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The generalization of the Rayleigh distribution has been introduced by several
authors in recent years. In this article, generalization of Rayleigh distribution has
been derived by length- biased transformer technique named length biased Rayleigh-
Rayleigh distribution. (LB-RRD). The statistical properties of LB-RRD have been
formulated. Estimation of parameter is carried out by method of maximum
likelihood. Three data sets are taken to show the superiority of LB-RRD with other
competing distributions.

Keywords: Rayleigh- Rayleigh distribution, Moments, Length- Biased and
Estimation.

1. Introduction

Recently improvement of classical distribution has become a common phenomenon.
Classical distributions have not fitted with the complex data in many situations, so
there is a necessary to introduce a new model for better exploration for the results of
the complex data. The new model can be formulated by adding an extra parameter or
method of generator, or mixture of base distribution. These techniques came into
exitance in the last few decades in statistical theory and continue. The goal of
introducing any model is to improve the flexibility and adoptability of complex data
or to attain better fits to the compared with related distributions.

Several methods of generating new model were given in the literature such as,
exponentiated (Gupta et al. [1]), Quadratic rank transmutation (Aryall and Tsokos
[2]), alpha power transformation (Mahdavi and Kundu [3]). Another important
technique for induction of a new distribution was generated by (Cox, [4]) named
Length-Biased (LB). This method offers a wide range of practical applications in
many industries such as reliability, mathematical financiers, actuarial science,
biomedical sciences, and survival analysis.
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Rayleigh distribution (RD) named after Lord Rayleigh [5] is a very familiar
probability model and has a handful of applications in life testing, applied statistics,
reliability analysis, and medicines etc. Since its inception numerous authors have
demonstrated the importance of RD in different fields of studies. Some notable
contributions on Rayleigh distribution are given by Siddiqui [6] Hoffman and karst
[7], Howlader [8], Hirano, K. [9], Lalitha and Mishra [10], Bekker et al. [11], Kundu
and Ragab [12], Abd-Elfattah et al. [13], Voda [14], Dey [15], Merovci [16, 17],
Merovci and Elbatal [18], Mahmoud and Ghazal [19]), Fundi et al. [20], Ateek et al.
[21] and cited references therein.

The random variable (r.v.) X has the extended Rayleigh distribution called Rayleigh-
RD if its probability density function (PDF) is given by.

x3 x*
g()ﬂ:WeXp(—W), x>0, ﬁ,0'>0, (1)
The cumulative density function (CDF) of (1) is.
x4-
G(x):l—exp(—W) x>0, B,O'>0. (2)

The rth moments is.
i = 81T gl (Z +1). 3)
r 4

This extension of RD and its novelty over baseline distribution is studied Ateek et al.
[21] in detail. More details on R- RD readers are referred to Ateek et al. [21].

The paper is organized as follows: Sect. 1 is based on the introduction. Sect. 2
generates the length biased R-RD distribution. Some properties of LB-RRD are
developed in Sect. 3. Maximum likelihood estimation is taken to estimate the
parameters in Sect. 4. The performance of LB-RRD with other models is verified by
considering three real data sets in Sect. 5. The conclusion is reported in the last
section.

2. The LB- RRD Model

Since Cox [4] brought up the idea of LB technique for the first time in literature,
there has been a significant growth in the study of LB distribution. The LB models
arise when the observations reported from a stochastic process are not assigned an
equal chance of being reported. Interested Surveys are given in Box and Cox [22],
Gupta and Keating [23], Khatree [24], Gupta and Tripathi [25], Kersey and Oluyede
[26], Saghir et al. [27], Mudassir and Ahmad [28] and Ekhosuehi et al. [29] and
recently among others.

Several authors utilized the LB method to re-extend Rayleigh distribution; for
example, Das and Roy [30] introduced LB Rayleigh distributions. Khadim and
Hussein [31] proposed LB exponential and Ryleigh distribution, Ajami and
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Jahanshahi [32] presented weighted RD, whereas weighted inverse Rayleigh
distribution was introduced by Fatima and Ahmad [33], Shakila and Mujahid [34]
investigated a new weighted RD. Moreover, Mustafa and Khan [35] proposed LB
powered inverse RD.

