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Monte Carlo methods with Latin Hypercube Design (LHD) were used to explore the 
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distributions in a two-level model. The implementation of LHD is illustrated and the 

results update existing guidelines for the number of clusters needed to obtain 

accurate estimates.  
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1. Introduction 

The presence of hierarchical data structures resulting from multi-stage sampling, 

such as students nested within classrooms (clusters), has prompted the development 

of multilevel models which are widely used in disciplines such as education (e.g., 

DiPrete & Forristal, 1994), psychology (e.g.,  Rose et al., 2014), and sociology (e.g., 

Lee, 2000). Statistical details of these models can be found in Raudenbush and Bryk 

(2002).   

1.1 Overview of Latin Hypercube Sampling (LHS) and Latin Hypercube Design 

(LHD) 

Previous multilevel model simulation studies have adopted a full factorial design. 

Although informative, full factorial designs are not the ideal choice when prediction 

accuracy over the complete experimental region (the region where manipulated 

factors under study take values) is of interest, (Santner et al., 2018). A simulation 

sampling method with substantial potential for increasing the generalizability of 

simulation results, called Latin Hypercube Sampling (LHS), has been shown to have 
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desirable properties such as including dense coverage of a user-specified range of 

values of each manipulated factor in the simulation study which enhances 

generalizability. Thus, LHS is an attractive option when generalizing across a pool of 

simulation conditions is central to the rationale for a simulation study, compared to 

other sampling methods such as simple random sampling or stratified sampling of 

simulation conditions (Authors, 2017; Iman & Conover, 1980; McKay et al., 2000; 

Stein, 1987).  

The key feature of LHS is spreading design points evenly over the range of each 

manipulated factor independently, which enhances generalizability, accommodates a 

variety of statistical simulation settings, handles both small- and high-dimensional 

problems in terms of manipulated factors, and, thanks to advancements in 

computing, can be implemented with relative ease (Santner et al. , 2018; Viana, 

2016; Wang, 2003). The simulation design resulting from an LHS is called a Latin 

Hypercube Design (LHD).  

LHDs have apparently not been used in Monte Carlo simulation studies of multilevel 

modeling. Instead, full factorial designs have traditionally been used with narrow 

ranges for the manipulated factors, such as J=10~30  and J=5~30 (Stegmueller, 

2013), and few values, such as J=30, 50, 100 (Maas & Hox, 2004a) and J=50, 100, 

200, 500 (Bell et al., 2008). Using a sampling mechanism that populates the entire 

experimental region to produce an experimental design that enhances generalizability 

by having evenly spread points that represent all segments of the experimental region 

can deepen our understanding of the manipulated factors’ effects. 

A feature of most simulation studies of multilevel models is varying the number of 

clusters required to warrant accurate parameter estimates. The aim of the current 

study is to revise and expand the current advice on the number of clusters by using 

an efficient experimental design, namely the LHD, that offers greater 

generalizability.  

1.2 LHD vs. Full Factorial Design 

Santner, Williams and Notz (2018) defined inputs in a simulation as numerical 

values of simulation factors that collectively define the experimental region, which 

in turn defines the design. Traditionally, the experimental design of two-level 

models’ simulation studies was a specification that included J, 𝑛𝑗  and ICC values in 

the experimental region at which the authors wished to compute an outcome. We 

further define design points as combinations of values of all manipulated factors, and 

those design points are sampled from the experimental region using one of several 

sampling methods. The number of design points and the way design points are 

sampled is directly related to the generalizability of simulation results. 

The full factorial design appears to be the only experimental design that has been 

reported in existing multilevel model simulation studies. However, researchers 

usually must make trade-offs between generalizability and computational efficiency. 

Suppose previous literature suggests that the impact of J = 5, 10, 15, …, 200 and 

𝑛𝑗= 5, 10, 15, …, 50 on estimation and hypothesis-testing in two-level models 

should be studied. A full factorial would consist of 40 × 10 = 400 design 
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points, which is unwieldy. Adding a third simulation factor such as ICC levels 

(e.g., 0.05, 0.1, 0.15, …, 0.5) makes the computational load unmanageable (4,000 

design points in total). To reduce the load, the number of clusters might be 

specified as J = 10, 30, 50, 70, 200 and cluster sample sizes as 𝑛𝑗= 5, 10, 30, 50. 

These full factorial design points appear in Figure 1 as circles and reflect a 

predictable pattern because they fall at the intersection of specified horizontal and 

vertical lines. This pattern can limit the generalizability since it only considers a 

small portion of the possible design points in the experimental region, and there are 

several intervals that are not represented in the design.  

A different sampling method, LHS, can distribute design points randomly throughout 

the experimental region and thus enhance the generalizability of findings. An 

example using LHS is given next following (Authors, 2017). Suppose J = 5, 10, 

15, …, 200 and 𝑛𝑗= 5, 10, 15, …, 50 and a total of 20 design points (paired values of 

J and 𝑛𝑗) were randomly sampled. The choice of 20 is arbitrary and for illustrative 

purposes. The more design points, the greater the coverage of the experimental 

region. Contrasting the solid triangles in Figure 1 – representing design points under 

LHS – against the circles – representing design points for a full factorial – reveals 

that the design points of LHD are spread more evenly throughout the experimental 

region in a random pattern. Thus, simulation findings obtained from a LHD would be 

generalizable to the complete range of values specified by the researcher for the 

manipulated factors. The greater generalizability offered by LHD prompts us to use 

this design when studying the impact of numbers of clusters.  

