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The generalization of the Rayleigh distribution has been introduced by several 

authors in recent years. In this article, generalization of Rayleigh distribution   has 

been derived by length- biased transformer technique named length biased Rayleigh- 

Rayleigh distribution. (LB-RRD). The statistical properties of LB-RRD have been 

formulated. Estimation of parameter is carried out by method of maximum 

likelihood. Three data sets are taken to show the superiority of LB-RRD with other 

competing distributions.  

 

Keywords: Rayleigh- Rayleigh distribution, Moments, Length- Biased and 

Estimation. 

 

  

1. Introduction 

Recently improvement of classical distribution has become a common phenomenon. 

Classical distributions have not fitted with the complex data in many situations, so 

there is a necessary to introduce a new model for better exploration for the results of 

the complex data. The new model can be formulated by adding an extra parameter or 

method of generator, or mixture of base distribution. These techniques came into 

exitance in the last few decades in statistical theory and continue. The goal of 

introducing any model is to improve the flexibility and adoptability of complex data 

or to attain better fits to the compared with related distributions. 

Several methods of generating new model were given in the literature such as, 

exponentiated (Gupta et al. [1]), Quadratic rank transmutation (Aryall and Tsokos 

[2]), alpha power transformation (Mahdavi and Kundu [3]). Another important 

technique for induction of a new distribution was generated by (Cox, [4]) named 

Length-Biased (LB). This method offers a wide range of practical applications in 

many industries such as reliability, mathematical financiers, actuarial science, 

biomedical sciences, and survival analysis. 
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Rayleigh distribution (RD) named after Lord Rayleigh [5] is a very familiar 

probability model and has a handful of applications in life testing, applied statistics, 

reliability analysis, and medicines etc. Since its inception numerous authors have 

demonstrated the importance of RD in different fields of studies. Some notable 

contributions on Rayleigh distribution are given by Siddiqui [6] Hoffman and karst 

[7], Howlader [8], Hirano, K. [9], Lalitha and Mishra [10], Bekker et al. [11], Kundu 

and Raqab [12], Abd-Elfattah et al. [13], Voda [14], Dey [15], Merovci [16, 17], 

Merovci and Elbatal [18], Mahmoud and Ghazal [19]), Fundi et al. [20], Ateek et al. 

[21] and  cited references therein.  

The random variable (r.v.) 𝑋 has the extended Rayleigh distribution called Rayleigh- 

RD if its probability density function (PDF) is given by. 

𝑔(𝑥) =
𝑥3

2𝛽4𝜎2
exp (−

𝑥4

8𝛽4𝜎2
) ,   𝑥 > 0, 𝛽, 𝜎 > 0,                                                (1) 

The cumulative density function (CDF) of (1) is. 

𝐺(𝑥) = 1 − exp (−
𝑥4

8𝛽4𝜎2
) ,   𝑥 > 0, 𝛽, 𝜎 > 0.                                                     (2) 

The rth moments is. 

𝜇𝑟
′ = 8

𝑟

4𝛽𝑟𝜎
𝑟

2Γ (
𝑟

4
+ 1).                                                                                                         (3) 

This extension of RD and its novelty over baseline distribution is studied Ateek et al. 

[21] in detail. More details on R- RD readers are referred to Ateek et al. [21]. 

The paper is organized as follows: Sect. 1 is based on the introduction. Sect. 2 

generates the length biased R-RD distribution. Some properties of LB-RRD are 

developed in Sect. 3. Maximum likelihood estimation is taken to estimate the 

parameters in Sect. 4. The performance of LB-RRD with other models is verified by 

considering three real data sets in Sect. 5. The conclusion is reported in the last 

section. 

 

2. The LB- RRD Model 

Since Cox [4] brought up the idea of LB technique for the first time in literature, 

there has been a significant growth in the study of LB distribution. The LB models 

arise when the observations reported from a stochastic process are not assigned an 

equal chance of being reported. Interested Surveys are given in Box and Cox [22], 

Gupta and Keating [23], Khatree [24], Gupta and Tripathi [25], Kersey and Oluyede 

[26], Saghir et al. [27], Mudassir and Ahmad [28] and Ekhosuehi et al. [29] and 

recently among others. 

