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The estimation accuracy of estimators of finite population parameters in sample 

surveys can be enhanced by taking advantage of existing auxiliary information using 

the calibration approach. The present study developed the calibration estimators of 

population mean utilizing known auxiliary information. The properties of the 

recommended estimators have been studied. The performance of the suggested 

estimators has also been investigated with the help of a simulation study and 

compared with the estimators given by Clement [2] and Khare et al. [11].  

 

Keywords: Auxiliary variable, Calibration estimation, Mean, Mean Squared Error, 

Stratified sampling.  

 

  

1. Introduction 

The main interest in sampling is to obtain estimators of the population parameters 

which should be precise.  Additional information is used to acquire such estimators 

which is available in the form of auxiliary variables at the planning or at the design 

stage. The known auxiliary information is used in ratio and regression method of 

estimation to enhance the precision of estimators.  

The calibration approach used to develop estimators of various population 

parameters like population mean, total, proportion, etc. has gained popularity using 

the available auxiliary information since the early 1990’s. The calibration technique 

introduced by Deville and Sarndal [3] has turned into a relevant topic for adjusting 

weights in sample survey. They opted the calibration weights which minimize the 

given distance functions subject to calibration constraints associated with available 

auxiliary variables. A realistic fascination about this calibration estimation is to 

attain it computationally. Thus, there are many situations where the procedure of the 

calibration method was considered as an effective way to ameliorate the precision of 

the various estimator of the population parameters. 
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Several researchers have penned down various estimators for the population 

parameters under different sampling techniques using the calibration method. When 

population under consideration is heterogenous then stratified sampling is applied, 

by dividing the population into homogeneous sub groups called as strata. Tracy et al. 

[16], Koyuncu and Kadilar ([8], [9]), Nidhi et al. ([12], [13]), Koyuncu [10], Garg 

and Pachori ([4], [5], [6], [7]), Ozgul [14], Audu et al. [1], etc., have recommended 

calibration estimators of the population mean for stratified random sampling scheme 

using one or more auxiliary variables with different calibrated weights. Clement [2] 

and Khare et al. [11] suggested a modified separate ratio estimator of the finite 

population mean using calibration approach for stratified random sampling.  

Singh and Sedory [15] have suggested a two-step calibration estimator under 

probability proportional to size sampling scheme. In this paper, we present ratio-type 

calibration estimators by adjusting the proportionality of stratum mean of the 

auxiliary variable in case of stratified random sampling. We suggested two ratio-type 

calibration estimators using available information on the auxiliary variable. The 

biases and mean squared errors of the developed calibration estimators have been 

determined up to first order approximation. The simulation study has also been 

executed in R software on a real dataset for comparing the proposed estimators with 

other estimators.  

 

2. Calibration Estimation in Sample Survey 

The stratified random sampling technique is employed in case of heterogeneous 

population. In this sampling scheme we first divide the given population consisting 

of N units into C homogeneous strata of Nk units so that 
1

C

k

k

N N
=

= . Then sample of 

size nk is selected from each stratum applying simple random sampling without 

replacement (SRSWOR) technique such that  
1

C

k

k

n n
=

= . Let X denotes the available 

auxiliary variable which is positively correlated with the study variable Y. 

Clement [2] proposed a separate ratio calibration estimator in stratified sampling 

given as: 

1

ˆ
C

cl k k k

k

y R x
=

=                              (1) 

the calibrated weights were obtained subject to the following calibration constraint: 

1

C

k k

k

x X
=

 =                                 (2) 

Then calibration separate ratio estimator given by Clement [2] becomes 
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2

1

21 1

1

ˆ

ˆ ( )

C

k k k kC C
k

cl k k k k kC
k k

k k k

k

W q R x

y W R x X W x

W q x

=

= =

=

= + −


 


                  (3) 

where, qk is a constant. 