The L-B family of r.v. X has the PDF as

_ X.gx(x)
fu() =55 By #0. ©
From (1) and (3) into (4), then the PDF of LB-RR distribution is.
x* x*
X)=—F————exp|—~— ), x>0, ,o > 0. 5
P e () o(-57) g ©

The corresponding CDF of (5) is.

X 1
FG) = PIX <] = f fdu = —————

X u4
utexp| ———=|du
)L p( 8ﬁ402>

“2R5+5T (X
2 4p 021“(4
u4 l l 1 l _E x4'
Lett = g = U= (86*a?)+ tx then du = Z (88*c?)st sdt and t: 0 — YT
x4-
1 152 1 1 3
P = [ st g o
()
x4
ki f8ﬁ4a2 fie=t df = — T <5 ul ) (6)
= 4e = - — .
1 1 4’ 8B%02
r(3)% r(;) \*9

Where I'(k, t) is incomplete gamma function.
The reliability function (RF) of LB-RR distribution is

4 5 t*
o' )
The failure rate function (HRF) is given as
s e ()

RO 2o [r () - ar (o)

Figures 1 and 2 show that the LB-RRD is unimodal and hf is increasing for the
chosen parameters.

Rt)=P[T>t]=1-F(t)=1-

A(t)
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Figure 2. Shapes of h(t) for different values of g and o.

This study aims to introduce LBRR distribution using the length biased method. This
model will be more flexible in examining the lifetime data. We are Kkin to introduce
the (LBRR) distribution because of:

1)
(2)

It unifies well-known lifetime distributions.
It is a unimodal and increasing HRF.
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3 It can be viewed as a good model for fixed skewed data that may not be
suitably fitted by other distributions and conclusions extracted from them are shown
to be quite comprehensive. It has several uses in industrial reliability, survival
analysis, sports and many more.

3. Basic Properties

Some basic properties of the LB-RRD are investigated in Section 3.
Theorem 1. Let X~LBRRD (B, o), then r** moments of (5) is.

| a(8ptod)i _r+1

== ( ) +1). %)
r(;)

Proof. Since

W= E[X"] = f X7 () dx

0

1 jm r+4 < X4 d
=771 35 .~ X exp| — X
Los S 8B%a?
24 O'ZF(4) 0
o
8B%a2

1 1
Let u = = x = (8% ) ux.

Then,
1 3
dx = i(8,8402)1 u +du and u: 0 — oo.

Therefore,

! T 1 001 4 2 15 ﬂ —u
Mr=E[X]=_l—§1] Z(8ﬁ0')4 us+e du
o)
4 (8,8402)2]“’ e p 4(8,8402)2 (r +1 N 1)
- - 4 = .
ORI R
4 4

From (7), the mean of the LB-RR is.

u=E[X] = HEp o) (1 + 1) _ ZipNmo

@) )

Also, from (7), the 2" moment is.
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48B%?) 3\ 6V2%c (3
Tgr(z“)—Ti)ar(z)

Therefore, the variance is.

E(X?) =

o2 = E[X?] — (E[X])? = 220 2|, (3) A

1 4 (A
r(;) r(;)
The mode of the LB-RR distribution is derived from.
d

af(x) =0

Then

x4 4 7 x4

__xt x? X

4x3e 8% — 85702 e SB%Zl
o

= )

4x3 x* _x
= 1- e 88*? = (.
1 5
—2R552T (X ( 83402>
i)
4
Then x = 0,0r1 — 8;402 = 0, thus the mode is

1 3
Mode = (8%02)s = 214 /0.
The coefficient of skewness of the LB-RR can be obtained as follows.

o o3 , LN

(.Uz — )2
Where ;. is the rth moments about the origin and ,. is the rth moments about the
mean.