   

 

Figure 1. Contrasting the experimental region of a full factorial versus Latin 
Hypercube design for J and 𝑛𝑗 (q = 20) 
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1.3 Number of Clusters and Level-2 Residual Distribution in Multilevel Models 

The number of clusters (J) in multilevel analyses is particularly important because 

maximum likelihood, which is typically used to estimate some or all model 

parameters, requires a sufficiently large J to ensure properties of these estimators 

hold (Hox, 2002). For example, the accuracy of estimating the between-cluster 

variance component for intercepts via maximum likelihood generally improves with 

increasing J (Maas & Hox, 2005). Simulation studies have shown that the impact of 

within-cluster sample size 𝑛𝑗  affects the accuracy of within-cluster estimates but its 

impact on the accuracy of level-2 effcts estimation is typically modest (Kraemer, 

2012; Maas & Hox, 2004a; McNeish & Stapleton, 2016), leaving the sample size 

focus on J. 

One of the earliest recommendations for J came from Kreft (1996) who advocated 

the 30/30 rule (30 clusters and 30 observations per cluster), although J < 30 often 

appears in empirical studies (e.g., Dedrick et al., 2009; Epstein et al., 2011; Jitendra 

et al., 2017; Marks & Printy, 2003; Shernoff et al., 2017). It is important to mention 

that simulation-based power analysis can be used to determine apriori the value of J 

needed to ensure a desired statistical power in multilevel models to detect an effect 

of interest (see Kumle et al. 2020, Lane and Hennes, 2018, Scherbaum, Ferreter, 

2009). However, an investigation of how parameter estimates are impacted by 

varying sample sizes and other simulation factors might reveal details that the power 

analysis approach cannot. Since 1988, around 30 Monte Carlo simulation studies 

have included varying values of J as a simulation factor, but a consensus on 

minimum values of J to ensure accurate estimates and valid statistical inferences 

from hypothesis-testing for two-level models under realistic data conditions has not 

appeared. 

For example, Shieh, Fouladi, and Pullum (2001) studied the impact of normally-

distributed model residuals with J = 5, 20, and 80 for a two-level model. These 

authors reported that fixed effects estimates showed negligible bias regardless of J 

but the variance component for intercepts (𝜏00), estimated using restricted maximum 

likelihood (REML), tended to be underestimated for smaller J. Maeda (2007) 

simulated normally-distributed model residuals and reported inflated Type I error 

rates for tests of 𝜏00 for models with predictors at both levels for J = 10, 15, 20, and 

25. McNeish and Stapleton (2016) used a Monte Carlo study to generate normally-

distributed model residuals with predictors at both levels for J = 4, 8, 10, 14 and 𝑛𝑗  = 

4, 8, 10, and 14 and found substantially biased estimates of 𝜏00 under full maximum 

likelihood, and less (but still) biased estimates under REML.  

Maas and Hox (2005) reported coverage rates for a 95% confidence interval for fixed 

effects and variance components (the latter based on REML estimates) of a model 

with predictors at both levels. These authors studied the impact of J = 30, 50, 100, nj 

= 5, 30, 50, and ICC = .10, .20, and .30. Fixed effects and their standard errors 

showed little bias regardless of J, whereas coverage rates for variance components 

were underestimated for J=30 (e.g., coverage rate of 91.1% rather than 95%). Seco, 

Garcia, Garcia, and Rojas (2013) reported that estimates of fixed effects and their 
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standard errors were essentially unbiased for normally-distributed model residuals 

but coverage rates for intervals for 95% confidence intervals for variance 

components estimated using REML were biased even for J = 100. Kraemer (2012) 

examined intervals for 𝜏00 using several methods for constructing confidence 

intervals in an unconditional model for J = 5, 10, 20, 40, 80, and 𝑛𝑗  = 10, 20, 40, 80, 

160. Kraemer (2012 ) reported coverage rates based on REML estimates were 

satisfactory for a procedure due to Satterthwaite (Satterthwaite, 1946) for normally-

distributed model residuals for J   10 (see Kraemer, 2012 for details of the 

Satterthwaite procedure). 