Khare et al. [11] proposed separate ratio calibration estimator for stratified sampling 

as: 

1

C
k

kh k k

k k

y
y X

x=

=                           (4) 

The calibrated weights were obtained subject to the calibration constraints 

1 1

C C

k k k k

k k

x W X
= =

 =             (5) 

and 

1

1
C

k

k

W
=

=                               (6) 

Then calibration separate ratio estimator given by Khare et al. [11] becomes 

1 1

ˆ
C C

k
kh k k k k

k kk

y
y W X X W x

x


= =

 
= + − 

 
                   (7) 

where 1 1 1 1

2

2

1 1 1

ˆ

C C C C
k

k k k k k k k k k k k k

k k k kk

C C C

k k k k k k k k

k k k

y
q W q W y X q W X q W x

x

q W q W x q W x

 = = = =

= = =

−

=
 

−  
 

   

  

                (8) 

 

3. Proposed Calibration Estimator in Stratified Sampling  

We propose two ratio-type calibration estimators by adjusting proportionality of 

calibrated mean to design mean of the auxiliary variable and obtain the calibration 

weights by minimizing the chi-square type distance measure satisfying calibration 

constraints using Lagrange’s method.  

The suggested ratio-type calibration estimator of finite population mean under 

stratified random sampling is stated as: 

1

C

p k Rk

k

y y
=

=                       (9) 
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where k
Rk k

k

y
y X

x
=   is the kth stratum ratio estimator. 

We consider two different sets of constraints to obtain the calibration weights given 

as follows: 

3.1 First Approach  

In this approach, we assume that the sum of the calibrated weights is equal to the 

sum of the    

 design weights. 

1 1

C C

k k

k k

W
= =

 =                     (10) 

where k
k

N
W

N
=  is the design weight of kth stratum. 

Assuming known population mean of the auxiliary variable X, we use another 

calibration constraint in such a way that the product of calibrated weight and sample 

mean of auxiliary variable in the kth stratum is proportional to the product of design 

weight and population mean of that auxiliary variable in the kth stratum, i.e.,  

k k k kx W X                     (11) 

this implies that 

k k k kx W X =     

where   is the constant of proportionality. 

After taking summation on both sides, it reduces to 

1

C

k k

k

x X
=

 =                   (12) 

The calibrated weights k are obtained by minimizing the following chi-square type 

distance function: 

2

1

( )C
k k

k k k

W

W q=

 −
                   (13) 

Using the method of Lagrange’s multiplier, we optimize the following function to 

obtain the calibration estimator: 

2

1 1 2

1 1 1 1

( )1

2

C C C C
k k

k k k k

k k k kk k

W
W x X

W q
  

= = = =

 −    
 = −  − −  −   

   
                (14) 

After differentiating 1  with respect to k and equating to zero, we obtain the 

calibrated weights given as: 
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1 2k k k k k k kW W q W q x  = + +                             (15) 

the values of Lagrange’s Multipliers 1 and 2 are determined as:  

1 1

1 2

2

1 1 1

.

C C

k k k k k

k k

C C C

k k k k k k k k

k k k

W x X W q x

W q W q x W q x



 = =

= = =

 
− 

 
=

 
−  
 

 

  

               (16) 

1 1

2 2

2

1 1 1

.

C C

k k k k

k k

C C C

k k k k k k k k

k k k

X W x W q

W q W q x W q x



 = =

= = =

 
− 

 
=

 
−  
 

 

  

                   (17) 

By substituting the calibrated weights in equation (9), we obtain the proposed 

estimator as: 

1 1

ˆ
C C

p k Rk p k k

k k

y W y X W x  

= =

 
= + − 

 
                  (18) 

i.e., ˆ ( )p Rst p sty y X x  = + −  

where 1 1 1 1

2

2

1 1 1

ˆ

C C C C

k k k k k Rk k k k k k Rk

k k k k
p

C C C

k k k k k k k k

k k k

W q W q x y W q x W q y

W q W q x W q x

 = = = =


= = =

−

=
 

−  
 

   

  

 

qk is the constant, we can choose different values of it to acquire the different forms 

of the suggested estimator. 