Several authors utilized the LB method to re-extend Rayleigh distribution; for 

example, Das and Roy [30] introduced LB Rayleigh distributions. Khadim and 

Hussein [31] proposed LB exponential and Ryleigh distribution, Ajami and 
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Jahanshahi [32] presented weighted RD, whereas weighted inverse Rayleigh 

distribution was introduced by Fatima and Ahmad [33], Shakila and Mujahid [34] 

investigated a new weighted RD. Moreover, Mustafa and Khan [35] proposed LB 

powered inverse RD.  

The L-B family of r.v. 𝑋  has the PDF as 

𝑓𝑋(𝑥) =
𝑋. 𝑔𝑋(𝑥)

𝐸𝑔(𝑋)
,   𝐸𝑔(𝑋) ≠ 0.                                                                                          (4) 

From (1) and (3) into (4), then the PDF of LB-RR distribution is. 

𝑓(𝑥) =
𝑥4

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
exp (−

𝑥4

8𝛽4𝜎2
) , 𝑥 > 0 , 𝛽, 𝜎 > 0.                            (5) 

The corresponding CDF of (5) is. 

𝐹(𝑥) = 𝑃[𝑋 ≤ 𝑥] = ∫ 𝑓(𝑢)𝑑𝑢
𝑥

−∞

=
1

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
∫ 𝑢4 exp (−

𝑢4

8𝛽4𝜎2
)𝑑𝑢

𝑥

0

 

Let 𝑡 =
𝑢4

8𝛽4𝜎2
⟹   𝑢 = (8𝛽4𝜎2)

1

4 𝑡
1

4 then 𝑑𝑢 =
1

4
(8𝛽4𝜎2)

1

4 𝑡−
3

4𝑑𝑡 and 𝑡: 0 →
𝑥4

8𝛽4𝜎2
 

𝐹(𝑥) =
1

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
∫ 8𝛽4𝜎2𝑡𝑒−𝑢

1

4
(8𝛽4𝜎2)

1

4 𝑡−
3

4𝑑𝑡

𝑥4

8𝛽4𝜎2

0

 

=
4

Γ (
1

4
)
∫ 𝑡

1

4𝑒−𝑢 𝑑𝑡

𝑥4

8𝛽4𝜎2

0

=
4

Γ (
1

4
)
 Γ (
5

4
,
𝑥4

8𝛽4𝜎2
).                                                           (6) 

Where Γ(𝑘, 𝑡) is incomplete gamma function. 

The reliability function (RF) of LB-RR distribution is 

𝑅(𝑡) = 𝑃[𝑇 > 𝑡] = 1 − 𝐹(𝑡) = 1 −
4

Γ (
1

4
)
 Γ (
5

4
,
𝑡4

8𝛽4𝜎2
) 

The failure rate function (HRF) is given as 

𝜆(𝑡) =
𝑓(𝑡)

𝑅(𝑡)
=

𝑡4 exp (−
𝑡4

8𝛽4𝜎2
)

2−
1

4𝛽5𝜎
5

2 [Γ (
1

4
) − 4 Γ (

5

4
,

𝑡4

8𝛽4𝜎2
)]

 

Figures 1 and 2 show that the LB-RRD is unimodal and hf is increasing for the 

chosen parameters. 
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Figure 1. Shapes of density of LB-RRD, for selected values of 𝛽 and 𝜎. 

 

 

 

Figure 2. Shapes of h(t) for different values of 𝛽 and 𝜎. 

 

 

This study aims to introduce LBRR distribution using the length biased method. This 

model will be more flexible in examining the lifetime data. We are kin to introduce 

the (LBRR) distribution because of: 

(1) It unifies well-known lifetime distributions. 