McNeish and Stapleton (2014) reviewed 20 Monte Carlo studies of two-level 

models, 14 of which assumed continuous and normally-distributed cross-sectional 

outcomes. These authors qualitatively synthesized these results and recommended a 

minimum of J = 15 for fixed effects estimates, and J = 30 for their standard errors 

and for level-2 variance component estimates. Authors (2018) used meta-analytic 

methods to summarize the results of 14 Monte Carlo studies of multilevel models (7 

of these studies were used in McNeish and Stapleton 2014). Estimation bias and 

Type I error rates served as effect sizes of the meta-analysis, and the number of 

effect sizes ranged from K = 8 to 186 per study. Estimates of fixed effects and their 

statistical tests were generally insensitive to J whereas variance component estimates 

and their tests showed some bias even for J > 100 (K was typically > 50). Similar 

findings for normally-distributed residuals  have been reported by Clarke and 

Wheaton (2008a), Korendijk, et al. (2008), Vallejo et al. (2015), and McNeish and 

Stapleton (2016). On the other hand, Browne and Draper (2006) found little evidence 

of bias in variance components estimated using REML for J = 6, but reported 

unsatisfactory coverage rates for 𝜏00 for small J.  

Guidelines for minimum values of J are also important when the assumption of 

normality of cluster residuals is violated because the standard errors of variance 

components are often badly biased, resulting in inaccurate estimates and 

unacceptable Type I and Type II error rates (Maas & Hox, 2004a, 2004c, 2005; Seco 

et al., 2013). Based on the work of Hill and Dixon (1982), Micceri (1989), and Dyer 

et al. (1999), non-normally distributed variables are common in empirical studies in 

several domains, suggesting non-normally distributed cluster residuals may also be 

common. However, the frequency and nature of non-normal distributions of cluster 

residuals in empirical studies has not been rigorously documented, in part because 

journal articles reporting multilevel model results rarely describe the distribution of 

cluster residuals (Dedrick et al., 2009). 

A few Monte Carlo studies have examined the impact of non-normal cluster 

residuals. Maas and Hox (2004a, 2004b) reported that three non-normal cluster 

residual distributions (𝜒𝑑𝑓=1
2 , uniform, Laplace) had little effect on estimates of fixed 

effects and variance components regardless of J (30, 50, 100) or 𝑛𝑗 , but reported 

poor coverage rates for REML-estimated variance components (e.g., 66% for a 95% 

confidence interval). Kraemer (2012) reported poor coverage rates for gamma, beta, 



 

JIA ET AL. 

 

7 

 

and t-distributions of cluster residuals for the estimated variance of the intercept in 

an unconditional model using REML estimation (e.g., 79.6% for a 95% interval and 

J = 80) that worsened as J increased. 

Burch (2011) studied the impact of normal, uniform, and chi-square (df = 1) 

distributions for J = 5, 10, 50, and 100, and small, varying 𝑛𝑗  on the ICC for the 

unconditional model. For J = 5 and normally- distributed cluster residuals, interval 

coverage tended to be overestimated (e.g., 98% for a 95% interval), and 

underestimated for J = 100. For the chi-square distribution this pattern was 

exacerbated. Similarly, Auda et al. (2019) used a random intercepts model with a 

single level-1 predictor whose slope variance was set to zero to study the impact on 

the ICC. These authors compared REML estimates against a nonparametric estimator 

for J = 10, 20, 30 and 𝑛𝑗  = 5, 10, 30 for normal and "corrupted" normal distributions 

where the latter 5% of the values from N(0,1) were replaced with values from N(75, 

900), which generated outliers and a heavy-tailed distribution. The results showed 

minimal bias of estimated fixed effects regardless of J, 𝑛𝑗  , or cluster residual 

distribution, whereas estimates of the ICC for the corrupted normal distribution 

showed substantial bias regardless of J. Verbeke and Kesaffre (1996) showed that 

random effects may be poorly estimated if normality is assumed when the 

distribution of random effect is a mixture of normal distribution. On the other hand,  

McCulloch and Neuhaus (2011a) examined the symmetrical Tukey lambda 

distribution and suggested that estimation of the random effects variance appears 

relatively robust to misspecification of the random intercept distributional shape, and 

McCulloch and Neuhaus (2011b) added that the prediction accuracy of slopes 

variance is only minimally affected for mild-to-moderate violations of the normality 

assumption. By investigating the influence of skewed, bimodal and heteroscedastic 

residuals on the simple random intercept model, Scheilzeth, Dingemanse and 

Allegue (2020) found that estimates were usually robust to violations of 

assumptions, but estimates for random effects became less precise. These authors 

also pointed out that when the model became more complicated, the presence of non-

normally-distributed random effects for random slopes can produce biased and 

imprecise estimates.  

In sum, varying Monte Carlo results based on normally-distributed model residuals 

have produced a variety of recommendations for the minimum J needed to ensure 

accurate cluster-level parameter estimates including J = 6 (Browne & Draper, 2006), 

J = 10 (Kraemer, 2012), J = 30 (McNeish & Stapleton, 2014), J = 50 ((Hox, 1995; 

Maas & Hox, 2004a, 2005; Van der Leeden & Busing, 1994), and J = 100 (Hox & 

Maas, 2001; Seco et al., 2013). The lack of a consensus for minimum values of J is 

related to variation in the model features that are studied including the parameters 

that are estimated, number of level-1 and level-2 predictors, presence of level-2 slope 

models, the criteria used to assess the quality of estimation (bias, standard errors, 

coverage rates for 95% confidence intervals), and the possibility that cluster 

residuals are not normally-distributed. The net effect is that data analysts will find 

mixed guidance for the number of clusters needed to ensure accurate estimates 

assuming normally-distributed model residuals, and little guidance for J when non-

normal cluster residual distributions are present. 
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Specifically, there are two main shortcomings in the simulation literature: (1) The 

results often do not represent realistic data conditions (e.g., non-normality of cluster 

residuals); (2) Results are conditional on the simulation factor values modeled (e.g., J 