3.2 Second Approach 

Similarly, the first calibration constraint is defined based on the sums of the 

calibrated weights and design weights as: 

*

1 1

C C

k k

k k

W
= =

 =                     (19) 

Here we consider the product of calibrated weight and log of sample mean of 

auxiliary variable proportional to the product of design weight and log of population 

mean of that auxiliary variable in the kth stratum which is given as: 

* log logk k k kx W X                    (20) 

i.e., * log logk k k kx W X =  
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Taking summation on both sides, it will give the following calibration constraint: 

*

1 1

log log
C C

k k k k

k k

x W X
= =

 =                    (21) 

where   is the constant of proportionality. 

The weights *

k  are obtained by minimizing the following chi-square type distance 

function: 

* 2

1

( )C
k k

k k k

W

W q=

 −
                              (22) 

For obtaining the calibration estimator, we define the Lagrange’s function given as: 

* 2
* *

2 1 2

1 1 1 1 1

( )1
log log

2

C C C C C
k k

k k k k k k

k k k k kk k

W
W x W X

W q
  

= = = = =

 −    
 = −  − −  −   

   
        (23) 

The calibration weights can be obtained after differentiating equation (23) with 

respect  

to *

k  and equating to zero, which are given as: 

*

1 2k k k k k k kW W q W q x  = + +                  (24) 

where 

1 1 1

1 2

2

1 1 1

log log log

. (log ) log

C C C

k k k k k k k

k k k

C C C

k k k k k k k k

k k k

W x W X W q x

W q W q x W q x



 = = =

= = =

 
− 

 
=

 
−  
 

  

  

              (25) 

1 1 1

2 2

2

1 1 1

log log

. (log ) log

C C C

k k k k k k

k k k

C C C

k k k k k k k k

k k k

W X W x W q

W q W q x W q x



 = = =

= = =

 
− 

 
=

 
−  
 

  

  

              (26) 

After substituting the values from the equations (24), (25) and (26) in equation (9), 

the proposed calibration estimator will become 

1 1

ˆ log log
C C

p Rst p k k k k

k k

y y W X W x  

= =

 
= + − 

 
                (27) 

where 
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1

C

Rst k Rk

k

y W y
=

=  and 1 1 1 1

2

2

1 1 1

log log

ˆ

(log ) log

C C C C

k k k k Rk k k k k k k Rk

k k k k

p
C C C

k k k k k k k k

k k k

W q W q y x W q x W q y

W q W q x W q x

 = = = =



= = =

 
−  
 

=
 

−  
 

   

  

 

 

4. Properties of the Proposed Estimators 

The properties of the suggested estimators are derived under both cases considered in 

section 3 one by one. 

4.1 Bias and Mean Squared Error of py    

Let us first consider the calibration estimator py   obtained in equation (18) to study 

the properties of it. 

Let us define 

0(1 )Rsty Y= + , 1(1 )stx X= +  , 2
ˆ (1 )p p  = +   and 0 1 2( ) ( ) ( ) 0E E E =  =  =                     

(28)  

After substituting these values in equation (18), we obtain the proposed estimator as: 

0 2 1(1 ) (1 )[ (1 )]p py Y X X  = + + + − +                  (29) 

The bias of the developed estimator is  

0 2 1( ) ( ) [( (1 ) (1 )( (1 )) ]p p pBias y E y Y E Y X X Y   = − = + + + − + −               (30) 

By taking the expectation, we have 

ˆ( ) ( 1) cov( , )p p st pBias y X x    = − −                 (31) 

The mean squared error of the proposed estimator up to first order of approximation 

is  

2 2

0 2 1( ) ( ) [ ( )( )]p p p pMSE y E y Y E Y X X X     = − =  + +  − −                  (32) 

By taking the expectation and neglecting the higher order terms, we have 

2 2 2 2 ˆ( ) ( ) ( ) ( ) ( 1) ( ( )) 2 cov( , )

ˆ ˆ2( 1) (cov( , ) 2 cov( , ))

p Rst p st p p p Rst st

Rst p p st p

MSE y V y V x X V y x

X y x

    

   

    

  

= + + − + −

+ − −
    (33) 

