 1.1290 1.5900 2.0365 2.3187 2.8769 
  5.00 0.0000 0.0000 0.2742 0.5216 0.6702 0.9503 
  10.00 -0.4556 -0.4517 -0.2233 -0.0201 0.1004 0.3251 
 
10.0 0.05 5.7016 5.2981 7.4264 9.5558 10.8986 13.5179 
  0.10 4.1331 3.8377 5.2916 6.7719 7.7117 9.5521 
  0.50 2.0809 1.9945 2.5625 3.1526 3.5380 4.3130 
  1.00 1.5388 1.4988 1.9055 2.3087 2.5679 3.0889 
  5.00 0.4556 0.4517 0.6836 0.8960 1.0248 1.2706 
  10.00 0.0000 0.0000 0.1915 0.3640 0.4075 0.6621 
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Figure 2(a). Plot of 50th percentile versus α for some β values 
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Figure 2(b). Plot of 75th percentile versus α for some β values 
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Figure 2(c). Plot of 90th Percentile versus α for some β values 
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The percentiles increase very rapidly 

when α and β are less than 0.2. This rate of 
increase is due to the fact that the variation of 
the beta-normal distribution increases when α or 
β decreases. When α or β gets closer to 0.2, this 
variation decreases. 
 
Application to Bimodal Data 
Egg Size Distribution 

Sewell and Young (1997) studied the 
egg size distributions of echinoderm. In marine 
invertebrates, a species produces either many 
small eggs with planktotrophic development or 
fewer larger eggs with lecithotrophic 
development, Thorson (1950). The models 
developed by Vance (1973a, 1973b) viewed 
planktotrophy and lecithotrophy as extreme 
forms of larvae development. Subsequent 
modifications  of  these   models (see  references 

 
 

 
in Sewell and Young, 1997) predict that eggs of 
marine invertebrates have bimodal distributions. 
Christiansen and Fenchel (1979) reported a 
bimodal distribution of egg sizes within 
prosobranchs. Emlet et al. (1987) described 
bimodal distributions in asteroid and echinoid 
echinoderms. 
 For echinoids and asteroids (see Tables 
2 and 7 of Emlet et al., 1987), the egg diameters 
for species with planktotrophic larvae have less 
variation than species with lecithotrophic larvae 
(see Table 3). Because of this variation, the egg 
diameters appear to have one mode. However, 
with logarithmic transformation, the effect of 
large eggs in lecithotrophic species is reduced 
and the distribution of eggs becomes bimodal 
for both echinoids and asteroids. The 
transformation brings the modes nearer to each 
other and possibly makes their existence easier 
to detect. 
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Table 3. Descriptive statistics for asteroids species data 
 

 
Types 

 
n 

 Egg Diameter 
 Mean SD 

 Log Egg Diameter 
 Mean   SD 

Planktotrophic 
Lecithotrophic 
Brooding 

35 
36 
17 

 153.11 34.26 
 828.28 304.20 
 1496.47 1066.58 

 5.01 0.23 
 6.64 0.42 
 7.05 0.77 

All Types 88  688.83 705.59  6.07 0.99 
 

 
Sewell and Young (1997) reported that 

many of the early studies used data sets that 
were not appropriate for a valid test of the egg 
size distribution patterns. They defined three 
criteria for appropriate data sets. The most 
widely cited example of bimodality in egg sizes 
is the data set compiled by Emlet et al. (1987). 
This data set satisfied the three criteria defined 
by Sewell and Young. 

Sewell and Young (1997) reexamined 
the asteroid and echinoid egg size data in Emlet 
et al. (1987) with some additional data from 
more recent study. The additional data used by 
Sewell and Young were not available in their 
published article. 

In this article, we have applied the beta-
normal distribution to fit the logarithm of the 
egg diameters of the asteroids data in Emlet et 
al. (1987). The valid data consists of 88 asteroid 
species divided into three types consisting of 35 
planktotrophic larvae, 36 lecithotrophic larvae, 
and 17 brooding larvae. These species are from a 
variety of habitats. 

The maximum likelihood estimation 
method is used for parameter estimation. Eugene 
et al. (2002) gave the detailed discussion of this 
estimation technique. The parameter estimates 
for beta-normal distribution are α̂  = 0.0129, β̂  
= 0.0070, µ̂  = 5.7466, and σ̂  = 0.0675. The 

estimates for α and β fall in the bimodal region 
in Figure 1. The log-likelihood value is –109.48. 
By using the result in (2.1), the two modes for  
 
 

 
 
the beta-normal distribution are at the points 
(log of egg diameters) 5.16 and 6.55. 

A mixture of two normal distributions 
(Johnson et al. (1994) page 164) with parameters 

1µ , 2µ , 1σ , 2σ , and p is fitted to the asteroids 
data. The maximum likelihood estimates for the 
parameters are 1µ̂  = 5.0014, 2µ̂  = 6.7462, 1σ̂  = 
0.2232, 2σ̂  = 0.6056, and p̂  = 0.3875. The log-
likelihood value for the mixture-normal is –
101.31. A histogram of the data with the beta-
normal and mixture-normal distributions 
superimposed is presented in Figure 3. 