= 30, 50, 100) and do not support inferences about the impact of other values (e.g., J 

= 10, 40, 200), individually or in combination with other simulation factors (e.g., 

non-normal cluster residual distributions), which limits generalizability. An 

examination of the impact of systematically increasing J across a range of realistic 

conditions for normal and non-normal cluster residual distributions can update and 

extend existing recommendations for the minimum J needed to obtain accurate 

parameter estimates.  

 

2. Methodology 

A LHD in a simulation study was used to investigate the accuracy of estimates, along 

with the validity of statistical inferences from hypothesis-testing, for a two-level 

model with random slopes. This model was fitted to continuous cross-sectional data 

under a series of manipulated conditions to explore the impact of systematically 

increasing J considering four cluster residual distributions. Following Hoaglin and 

Andrews (1975), the simulation was treated as a statistical sampling experiment 

subject to established principles of research design and data analysis.  

2.1 Model 

The random slopes model was chosen because it is commonly used in many research 

domains (Dedrick et al., 2009). This model includes parameter estimation of main 

effects on both levels as well as cross-level interactions available by adding 

predictors to the model. Adding random slopes to a multilevel model would 

generally increase the minimum J required to obtain accurate parameter estimates 

and valid statistical inferences.  

Consider a two-level model for continuous cross-sectional data. Following 

Raudenbush and Bryk (2002, pp. 100-101), the multilevel (mixed) model can be 

written as:  

𝑌𝑖𝑗 = 𝛾00 + ∑ 𝛾0𝑝𝑊𝑝𝑗 + 𝑢0𝑗 + ∑ (𝛾𝑞0 + ∑ 𝛾𝑞𝑝𝑊𝑝𝑗 + 𝑢𝑞𝑗

𝑆𝑞

𝑝=1

) 𝑋𝑞𝑖𝑗 + 𝑟𝑖𝑗

𝑄

𝑞=1

.

𝑆0

𝑝=1

 (1) 

In equation (1), 𝑌𝑖𝑗 is the outcome of the i(th) level-1 unit (i = 1, 2, …, jn ) nested 

within the j(th) level-2 unit or cluster (j = 1, 2, …, J), 𝛾𝑞0 and 𝛾𝑞𝑝 are the intercept 

and linear slope(s) for the j(th) cluster of Xqij, 𝑋𝑞𝑖𝑗 is a predictor score of the i(th) 

level-1 unit on the q(th) level-1 predictor nested within the j(th) cluster, 𝑟𝑖𝑗 is a level-

1 residual assumed to follow N(0,𝜎2), 𝛾00 is a weighted average intercept across the 

level-2 units, 𝑊𝑝𝑗 is the value of the p(th) level-2 predictor for the j(th) cluster, 𝛾0𝑝 is 
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the average regression slope across the level-2 units, and u0j and 𝑢𝑞𝑗 are cluster-level 

random effects. A key assumption in equation (1) is that [

𝑢0𝑗

⋮
𝑢𝑞𝑗

] ~𝑀𝑉𝑁(0, 𝑻), where 

T is a Q x Q covariance matrix of level-2 random effects (Raudenbush & Bryk, 

2002, p. 255).  

The model examined in this simulation study included one level-1 predictor and one 

level-2 predictor. Following the naming convention in Equations (1), the model can 

be defined as:  

𝑌𝑖𝑗 = 𝛾00 + 𝛾01𝑊1𝑗 + 𝑢0𝑗 + 𝛾10𝑋1𝑖𝑗 + 𝛾11𝑊1𝑗𝑋1𝑖𝑗 + 𝑢1𝑗𝑋1𝑖𝑗 + 𝑟𝑖𝑗 (2) 

Or for level-1: 

𝑌𝑖𝑗 = 𝛽0𝑗 + 𝛽1𝑗𝑋1𝑖𝑗 + 𝑟𝑖𝑗 (3) 

Level-2: 

𝛽0𝑗 = 𝛾00 + 𝛾01𝑊1𝑗 + 𝑢0𝑗 (4) 

𝛽1𝑗 = 𝛾10 + 𝛾11𝑊1𝑗 + 𝑢1𝑗 (5) 

In equation (4) and (5) 𝛾00 ,𝛾10, 𝛾01 and 𝛾11 are level-2 coefficients or fixed effects, 

𝑢0𝑗 and 𝑢1𝑗 are level-2 residuals with variance 𝜏00 and 𝜏11, and 𝑟𝑖𝑗 represents level-1 

residuals that are assumed to be normally- distributed variance 𝜎2. The models we 

study employ non-Bayesian methods; (fully) Bayesian methods -- like those 

illustrated in Sorensen, Hohenstein, and Vasishth (2015) -- were not considered.  