The constant of proportionality   is obtained by equating the bias of the estimator 

given in equation (31) equal to zero which is given as:  
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ˆcov( , )
1

st p

p

x

X










= +                   (34) 

We can also obtain the constant of proportionality   by minimizing the mean 

squared error (MSE) of the recommended estimator given in equation (33) given as 

follows: 

2

ˆ ˆ2 cov( , ) cov( , )
1

ˆ( ( ))

p st p Rst p

p p

x y

X V

  


 

  

 

−
= +

+
                   (35) 

4.2 Bias and Mean Squared Error of 
py    

 Here we obtain the properties of the proposed estimator 
py   for which we define 

0(1 )Rsty Y= + , 1(1 )lst lx X= + , 2
ˆ (1 )p p  = +  and 0 1 2( ) ( ) ( ) 0E E E =  =  =                      

(36) 

where 
1 1

log log
C C

l k k lst k k

k k

X W X and x W x
= =

= =   

Using these notations in the proposed estimator, we get 

0 2 1(1 ) (1 )( (1 ))p p l ly Y X X  = + + + − +                (37) 

The bias of the suggested estimator  
py   is obtained as: 

ˆ( ) ( 1) cov( , )p p l lst pB y X x    = − −                            (38) 

The MSE up to first order of approximation can be derived for the proposed 

estimator as:  

2 2 2 2 ˆ( ) ( ) ( ) ( ) ( 1) ( ( )) 2 cov( , )

ˆ ˆ2( 1) ((cov( , ) 2 cov( , ))

p Rst p lst l p p p Rst lst

l Rst p p lst p

MSE y V y V x X V y x

X y x

    

   

    

  

= + + − + −

+ − −
(39)

           

Taking the bias of the estimator obtained in equation (38) equal to zero, the constant 

of proportionality c is obtained as: 

ˆcov( , )
1

lst p

p l

x

X










= +                    (40) 

By minimizing the MSE of the proposed estimator, the constant of proportionality 

can also be determined as: 

2

ˆ ˆ2 cov( , ) cov( , )
1

ˆ( ( ))

p lst p Rst p

l p p

x y

X V

  


 

  

 

−
= +

+
                 (41) 
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5. Simulation Study 

In the simulation study we compare the performance of our developed estimators 

with other estimators given by Clement [2] and Khare et al. [11]. We have used real 

data set from MU284 population given in Sarndal et al. (2003). Here the population 

has 284 units, which is divided into 8 strata of different sizes. The study variable Y 

considered here is RMT85 and the auxiliary variable X is ME84. We have generated 

25000 random samples of sizes 35, 40, 45 and 50 with the help of R software from 

each stratum using proportional allocation under SRSWOR. The percentage relative 

root mean squared error (%RRMSE) and percentage relative efficiency (%RE) are 

calculated to compare the proposed estimators using the following formulae: 

2
25000

1

1
% ( ) 100; , , ,

25000

i

i

y Y
RRMSE y X cl kh p p

Y


 

=

 −
 = = 

 
             (42) 

% ( ) 100; , ,cly
RE y kh p p

y




  =  =                    (43) 

We have obtained %RRMSE and %RE are given in Tables 1and 2, respectively, for 

the proposed calibration estimator as well as estimators given by Clement [2] and 

Khare et al. [11]. Figure 1 shows the percentage of RRMSE of the Estimators. 

 

Table 1. Percentage Relative Root Mean Squared Error (%RRMSE) of the 

Estimators 

Sample 

Size (n) 
%RRMSE ( )cly  %RRMSE ( )khy  %RRMSE ( )py   %RRMSE ( )py   

35 30.0717 18.1759 17.0028 10.8577 

40 28.3030 17.2548 16.0906 10.3836 

45 27.7657 17.4242 16.2301 10.5918 

50 26.8765 17.5643 16.3389 10.7467 

 