X — 3 " 3uul 4 2 r3
Sk=E[( ﬂ>l=£_ll3 M1z ﬂ1.

From (7) we can calculate the coefficient of skewness as follows.
2[2[r ()] -ovar ()r ) + 8]
sk = 3
[r(G)r () —4a]

Therefore, the LB-RRD is negative skewed and nearly symmetric, —0.5 < SK <
0.5. Also, the Sk for LB-RR distribution is independent of the parameters’ values.

=—-0.11

And the coefficient of kurtosis of the LB-RR can be obtained as follows.

’ ror 12 7 ’
X—u * Ko Pg —4paps + 641" 1y _3#14
ku=E :—4: 2
d d (w5 —m1")
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From (7) we can calculate the coefficient of kurtosis as follows.

4 2
5 1 1 1 3 2
2(r(3)) -2V (r(3)) +72ar (§)r(2) - aer
u= —— > =2.819
[3r(3)r ;) - 4|
The LB-RRD is Platykurtic or short-tailed distribution, ku < 3.0. Also, the ku for
LB-RR distribution is independent of the parameters’ values.

Theorem 2. The moment generating function (mgf) from LB-RR distribution is.

2t 4(8B% %) 1+ 1

Mx(t)zzF k r( ) +1). ®)
@)

Proof. The mgf is given by.

My (t) = E(e™)

= fooetxf(x,ﬁ, o)dx
0

(o] tr o
:Z_f X F(x, B, 5)dx
rl )y
r=0
(o] tr
= ﬁ.ur- (9)
r=0

Put the expression given in (7) into (9). We obtained the (8).
Similarly, characteristic function (c¢f) of LB- RRD is given as

2 (i) 4(83402)§F (r v 1>.

ox(t) = , - (10)
s () *
and cumulant generating function (cgf) is given as
K(t) = log ¢x(t)
2 (it) 4(8B% %) r+1
_log| S0 (ﬁa)r(r +1). (11)
r! [‘(l) 4
r=0 4
4. Estimation

Let x4, x,,+:+, x, denote a random sample from the LB-RR distribution, which has
the parameters (B, o). The likelihood function (LF) is.
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4
LB a)—]_[f(xl,ﬁ a)—]_[[ — exp<—8ﬁxT,z)- (12)
23502

The log- LF is.

£=—nin(27r (2 n(5560) + 457 Ly 13
= —nlin 4 (Z) —n n(ﬁ O'Z)+ Zln(xi)_SRT.'zzlxi. ( )
The first partial derivatives (FPD) of (13) are as follows.

n

813_ 5n+ 1 24
a8~ B 2par LT

=1
n

L 5n 1 4
o=
do 20 4f%03 ¢ -
1=
The MLEs of g and o can be obtained by equating the FPD with zero and solve the
obtained equations with respect to § and o.

n

5n 1 4
—?"‘—Zﬁsazzxi =0, (14)
i=1
n
—5—"+sz4=0. (15)
20  4p4o3 £ '
From (14) and (15) we have
108402 = uj. (16)

This equation has no closed form solution in g and o. To use a numerical program
system to achieve its solution with respect to parameters.

The MLE estimators are asymptotically normally distributed with multivariate
normal distribution. We derive asymptotic confidence intervals (C.l.) of unknown
parameters using variance covariance(V-C) matrix V, see, Lawless [36].

(ﬁ’\l 6) ~ NZ(@, V)y
where © = (f,0) and V is

-1

%L 0%L
2p? df0o
0%L 0%L
- )
dodf do 0.6
where,
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n

9’ 5n 5 25 .
U — X
6'82 ’BZ 2[860-2 L’

i=1
9%L 1 ji .
= — xX;,
d0dp 503 4 . '
i=
2L 5n 3 U,
92 202 434042 X
i=1

Large sample (1 —§)100% C. I. for ® = (, o) has the following explanation.
B+ zs /var(ﬁ), and 6 + zs \/var(6)
2 2

where zs,, is the upper 100§-th percentile of N(0,1), and var(0;) is the it
element in V diagonally.