2.2 Simulation Study Design 

2.2.1 Fixed Factors  

The 𝛾00 parameter was fixed at 1 throughout all simulation conditions, and the 

values of all other fixed effects were 0.3 because these values were associated with a 

medium effect size at level-2 (Maas & Hox, 2004a). Level-1 residuals were 

generated from a normal distribution (𝑟𝑖𝑗~𝑁(0,0.5)), and level-1 and -2 predictors 

were generated from a standard normal distribution (e.g., 𝑋1𝑖𝑗~𝑁(0,1) and 

𝑤1𝑗~𝑁(0,1)). 

2.2.2 Manipulated Factors 

Four factors were manipulated for the simulation using values that were informed by 

conditions typically present in empirical studies and in previous simulation studies of 

multilevel models (e.g., Clarke, 2008b; Jitendra et al., 2017; Maas & Hox, 2004b, 

2005; Maeda, 2007; McNeish & Stapleton, 2016; Seco et al., 2013; ZOPLUOĞLU, 

2012): (1) number of clusters (J), (2) cluster sample size (𝑛𝑗); (3) intra-class 

correlation (ICC) and (4) distribution of cluster (level-2) residuals. J, 𝑛𝑗  and ICC 

values used in the simulation were randomly sampled from a pool of values specified 
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by the authors using LHS, whereas the level-2 residual distributions were treated as 

fixed factors, meaning the findings are conditioned upon each specific distribution.  

2.2.3 Data Generation 

2.2.3.1 Number of clusters, within-cluster sample sizes and Intra-class correlations 

To examine the impact of systematically increasing J, the current study selected a 

wide range of values ranging from 5 to 200 with an increment of 5. The range of 

within-cluster sample size, 𝑛𝑗 , was chosen from 5 to 50 with an increment of 5, and 

the range of ICC values was 0.05 to 0.5 with an increment of 0.05. These three 

factors formed a pool from which a random sample of values was drawn using LHS 

and used in the simulation. 

LHS initially constructs a design matrix based on the random factors and their 

specified inputs. The inputs here are J = 5, 10, 15, …, 200, 𝑛𝑗 = 5, 10, 15, …, 50, 

and ICC=0.05, 0.1, …, 0.5 meaning there are 40 × 10 × 10 = 4,000 design 

points (design points represent rows of the design matrix, columns are simulation 

factors). After partitioning the experimental region into 4,000 equal-sized segments, 

a sample of q = 100 design points was obtained at random from those segments such 

that one point was sampled at each level of each random factor, where the 

distribution of values of a random factor is uniform. The subset of 100 design points 

constitutes the LHD of the study. The choice of q is arbitrary but, as noted above, 

should be large enough to provide adequate coverage of the experimental 

region.  

2.2.3.2 Distribution of cluster residuals 

The accuracy of parameter estimates, along with the validity of statistical inferences 

about a null hypothesis, were studied for both normal and nonnormal cluster residual 

distributions. As Blanca et al., Bono and Bendayan (2013) and Bono et al. (2017) 

found, the most widely reported continuous non-normal distributions in empirical 

studies belong to the gamma, lognormal and exponential families, with ranges for 

skewness and kurtosis of -2.94 to 2.33 and -1.92 to 7.41. Based on these findings, 

and those of Hill and Dixon (1982), Micceri (1989), and Dyer et al. (1999), the 

current study investigated three non-normal distributions: symmetric but heavy-

tailed (𝑡𝑑𝑓 = 5, skewness = 0 and kurtosis = 9), asymmetric and heavy-tailed 

(exponential, skewness= 2 and kurtosis = 9), and  asymmetric and moderately-tailed 

(gamma(2,6), skewness = 1.41 and kurtosis = 4). Both level-2 residuals (i.e., 𝑢0𝑗 and 

𝑢1𝑗) followed the same distribution and the variances (𝜏00 and 𝜏11) were equal. 

Following Maas and Hox (2005) the ICC was based on the variance of the intercepts 

with the covariance of 𝑢0𝑗 and 𝑢1𝑗 set to zero. 

Because cluster residual distributions represent fixed conditions, the LHD is 

conditioned upon each fixed distribution. Thus, three random factors and one 

fixed condition produced 100 × 4 = 400 cells in the simulation design used to 

assess the impact of J and level-2 residual distribution. For each cell we simulated 
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10,000 data sets. Reproducible streams of random numbers were specified in the 

simulations and all multilevel models were fitted with the R package nlme using 

REML (Pinheiro et al., 2017). 

2.3 Monte Carlo Outcomes 

Three measures of the impact of Monte Carlo conditions on parameter estimates 

were used. One was average relative bias (ARB) defined as  

𝐴𝑅𝐵 =
(𝐸(𝜃) − 𝜃)) 

𝜃
× 100% =

[∑
𝜃�̂�

𝑅
− 𝜃𝑅

𝑖=1 ] 

𝜃
× 100% 

(5) 

where 𝜃 = estimated parameter and R = number of replications that converged.  