(2) It is a unimodal and increasing HRF. 
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(3) It can be viewed as a good model for fixed skewed data that may not be 

suitably fitted by other distributions and conclusions extracted from them are shown 

to be quite comprehensive. It has several uses in industrial reliability, survival 

analysis, sports and many more. 

 

3. Basic Properties 

Some basic properties of the LB-RRD are investigated in Section 3. 

Theorem 1. Let 𝑋~𝐿𝐵𝑅𝑅𝐷(𝛽, 𝜎), then 𝑟𝑡ℎ moments of (5) is. 

𝜇𝑟
′ =

4(8𝛽4𝜎2)
𝑟

4

Γ (
1

4
)

Γ (
𝑟 + 1

4
+ 1).                                                                                         (7) 

Proof. Since 

𝜇𝑟
′ = 𝐸[𝑋𝑟] = ∫ 𝑥𝑟𝑓(𝑥)𝑑𝑥

∞

0

 

=
1

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
∫ 𝑥𝑟+4 exp(−

𝑥4

8𝛽4𝜎2
)

∞

0

𝑑𝑥 

Let  𝑢 =
𝑥4

8𝛽4𝜎2
⟹   𝑥 = (8𝛽4𝜎2)

1

4 𝑢
1

4 . 

Then,  

𝑑𝑥 =
1

4
(8𝛽4𝜎2)

1

4 𝑢−
3

4𝑑𝑢 and 𝑢: 0 → ∞. 

Therefore, 

𝜇𝑟
′ = 𝐸[𝑋𝑟] =

1

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
∫

1

4
(8𝛽4𝜎2)

𝑟+5

4  𝑢
𝑟+1

4 𝑒−𝑢
∞

0

 𝑑𝑢 

=
4 (8𝛽4𝜎2)

𝑟

4

Γ (
1

4
)

∫  𝑢
𝑟+1

4 𝑒−𝑢
∞

0

 𝑑𝑢 =
4(8𝛽4𝜎2)

𝑟

4

Γ (
1

4
)

Γ (
𝑟 + 1

4
+ 1).                      

From (7), the mean of the LB-RR is. 

𝜇 = 𝐸[𝑋] =
4(8𝛽4𝜎2)

1

4

Γ (
1

4
)

Γ (
1

2
+ 1) =

2
7

4𝛽√𝜋𝜎

Γ (
1

4
)
. 

Also, from (7), the 2nd moment is. 
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𝐸(𝑋2) =
4(8𝛽4𝜎2)

2

4

Γ (
1

4
)

Γ (
3

4
+ 1) =

6√2𝛽2𝜎

Γ (
1

4
)
Γ (
3

4
) 

Therefore, the variance is. 

𝜎2 = 𝐸[𝑋2] − (𝐸[𝑋])2 =
2𝛽2𝜎 √2

Γ (
1

4
)
[3Γ (

3

4
) −

4𝜋

Γ (
1

4
)
].  

The mode of the LB-RR distribution is derived from.  

𝑑

𝑑𝑥
𝑓(𝑥) = 0 

Then 

𝑑

𝑑𝑥
𝑓(𝑥) =

1

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
[4𝑥3𝑒

−
𝑥4

8𝛽4𝜎2 −
4𝑥7

8𝛽4𝜎2
𝑒
−

𝑥4

8𝛽4𝜎2] 

=
4𝑥3

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
(1 −

𝑥4

8𝛽4𝜎2
) 𝑒

−
𝑥4

8𝛽4𝜎2 = 0. 

Then  𝑥 = 0, or 1 −
𝑥4

8𝛽4𝜎2
= 0, thus the mode is 

𝑀𝑜𝑑𝑒 = (8𝛽4𝜎2)
1

4 = 2
3

4𝛽 √𝜎. 

The coefficient of skewness of the LB-RR can be obtained as follows. 

𝑠𝑘 = 𝐸 [(
𝑋 − 𝜇

𝜎
)
3

] =
𝜇3
𝜎3
=
𝜇3
′ − 3𝜇1

′𝜇2
′ + 2𝜇1

′ 3

(𝜇2
′ − 𝜇1

′ 2)
3

2

. 