The Kolmogorov-Smirnov test (see 
DeGroot & Schervish, 2002, p. 568) is used to 
compare the goodness of fit of beta-normal and 
mixture-normal distributions to the data. In 
Figure 4, the empirical CDF, the beta-normal 
CDF, and the mixture-normal CDF for the data 
are presented. The absolute maximum difference 
between the empirical cumulative distribution 
function and the beta-normal cumulative 
distribution function is nD∗  = 0.1233. 

This provides a test statistic nnD∗  = 
1.1570 with a significance probability of 0.1370. 
The corresponding results for the mixture-
normal distribution are nD∗  = 0.0654, nnD∗  = 
0.6135 with a p-value of 0.8459. Thus, both the 
beta-normal and mixture-normal distributions 
provide an adequate fit to the data. However, the 
mixture-normal appears to provide a better fit. 
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Figure 3. Histogram of asteroids data with beta-normal and mixture-normal superimposed 
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In examining the histogram for the log 

of egg diameter in Figure 3, both modes appear 
to have come from two symmetric distributions. 
This may explain in part why mixture-normal 
distribution provides a better fit than the beta-
normal. Another reason is that mixture-normal 
has five parameters whereas the beta-normal has 
four parameters. 
 
Test of Bimodality for the Egg Size Distribution 
Data 

Schilling et al. (2002) derived a 
condition for the unimodality of mixtures of two 
normal distributions with unequal variances. If 

2
1σ  and  2

2σ  are  the  variances  of  two  normal  
 
 
 

 
 

distributions with means 1µ  and 2µ , the mixture 
is unimodal for any mixture proportion p if and 
only if [ ]2 1 1 2( )S rµ µ σ σ− ≤ + , where 

2 2
1 2/r σ σ=  and 

 

( ) ( )1/ 22 3 2

( )

2 3 3 2 2(1 ) / (1 ) .

S r

r r r r r r r

=

− + + − + − + +
 

 
From the fit of mixture-normal to the asteroids 
data, the parameter estimates gave 

2 1ˆ ˆµ µ− = 1.7 and [ ]1 2ˆ ˆ( )S r σ σ+  = 0.56. 
Thus, there is evidence that the parameter values 
do not lie in the region where the mixture is 
unimodal for any value of p. 
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Figure 4. Empirical, beta-normal, and mixture-normal CDF for asteroids data 
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A Comparison Between Beta-Normal and 
Mixture-Normal Distributions 

 
A simulation study is conducted to 

compare the performance between beta-normal 
and mixture-normal for bimodal data. One 
hundred simulations, each with sample size n = 
400, are conducted. In each simulation, data are 
generated from two Weibull distributions, W 
(λ=2, β=5) and W (λ=2, β=10), where λ and β 
are the scale and shape parameters respectively. 
Bimodal data are obtained from mixing the data 
from the two Weibull distributions in the form 
 

[ ] [ ]1 1(2,  5) 10 (1 ) (2,  10)p W p W+ + − . (5.1) 
 
The value 10 that is added to the first quantity in 
(5.1) is used to adjust the location of the modes. 
The different mixing proportions 1p  considered 
in the simulation study are 0.2, 0.3, 0.4, and 0.5. 

A variety of other types of mixtures are 
also considered and the results are similar. Some 
of the simulations failed due to numerical  

 
 
 

 
 
 
 
difficulty in estimating the beta-normal 
parameters using S-PLUS on personal computer. 
The main difficulty is that the optimization 
algorithm in S-PLUS failed to converge. There 
is a need for better algorithms to solve this 
numerical difficulty and this will be taken up in 
future research. 

We wish to compare the mixture-normal 
(MN) density ( )f x  and the beta-normal (BN) 
density ( )g x . Given these two densities, we test 
the null hypothesis 
 

0 :H  MN and BN are equivalent  
against the alternative hypothesis                 (5.2) 
 

:fH  MN is better than BN, or :gH  BN is 
better than MN.                                             (5.3) 
 
To test the null hypothesis in (5.2), we use the 
likelihood ratio test proposed by Vuong (1989). 
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Vuong’s Likelihood Ratio Statistic 
 
The likelihood ratio statistic for testing 

0H  in (5.2) is 
 

*
1

( )log
( )

n
i

i i

f xL
g x=

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
∑ .             (5.4) 

 
Because the mixture-normal and the beta-normal 
densities are non-nested, the statistic in (5.4) is 
not chi-square distributed. Vuong (1989) used 
the Kullback-Liebler Information Criterion to 
discriminate between two non-nested models 
and proposed an unadjusted test statistic 
 

*
* ˆ

LT
nω

= ,                     (5.5) 

 
where 
 

2

2

1

2

1

1 ( )log
( )

1 ( )log
( )

n
i

i i

n
i

i i

f x
n g x

f x
n g x

=

=

⎡ ⎤⎛ ⎞
= ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
− ⎢ ⎥⎜ ⎟

⎝ ⎠⎣ ⎦

∑

∑

ω

, 

 
is an estimate of the variance of * /L n . 