The second outcome was the Root Mean Square Error (RMSE) defined as 

𝑅𝑀𝑆𝐸 = √∑ (𝜃𝑖 − 𝜃)
2𝑅

𝑖=1

𝑅
 (6) 

The RMSE was transformed to ln(RMSE) as recommended by Raudenbush (1988). 

Smaller ARB values reflected more accurate (less biased) estimates, and smaller 

RMSEs (or more negative ln(RMSEs) reflected more accurate estimates. 

Another outcome measure was confidence interval coverage rates of fixed effects 

and level-2 variance components. Several methods for constructing confidence 

intervals for variance components are currently available in different software, such 

as SAS ProcMixed (SAS Institute Inc, 2013) and confint in R (Venables & Ripley, 

2002) (for a detailed illustration, see West et al., 2014). As argued by Browne and 

Draper (2006) and Kraemer (2012), the Satterthwaite method (Satterthwaite, 1946) 

appears to have the “best possible” performance for variances and was used in the 

current study. The 95% coverage rate was calculated as the percentage of 

replications whose 95% Satterthwaite confidence interval contained the specified 

true value. Comparing coverage rates to 95% provides evidence of relative error, and 

values above or below 95% were treated as reflecting biased standard errors. Bradley 

(1978) suggested that values within one-half of the nominal Type-I error rate be 

considered acceptable. Following this standard, we treated coverage rates less than 

92.5 % or greater than 97.5 % as unacceptable.  

2.4 Implementation 

All simulation procedures described above were conducted in R that is comprised 

with three parts (annotated accordingly in R syntax in Appendix):  

In Part I: LHD Sampling. The maximinLHS function in the lhs package (Carnell, 

2020) was used to sample 100 design points randomly from an experimental 

region constructed with three standard uniform distributions. Once sampled, 

these values were ordered and categorized into groups, and then rescaled to the 

range of interest mentioned above. For example, in terms of J, 100 randomly 

sampled design points from a standardized uniform distribution were rounded 
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up to the nearest multiple of 0.025 (i.e., 0.025, 0.05, …, 1), and then rescaled to 

have values such as 5, 10, …, 200. This process was also performed for the 𝑛𝑗 

and ICC factors and resulted in each factor having the desired range, i.e., 

5≤J≤200; 5 ≤ 𝑛𝑗 ≤ 50 and 0.05 ≤ 𝐼𝐶𝐶 ≤ 0.5. Presenting sampled design 

points in blocks (e.g., for 5≤J≤200 J is a multiple of 5) can enhance 

generalizability by further decreasing the appearance of adjacent values (e.g., J 

= 7 and 8). Unlike the full factorial design, the simulated factors are not fully 

crossed in the LHD, which means that values of 𝑛𝑗  and ICC given each value of J are 

different. For example, 𝑛𝑗= 5 and ICC = .40 when J= 170 but 𝑛𝑗= 40 and ICC = .10 

when J=65 (a full list of J, 𝑛𝑗  and ICC values is provided in the Appendix). 

In Part II: Data Generation. For each simulation replication, the level-1 and -2 

residuals and predictors were generated first using the sample size generated 

from LHS. Then, those values were plugged into Equation (2) along with the 

pre-specified fixed effect coefficients, to calculate the outcome variable, 𝑌𝑖𝑗.   

In Part III: Model Analysis. The generated data from Part II was fitted with the R 

package nlme (Pinheiro et al., 2017). An indicator of model convergence was 

dichotomously coded as converged/non-converged. The Monte Carlo outcomes 

were calculated only when the model converged. ARB and RMSE were 

calculated using Equation (5) and (6). The confidence interval coverage rate was 

calculated as the percentage of replications whose confidence interval contained 

the true value.  

 

3. Results 

Model convergence rates were investigated first because in empirical research, a 

converged model is always a prerequisite for the subsequent analysis. In the current 

study, nonconvergence was only found when 𝐽 ≤ 30 and was not viewed as 

problematic as 92.51% of all replications studied converged. Busing (1993) and 

Shieh et al. (2001) discuss common reasons for nonconvergence. When the model 

does not converge to stable estimates, the fixed and random effect estimates are not 

available and the R code produces the error message “Model failed to converge” and 

reports no results. The conditions that produced nonconvergence and the percentage 

of nonconvergence are displayed in Table 1. The replications that failed to converge 

were discarded and the simulation outcomes were calculated with converged 

replications only. 
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Table 1. Percentage of nonconvergence 

J 𝑛𝑗  ICC Normal t Exponential Gamma 

5 10 0.05 27.54% 27.07% 26.43% 26.26% 

10 5 0.15 15.23% 16.84% 17.07% 16.36% 

10 30 0.05 0.41% 0.76% 0.95% 0.73% 

5 45 0.20 0.17% 0.13% 0.34% 0.15% 

10 15 0.40 0.02% 0.12% 0.15% 0.07% 

30 10 0.15 0.02% 0.01% 0.04% 0.05% 

 

3.1 Graphical illustration 

Simulation outcomes were plotted against each random simulation factor while 

averaging outcomes across the other two random factors. For example, to plot the 

ARBs against J, all ARBs at the same value of J but with different values of 𝑛𝑗  and 

ICC, were averaged and appear as one point on that plot. Thus, a plot of an outcome 

variable against a simulation factor may be influenced by the other two factors to 

different degrees, and produce a fluctuating pattern graphically rather than a 

consistent pattern. For example, a plot of ARB versus J may fluctuate as J increases 

because of the influence of 𝑛𝑗  and the ICC. Put another way, the influence of the 

factor plotted on the x-axis on an outcome variable may be moderated by other 

factors. All figures appear in the appendix.  