Where 𝜇𝑟
′  is the rth moments about the origin and 𝜇𝑟 is the rth moments about the 

mean. 

From (7) we can calculate the coefficient of skewness as follows. 

𝑠𝑘 =
2 [2 [Γ (

1

4
)]
2

− 9√𝜋Γ (
1

4
) Γ (

3

4
) + 8 𝜋√𝜋]

[3Γ (
3

4
) Γ (

1

4
) − 4𝜋]

3

2

= −0.11 

Therefore, the LB-RRD is negative skewed and nearly symmetric, −0.5 < 𝑆𝐾 <
0.5. Also, the Sk for LB-RR distribution is independent of the parameters’ values. 

And the coefficient of kurtosis of the LB-RR can be obtained as follows. 

𝑘𝑢 = 𝐸 [(
𝑋 − 𝜇

𝜎
)
4

] =
𝜇4
𝜎4
=
𝜇4
′ − 4𝜇1

′𝜇3
′ + 6𝜇1

′ 2𝜇2
′ − 3𝜇1

′ 4

(𝜇2
′ − 𝜇1

′ 2)
2  
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From (7) we can calculate the coefficient of kurtosis as follows. 

𝑘𝑢 =

5

4
(Γ (

1

4
))
4

− 32√𝜋 (Γ (
1

2
))
2

+ 72𝜋Γ (
1

4
) Γ (

3

4
) − 48𝜋2

[3Γ (
3

4
) Γ (

1

4
) − 4𝜋]

2 = 2.819 

The LB-RRD is Platykurtic or short-tailed distribution, 𝑘𝑢 < 3.0. Also, the 𝑘𝑢 for 

LB-RR distribution is independent of the parameters’ values. 

Theorem 2. The moment generating function (𝑚𝑔𝑓) from LB-RR distribution is. 

𝑀𝑋(𝑡) =∑
𝑡𝑟

𝑟!

∞

𝑟=0

4(8𝛽4𝜎2)
𝑟

4

Γ (
1

4
)

Γ (
𝑟 + 1

4
+ 1).                                                                       (8) 

Proof. The 𝑚𝑔𝑓  is given by. 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡𝑋) 

= ∫ 𝑒𝑡𝑥𝑓(𝑥, 𝛽, 𝜎)𝑑𝑥
∞

0

 

=∑
𝑡𝑟

𝑟!

∞

𝑟=0

∫ 𝑥𝑟𝑓(𝑥, 𝛽, 𝜎)𝑑𝑥
∞

0

 

=∑
𝑡𝑟

𝑟!

∞

𝑟=0

𝜇𝑟
′ .                                                                                                                               (9) 

Put the expression given in (7) into (9). We obtained the (8). 

Similarly, characteristic function (𝑐𝑓)  of LB- RRD is given as 

𝜙𝑋(𝑡) =∑
(𝑖𝑡)𝑟

𝑟!

∞

𝑟=0

4(8𝛽4𝜎2)
𝑟

4

Γ (
1

4
)

Γ (
𝑟 + 1

4
+ 1).                                                                (10) 

and cumulant generating function (𝑐𝑔𝑓) is given as 

𝐾(𝑡) = log𝜙𝑋(𝑡) 

= log [∑
(𝑖𝑡)𝑟

𝑟!

∞

𝑟=0

4(8𝛽4𝜎2)
𝑟

4

Γ (
1

4
)

Γ (
𝑟 + 1

4
+ 1)].                                                                  (11) 

 

4. Estimation 

Let 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 denote a random sample from the LB-RR distribution, which has 

the parameters (𝛽, 𝜎). The likelihood function (𝐿𝐹) is.  
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𝐿(𝛽, 𝜎) =∏𝑓(𝑥𝑖 , 𝛽, 𝜎)

𝑛

𝑖=1

=∏[
𝑥4

2−
1

4𝛽5𝜎
5

2Γ (
1

4
)
exp(−

𝑥4

8𝛽4𝜎2
)]

𝑛

𝑖=1

.                         (12) 

The log- 𝐿𝐹 is. 