Table 2. Percentage Relative Efficiency (%RE) of the Estimators 

Sample 

Size (n) 
%RRMSE ( )cly  %RRMSE ( )khy  %RRMSE ( )py   %RRMSE ( )py   

35 100.00 165.45 176.86 276.96 

40 100.00 164.03 175.90 272.57 

45 100.00 159.35 171.08 262.14 

50 100.00 153.02 164.49 250.09 
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Figure 1. %RRMSE of the Estimators 

 

 

The summary of %RRMSE of the suggested estimators 
p py and y  for the different 

ranges of the proportionality constant values (  in case of py   and   in case of 
py  ) 

for the different sample sizes n are given in Tables 3 and 4 respectively. By 

simulation study we have observed that the suggested estimators are performing well 

for the proportionality constant lying between 0.951 to 0.999. 

 

Table 3. Summary of %RRMSE of py   

A. ‘k’ ranges from ‘0.951 - 0.959’ 

 n=35 n=40 n=45 n=50 

Mean 16.08107 15.17969 15.29583 15.38151 

Standard Error 0.04112 0.04042 0.04145 0.04241 

Median 16.08082 15.17938 15.29552 15.38116 

Standard Deviation 0.12337 0.12126 0.12436 0.12722 

Range 0.36039 0.35422 0.36326 0.37162 

Minimum 15.90123 15.00301 15.11465 15.19619 

Maximum 16.26162 15.35723 15.47791 15.56781 

Confidence Level (95.0%) 0.09483 0.09321 0.09559 0.09779 
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B.  ‘k’ ranges from ‘0.961 - 0.969’ 

 n=35 n=40 n=45 n=50 

Mean 16.53524 15.62696 15.75456 15.85109 

Standard Error 0.04179 0.04123 0.04229 0.04332 

Median 16.53501 15.62668 15.75426 15.85077 

Standard Deviation 0.12536 0.12369 0.12686 0.12995 

Range 0.36620 0.36133 0.37059 0.37959 

Minimum 16.35247 15.44670 15.56967 15.66174 

Maximum 16.71866 15.80802 15.94026 16.04133 

Confidence Level (95.0%) 0.09636 0.09508 0.09752 0.09989 

C. ‘k’ ranges from ‘0.971 - 0.979’ 

 n=35 n=40 n=45 n=50 

Mean 16.99636 16.08275 16.22204 16.33020 

Standard Error 0.04240 0.04197 0.04305 0.04415 

Median 16.99615 16.08249 16.22178 16.32991 

Standard Deviation 0.12719 0.12592 0.12916 0.13244 

Range 0.37153 0.36784 0.37730 0.38688 

Minimum 16.81089 15.89919 16.03377 16.13716 

Maximum 17.18243 16.26703 16.41107 16.52405 

Confidence Level (95.0%) 0.09776 0.09679 0.09928 0.10180 

D. ‘k’ ranges from ‘0.981 - 0.989’ 

 n=35 n=40 n=45 n=50 

Mean 17.4639 16.54634 16.69756 16.81803 

Standard Error 0.0430 0.04266 0.04376 0.04491 

Median 17.4637 16.54610 16.69731 16.81776 

Standard Deviation 0.1289 0.12797 0.13127 0.13473 

Range 0.3765 0.37382 0.38345 0.39355 

Minimum 17.2759 16.35976 16.50618 16.62162 

Maximum 17.6524 16.73358 16.88963 17.01518 

Confidence Level (95.0%) 0.0991 0.09837 0.10090 0.10356 

E. ‘k’ ranges from ‘0.991 - 0.999’ 

 n=35 n=40 n=45 n=50 

Mean 17.93732 17.01709 17.18044 17.31384 

Standard Error 0.04347 0.04328 0.04440 0.04561 

Median 17.93714 17.01688 17.18021 17.31360 

Standard Deviation 0.13042 0.12985 0.13320 0.13682 

Range 0.38099 0.37931 0.38909 0.39967 

Minimum 17.74708 16.82774 16.98621 17.11435 

Maximum 18.12807 17.20706 17.37530 17.51401 

Confidence Level (95.0%) 0.10025 0.09981 0.10238 0.10517 
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Table 4. Summary of %RRMSE of 
py   