5. Real Data Applications

The purpose of a new model is to surge its adaptability and suitability, which
confirms its usefulness in various domain of studies, particularly in lifetime analysis.
In this section, we have explored the comparative performance of LB-RRD with two
existing distributions: Rayleigh distribution (RD) by Lord Rayleigh [5], An
extension of Rayleigh distribution (RRD) by Ateek et al. [21].

Goodness of fit measures as follows:
= Akaike information criterion (A= AIC) by Akaike [37]
A, =2m — 24,

=  Akaike information criterion with correction (A,= AICC) by Hurvich and Tsai
[38].

2m(m + 1)

k—-m+1’

= Bayesian information criterion (A;= BIC) by Schwarz [39].
Az =nlin(k) — 2¢,

= Hannan-Quinn information criterion (A,= HQIC) by Hannan and Quinn [40]
A, = 2nlIn[In(k)] — 24,

= Kolmogorov Smirnov (As= K — §) statistic,
As = supy |Fk(x) - F"(x)|,

A2=A1+

10
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»  The determination coefficient (A= R?):
~ _ 2
Xj=1 (F(xj) - F(x,-))
Ag = N _ 2 ~ 2
¥ (F(xj) - F(x,-)) +25, (Fk(xj) - F(xj))

=  The root mean square error (A,= RMSE):

P

2, = ,12 (Fe) - F(x))

have been used, where m represents the number of parameters and k represents the
sample size, F(x) is estimated CDF and F (x) is the empirical distribution function,

k K
_ 1 - 1
F(x)=EZF(xj), F, (x)=EZI(x(j)S x)
j=1 j=1
and
1, if x(n < x
Iz < :{ ’ O
(x(]) x) 0, otherwise

If the proposed model has the lowest value of goodness of fit measures among all
fitted model, then this new model can be opted as the best fit.

Dataset 1: The following data is extracted from Nicholas and Padgett [41]. These are
breaking stress of carbon fibers of 50 mm length (GPa).

039 085 108 125 147 157 161 161 169 180 1.84
187 189 203 203 205 212 235 241 243 248 250
253 255 255 256 259 267 273 274 279 281 282
285 287 288 293 29 29 297 309 311 311 315
315 319 322 322 327 328 331 331 333 339 339
35 360 365 368 370 375 420 438 442 470 490

Table 1 describes MLEs and goodness of fit measures for dataset 1.

11
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Table 1. MLEs and goodness of fit measures

Models

Goodness of fit measures

MLEs

G

L

Ay

Az

A3

Ay

Ag Ag A, | p-value

RD

2.049

-98.208

198.417

198.479

200.606

199.282 | 0.227 | 0.760 | 0.119 | 0.002

RRD

0.966

2.897

-96.498

196.995

197.186

201.375

198.726 | 0.628 | 0.347 | 0.378 | 1.01E-23

LB-RR

1.322

1.761

-91.602

187.204

187.394

191.583

188.934 | 0.117 | 0.966 | 0.057 | 0.314

The Log-Likelihood Function.

It concluded that we get a more significant result as compared to others. Hence, LB-
RR distribution is best fit for the considered data.

The V-C matrix is given as
—3.241 x 104

—3.241 x 10*

1.216 x 10*

8.636 x 10*

Then the 95% C. I. for § and o for LB-RR distribution are (0, 217.475) and (0,

577.756), respectively.
It is shown that the LF has a unique solution by Figures 3-5.

—148

1 1.15

a

' b - -
1.3 145 16 1.75

: ' : i | >
19 205 22 235 25

Figure 3: The depiction of log-LF.