Figure 2 suggests that fixed effects estimates were generally accurate with average 

relative biases close to 0, although the intercept fixed effects (𝛾00) had smaller ARBs 

than the slope fixed effects. When the number of clusters increased, fixed effects’ 

ARBs approached zero, but no clear trend was observed between fixed effect’s 

ARBs and 𝑛𝑗  or ICC and both presented obvious fluctuations. Given the same value 

of any manipulated factor, the difference across level-2 residual distributions was 

negligible.  

In terms of the variance components, Figure 3 shows that when J<15, the variance 

components were significantly overestimated (i.e., larger than 0.30 for 𝜏00 and 0.40 

for 𝜏11 when J=5) for all distribution types, but the ARBs quickly approached 0 as J 

increased. Similar patterns were also seen in Darandari (2004) and Shih (2008). 

When 𝑛𝑗  was plotted on the x-axis, positive ARBs were observed when 𝑛𝑗 = 5 and 

10, and the jump at 𝑛𝑗 = 10 suggests that the estimates of variance components were 

also influenced by J, given that the average J was 27.5 when 𝑛𝑗 = 5 but 16.7 when 

𝑛𝑗 = 10. The right column of Figure 3 shows that the largest positive bias was 

observed when ICC=0.1 and moved back to around 0, except when ICC=0.15. 

Besides the jumps, both Figures 2 and 3 showed that variance components’ ARBs 

decreased as cluster sizes and ICC increased but did not show any notable 

differences between level-2 residual distributions.  
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Figure 2. Impact of number of clusters, Cluster sizes and ICC on fixed 
effects estimates’ ARB 
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Figure 3. Impact of number of clusters, Cluster sizes and ICC on variance 
components estimates’ ARB 

 

 

Figure 4 shows that the ln(RMSE)s of fixed effect estimates decreased as J 

increased, with a decreasing pattern when cluster size was plotted on the x-axis. 

These results suggest that estimation accuracy is influenced by J to a larger extent 

than 𝑛𝑗 , which is consistent with the results of Kraemer (2012), Maas and Hox 

(2004a), and McNeish and Stapleton (2016) On the contrary, the ln(RMSE)s became 

less negative when ICC increased, meaning the variance components estimation 

became less accurate. Similar results were seen in Clarke and Wheaton (2007). In 

addition, fixed effect estimates’ ln(RMSE)s were quite similar across different level-

2 residuals distributions.  
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Figure 4. Impact of number of clusters, Cluster sizes and ICC on fixed 
effects estimates’ ln(RMSE) 

 

 

Similar to the fixed effects, the variance components’ ln(RMSE)s decreased as J or 

𝑛𝑗  increased, but increased as ICC became bigger (see Figures 5). Different from the 

fixed effects, however, ln(RMSE)s followed a descending order in that normal < 

gamma < t < exponential.  
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Figure 5. Impact of number of clusters, Cluster sizes and ICC on variance 
components estimates’ ln(RMSE) 

 

 

Regarding the 95% confidence interval coverage rates, all fixed effects except 𝛾01 

had coverage rates less than 95% when J was less than 50 (Figure 6). Beyond that, 

all coverage rates were within the acceptable range. Plotting coverage rates against 

𝑛𝑗  or ICC does not show a clear pattern, and fluctuations suggest that coverage rates 

were influenced by other factors. In addition, for the results of the intercept fixed 

effects, the symmetric distributions (i.e., normal and t distribution) produced 

coverage rates that were closer to 0.95 than the asymmetric distributions, with the 

exponential distribution associated with the poorest coverage.  
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Figure 6. Impact of number of clusters, Cluster sizes and ICC on fixed 
effects estimates’ 95% confidence interval coverage rate 

 

 

Figure 7 shows that coverage rates of variance components for all distributions 

increased from J=5 to 10, but after that, only the normal distribution had rates near 

0.95. The non-normal distributions were associated with coverage rates smaller than 

0.90, which became even smaller as J increased, a finding that consistent with 

Kraemer (2012) and Burch (2011). When 𝑛𝑗  was plotted on the x-axis, variance 

components’ coverage rates were close to 0.95 if level-2 residuals were normally 

distributed. The t and gamma distributions were associated with similar coverage 

rates between 0.82 and 0.87, but the exponential distribution had coverage rates of 

less than 0.80 for most 𝑛𝑗s. In addition, all non-normal distributions’ coverage rates 

were noticeably influenced by other simulated conditions, compared to a normal 
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distribution. When level-2 residuals followed a normal distribution, coverage rates 

increased as ICC increased and then maintained around 0.95. However, when level-2 

residuals were non-normally distributed, variance components’ coverage rates 

decreased as ICC increased. Again, the exponential distributed residuals were 

associated with the poorest coverage rates.  