A. ‘c’ ranges from ‘0.951 - 0.959’ 

 n=35 n=40 n=45 n=50 

Mean 9.64717 9.99970 10.39146 11.03484 

Standard Error 0.07397 0.12433 0.13958 0.16677 

Median 9.61566 9.97032 10.36185 11.00680 

Standard Deviation 0.22190 0.37298 0.41875 0.50030 

Range 0.64122 1.08460 1.21839 1.45715 

Minimum 9.37061 9.49851 9.82372 10.34554 

Maximum 10.01183 10.58311 11.04211 11.80270 

Confidence Level (95.0%) 0.17057 0.28670 0.32188 0.38457 

B. ‘c’ ranges from ‘0.961 - 0.969’ 

 n=35 n=40 n=45 n=50 

Mean 9.34514 9.13990 9.37552 9.70641 

Standard Error 0.02218 0.03178 0.04387 0.07204 

Median 9.31047 9.10141 9.33517 9.66517 

Standard Deviation 0.06653 0.09534 0.13162 0.21613 

Range 0.18976 0.26596 0.36754 0.61970 

Minimum 9.28863 9.05645 9.24813 9.45420 

Maximum 9.47839 9.32241 9.61566 10.07390 

Confidence Level (95.0%) 0.05114 0.07328 0.10117 0.16614 

C. ‘c’ ranges from ‘0.971 - 0.979’ 

 n=35 n=40 n=45 n=50 

Mean 10.04924 9.39345 9.52713 9.57688 

Standard Error 0.10687 0.07537 0.07002 0.04973 

Median 10.02137 9.35799 9.48868 9.53394 

Standard Deviation 0.32062 0.22612 0.21005 0.14918 

Range 0.93188 0.65193 0.60310 0.41872 

Minimum 9.62229 9.11705 9.27932 9.42751 

Maximum 10.55417 9.76898 9.88242 9.84623 

Confidence Level (95.0%) 0.24645 0.17381 0.16146 0.11467 

D. ‘c’ ranges from ‘0.981 - 0.989’ 

 n=35 n=40 n=45 n=50 

Mean 11.58063 10.68319 10.79840 10.68878 

Standard Error 0.16945 0.15670 0.15866 0.15072 

Median 11.56244 10.65911 10.77202 10.65792 

Standard Deviation 0.50836 0.47010 0.47599 0.45217 

Range 1.48272 1.36975 1.38648 1.31580 

Minimum 10.86476 10.03204 10.14211 10.07410 

Maximum 12.34748 11.40179 11.52859 11.38989 

Confidence Level (95.0%) 0.39076 0.36135 0.36588 0.34757 

E. ‘c’ ranges from ‘0.991 - 0.999’ 

 n=35 n=40 n=45 n=50 

Mean 13.66650 12.70167 12.86663 12.72658 

Standard Error 0.20877 0.20831 0.21507 0.21688 

Median 13.65545 12.68737 12.85107 12.70833 

Standard Deviation 0.62632 0.62494 0.64522 0.65064 
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Range 1.82841 1.82386 1.88291 1.89827 

Minimum 12.76779 11.80979 11.94701 11.80304 

Maximum 14.59620 13.63366 13.82992 13.70131 

Confidence Level (95.0%) 0.48143 0.48037 0.49596 0.50013 

 

We observe that our proposed estimators have lesser %RRMSE values and greater 

%RE values than the other estimators given by Clement [2] and Khare et al. [11], so 

we can state that our proposed estimators are more precise and efficient than these 

existing estimators. 

 

6. Conclusion  

In this study, two calibration estimators for finite population mean were developed 

under stratified random sampling. We have acquired the expressions for bias and 

MSE of the recommended estimators as well as attained the optimal values of 

proportionality constant for both estimators. A simulation study has also been 

presented in R SOFTWARE to compare the developed estimators with other 

estimators given by Clement [2] and Khare et al. [11], in terms of percentage 

RRMSE and percentage RE. The results show that the proposed calibration 

estimators are more efficient estimators of the finite population mean under stratified 

random sampling scheme. 
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