Dataset 2: The second data set is taken by workers at the UK National Physical
Laboratory on the strengths of 1.5 cm glass fibers. These data are also analyzed by
Smith and Naylor [42] and Bourguignon et al. [43]. The values are as follows:

12
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055 074 077 081 084 093 104 111 113 124 125 127
128 129 13 136 139 142 148 148 149 149 15 15
151 152 153 154 155 155 158 1.59 16 161 161 161
161 162 162 163 164 166 166 1.66 167 168 168 1.69
1.7 17 173 176 176 177 178 181 182 184 184 189
2 201 224
Table 2 describes MLEs and goodness of fit measures for dataset 2.
Table 2. MLEs and goodness of fit measures
Models | MLEs Goodness of fit measures
B 6 L Al AZ A3 A4 As A6 A7 p -Va|Ue
RD 1.089 | -- -49.791 | 101.582 | 101.647 | 103.725 | 102.425 | 0.334 | 0.415 | 0.188 | 9.851E-07
RRD 1.545 | 0.375 | -20.839 | 45.678 | 45.878 | 49.965 |47.364 | 0.664 | 0.243 | 0.416 | 2.434E-25
LB-RR | 1.432 | 0.391 | -18.118 | 40.235 | 40.435 |44.522 |41.921 |0.213 | 0.890 | 0.088 | 0.006

It has been indicated from Table 2 that LB-RR distribution is a better fit than other
distributions for dataset 2.

The V-C matrix is given as
3.516 x 103

—-1.919 x 103

—1.919 x 103

1.048 x 103

Then the 95% C. I. for § and o for LB-RR distribution are (0, 117.645) and (0,
63.841), respectively.

13




The Log-Likelihood Function

148.9
163.9
169.9
172.0
173.6
180.2
177.3
175.0
183.3

179.5

LENGTH BIASED EXTENDED RAYLEIGH DISTRIBUTION AND ITS
APPLICATIONS

Figure 4: The depiction of log-LF.

The Log-Likelithood Function

| | | | I I ' | | | I I
0.2 026 032 038 044 0.5 056 062 068 074 08 0.86

a

Dataset 3: The real data is recorded for 100 Australian female athletes (height in cm).

See (Raid et al. [44]).

149.0
165.0
170.0
172.2
173.7
180.5
177.5
175.0
184.6

179.6

156.0
166.1
170.0
172.3
173.8
180.5
177.5
175.3
184.7

179.6

156.9
166.7
170.3
172.5
174.0
180.9
177.8
175.6
185.0

179.7

157.9
167.3
170.8
172.6
174.0
181.0
177.9
176.0
185.2

179.7

158.9
167.9
171.1
172.7
174.0
181.3
178.0
176.0
186.2

179.8

162.0
168.0
171.4
173.0
174.1
182.1
178.2
176.0
186.3

179.9

162.0
168.6
171.4
173.3
174.1
182.7
178.7
176.0
188.7

180.2

Table 3 describes MLEs and goodness of fit measures for dataset 3.
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Table 3. MLEs and goodness of fit measures
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Models | MLEs Goodness of fit measures |
B & L Ay A, As A, Ag Ag A, | p-value
RD 12359 | -- -547.265 | 1097 1097 1099 1098 0.529 2.552E-25
3 0.015 | 0.285
RRD 15.747 | 43.746 | -479.249 | 962.499 | 962.623 | 967.709 | 964.608 | 0.899 | 0.001 | 0.544 | 2.498E-72
LB-RR | 29.256 | 11.336 | -466.966 | 937.931 | 938.055 | 943.142 | 940.04 | 0.430 | 0.092 | 0.242 | 2.238E-11

Table 3 reveals that LB-RR distribution can be taken as a best fit.

The V-C. Matrix is given as
1.538 x 10°

—1.192 x 10°

—1.192 x 10°

9.236 x 10*

Then the 95% C. I. for g and o for LB-RR distribution are (0, 797.908) and (0,
606.994), respectively.

The Log-Likelihood Function
|

6. Conclusion

The LB-RRD has been

Figure 5: The depiction of log-LF.

introduced. The basic statistical

characteristics are

successfully attained. The model has increasing failure rates depending on numeric
value of the parameters. The MLE for complete sample data has been applied to
estimate the unknown parameters. Numerical studies are applied for LB-RRD. We
notice that the performance of LB-RRD is better than the competitive distributions.

15
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