 

 

 

Figure 7. Impact of number of clusters, Cluster sizes and ICC on variance 
components estimates’ 95% confidence interval coverage rate 

 

 

4. Conclusion 

A Latin Hypercube design (LHD) was used in a Monte Carlo simulation study to 

investigate the impact of number of clusters and non-normally distributed cluster 

residuals in multilevel modeling. The choice of a LHD responds to the need to 
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increase the generalizability of simulation results, and is accomplished by uniformly 

populating the range of values of each manipulated factor independently, resulting in 

greater generalizability. The ability of LHDs to enhance generalizability of 

simulation results, and the ease with which they can be implemented with existing 

software, make these designs attractive for simulation studies.  

The current study used an LHD approach with inputs for J, 𝑛𝑗, and ICC that 

produced 4,000 design points. After partitioning the experimental region into 4,000 

equal-sized segments, a sample of q = 100 design points was obtained at random 

from those segments such that one point was sampled at each level of each random 

factor, where the distribution of values of a random factor was uniform. This 

sampling strategy can enhance the generalizability of simulation results (e.g., across 

a wide range of J, 𝑛𝑗 , and ICC values) compared to traditional fixed factorial designs 

typically used in simulation studies. Of course, LHDs should not necessarily be used 

for all simulation studies because no single experimental design is going to be 

suitable for all simulations (Santner et al., 2018; Viana, 2015).  However, 

methodological researchers conducting simulation studies who place a premium on 

generalizing their findings to enhance their impact on statistical practice should find 

LHDs attractive. 

An important limitation of LHDs is related to the number of random factors and the 

number of values of these factors specified by a researcher. Even though 

advancements in computing and optimization support the implementation of LHS for 

studies with multiple random factors, as the number of random factors in the 

simulation design increases, the optimization of the LHD can become cumbersome 

(Viana, 2015). This occurs because LHS solves a combinatorial problem to select the 

points that conform to the LHD and assure uniformity such that all portions of each 

manipulated factor´s range of values is represented in the design (McKay et al., 

2000; Viana, 2015). Increasing the number of manipulated factors typically makes it 

harder to solve the combinatorial problem, and even if the combinatorial problem 

can be solved, the property of having design points evenly spread over the 

experimental region is harder to achieve as the number of random factors involved 

increases (Viana, 2015). In addition, no a priori dependency between factors is 

assumed, helping to ensure each factor is well-represented in the experimental design 

and that simulation results can be analyzed independently for each factor.  Methods 

that account for dependencies in the simulation factors have been developed (Stein, 

1987; Owen, 1994), but this topic is beyond the scope of the current study. 

The results of the current simulation study produced two key findings: (1) Bias is not 

a concern when estimating fixed effects regardless of J and cluster residual 

distribution, and is not a concern when estimating variance components for 𝐽 ≥ 20 

regardless of level-2 residual distribution, (2) Coverage rates for fixed effects were 

substantially different from 0.95 for J<30 especially for the exponential level-2 

residual distribution, but converged quickly to 95% for J≥ 30; coverage rates for 

95% confidence intervals for variance components were significantly underestimated 
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when J<15 for normally-distributed cluster residuals and converged to 95% once 

J≥15. But for non-normal level-2 residual distributions coverage rates were 

uniformly underestimated and increasing J increased the underestimation. These 

results are summarized in Table 2 and suggest that for a random slopes model with 

normally-distributed residuals the minimum J is 30, and the presence of any of the 

non-normal level-2 distributions in the current study signal that variance components 

are unlikely to be accurately estimated even for large J. Importantly, the summary of 

findings and recommendations in Table 2 apply to the entire pool of J values 

specified earlier. 

 

Table 2. Summary of Findings and Recommendations for Minimum J for the 

Random Slope Model 

Distribution of Level-2 

Residuals 

Parameter Minimum 

Recommended J 

Normal Fixed effects (𝛾00, 𝛾01, 𝛾10, 
and 𝛾10) 

15 

 Variance components (𝜏00 

and 𝜏11) 

30 

𝑡𝑑𝑓 = 5  Fixed effects 15 

 Variance components --- 

gamma(2,6) Fixed effects 25 

 Variance components --- 

exponential Fixed effects 30 

 Variance components --- 

 

It is important to note that our results provide partial support for the 30/30 rule of 

thumb advocated by Kreft (1996) for normally-distributed model residuals. For the 

non-normal cluster residual distributions we studied, our findings reveal that 

parameter estimation accuracy can decrease with larger sample sizes, which 

contradicts the commonly held belief that increasing sample size will alleviate the 

effects of violated assumptions. Our findings speak to the importance of model 

checking to ensure normality at level-2 is plausible (along with other model 

assumptions).   
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