When comparing the goodness of fit for 
two non-nested parametric distributions, the 
number of parameters may not be the same. To 
account for the different number of parameters, 
Vuong proposed two adjusted test statistics: 
 

* 1
1

( , )
ˆ

L K f g
T

nω
−

= , and * 2
2

( , )
ˆ

L K f g
T

nω
−

= , 

 
where 1 ( , )K f g p q= −  is a correction factor 
for only the number of parameters and 

2 ( , ) ln( )[( ) / 2]K f g n p q= −  is a correction 
factor for the number of parameters and the 
sample size n. In the test statistic, p is the  
 
 
 
 

number of parameters in ( )f x  and q is the 
number of parameters in ( )g x . In this case p = 
5, q = 4, and n = 400. We apply both adjusted 
statistics 1T  and 2T  in our comparison. iT  (i = 1, 
2) is approximately standard normal distributed 
under the null hypothesis that the two densities 
are equivalent (Vuong, 1989). 
 At significant level α, one compares iT  with 

/ 2zα . If / 2iT zα< − , 0H  is rejected in favor of 

gH , BN is better than MN. If / 2iT zα> , 0H  is 

rejected in favor of fH , MN is better than BN. 

However, if / 2| |iT zα≤ , 0H  is not rejected. 
 Thus, we do not have sufficient evidence to 
say that both densities are not equivalent. For 
each generated data, the test statistics 1T  and 2T  
are computed for testing 0H . From the 100 
simulations, we record the number of times the 
BN density is better than the MN density, the 
number of times the MN density is better than 
the BN density and the number of times both 
densities are equivalent. 
 
Simulation Results and Discussion 

Table 4 summarizes the Vuong’s 1T  and 

2T  goodness of fit statistics from 100 simulated 
data sets. The comparison is conducted at 10% 
and 5% level of significance. From Table 4, both 
beta-normal and mixture-normal distributions fit 
the mixtures of Weibull distribution data equally 
well for most cases. In general, beta-normal fits 
better than the mixture-normal, especially when 
using the adjusted statistic 2T . 

Figures 5 (A – D) give the histograms 
and the empirical CDF’s of some simulated data 
sets with n = 400 and the corresponding fitted 
distributions of beta-normal and mixture-normal. 
The fitted distributions shown in Figure 5 
indicate that both BN and MN fit these Weibull 
mixtures well. The histogram in Figure 5 (A) 
looks less like a bimodal distribution. The beta-
normal distribution fits the data as unimodal 
distribution, while the mixture-normal 
distribution fits this data as bimodal distribution. 
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As mentioned before, we encountered 

some numerical difficulties when using the S-
PLUS optimization routines to estimate the para- 

 
 

 
 

meters of beta-normal distributions. Further 
research to develop better estimation algorithms 
will be needed to address this numerical problem 
in the estimation of BN parameters. 

 
 
 
 

Table 4. Comparison between Beta-Normal and Mixture-Normal densities for Fitting 100 Simulated 
Mixtures of Weibull Distributions, [ ] [ ]1 1(2,  5) 10 (1 ) (2,  10)p W p W+ + − . 

 
 
 

 
 
α 

  
1p  = 0.2 

 1T  2T  

 
1p  = 0.3 

 1T  2T  

 
1p  = 0.4 

 1T  2T  

 
1p  = 0.5 

 1T  2T

 
0.10 
 

 
BN is better 

 
 0 7 

 
 9 52 
 

 
 16 55 
 

 
 1 9 
 

  
MN is better 
 

 
 6 2 
 

 
 0 0 
 

 
 0 0 
 

 
 1 0 
 

  
Both equivalent 
 

 
 94 91 
 

 
 91 48 
 

 
 84 45 
 

 
 98 91 
 

 
0.05 
 

 
BN is better 

 
 0 4 
 

 
 4 41 
 

 
 9 50 
 

 
 1 6 
 

  
MN is better 
 

 
 3 0 
 

 
 0 0 
 

 
 0 0 
 

 
 1 0 
 

  
Both equivalent 
 

 
 97 96 
 

 
 96 59 
 

 
 91 50 
 

 
 98 94 
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Figure 5. Histogram of Weibull mixture data with BN and MN superimposed; Empirical, BN and MN 
CDF for Weibull Mixture data 
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(B) Mixing proportion 1p  = 0.3 
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(C) Mixing proportion 1p  = 

0.4

0 5 10 15 20 25 30

0.
0

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Mixture of Weibull data

P
ro

po
rti

on

Beta-normal
Mixture-normal

Histogram of simulated data

 

Mixture of Weibull data

C
D

F

0 5 10 15 20 25

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Empirical
Beta-normal
Mixture-normal

 
 
 
 
 
 



BETA-NORMAL DISTRIBUTION 102

(D) Mixing proportion 1p  = 0.5 
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