ℒ = −𝑛 ln (2−
1

4Γ (
1

4
)) − 𝑛 ln (𝛽5𝜎

5

2) + 4∑ln(𝑥𝑖)

𝑛

𝑖=1

−
1

8𝛽4𝜎2
∑𝑥𝑖

4

𝑛

𝑖=1

.                  (13) 

The first partial derivatives (FPD) of (13) are as follows. 

𝜕ℒ

𝜕𝛽
= −

5𝑛

𝛽
+

1

2𝛽5𝜎2
∑𝑥𝑖

4

𝑛

𝑖=1

,  

𝜕ℒ

𝜕𝜎
= −

5𝑛

2𝜎
+

1

4𝛽4𝜎3
∑𝑥𝑖

4

𝑛

𝑖=1

, 

The MLEs of 𝛽 and 𝜎 can be obtained by equating the FPD with zero and solve the 

obtained equations with respect to 𝛽 and 𝜎. 

−
5𝑛

𝛽
+

1

2𝛽5𝜎2
∑𝑥𝑖

4

𝑛

𝑖=1

= 0,                                                                                                 (14) 

−
5𝑛

2𝜎
+

1

4𝛽4𝜎3
∑𝑥𝑖

4

𝑛

𝑖=1

= 0.                                                                                                 (15) 

From (14) and (15) we have 

10𝛽4𝜎2 = 𝜇4
′ .                                                                                                                        (16) 

This equation has no closed form solution in 𝛽 and 𝜎. To use a numerical program 

system to achieve its solution with respect to parameters. 

The MLE estimators are asymptotically normally distributed with multivariate 

normal distribution. We derive asymptotic confidence intervals (C.I.) of unknown 

parameters using variance covariance(V-C) matrix V, see, Lawless [36]. 

(�̂�, �̂�) ∼ 𝑁2(Θ, 𝑉), 

where Θ = (𝛽, 𝜎) and V is  

(

 
 
−
𝜕2ℒ

𝜕𝛽2
−
𝜕2ℒ

𝜕𝛽𝜕𝜎

−
𝜕2ℒ

𝜕𝜎𝜕𝛽
−
𝜕2ℒ

𝜕𝜎2 )

 
 

Θ→Θ̂

−1

. 

where, 
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𝜕2ℒ

𝜕𝛽2
=
5𝑛

𝛽2
−

5

2𝛽6𝜎2
∑𝑥𝑖

4

𝑛

𝑖=1

,   

𝜕2ℒ

𝜕𝜎𝜕𝛽
= −

1

𝛽5𝜎3
∑𝑥𝑖

4

𝑛

𝑖=1

,  

𝜕2ℒ

𝜕𝜎2
=
5𝑛

2𝜎2
−

3

4𝛽4𝜎4
∑𝑥𝑖

4

𝑛

𝑖=1

,  

Large sample  (1 − 𝛿)100% C. I. for Θ = (𝛽, 𝜎) has the following explanation.  

�̂� ± 𝑧𝛿
2

 √𝑣𝑎𝑟(�̂�), and  �̂� ± 𝑧𝛿
2

 √𝑣𝑎𝑟(�̂�) 

where 𝑧𝛿/2 is the upper 100
𝛿

2
 -th percentile of 𝑁(0,1), and 𝑣𝑎𝑟(Θ̂𝑖) is the 𝑖𝑡ℎ 

element in 𝑉 diagonally. 

 

5. Real Data Applications 

The purpose of a new model is to surge its adaptability and suitability, which 

confirms its usefulness in various domain of studies, particularly in lifetime analysis. 

In this section, we have explored the comparative performance of LB-RRD with two 

existing distributions: Rayleigh distribution (RD) by Lord Rayleigh [5], An 

extension of Rayleigh distribution (RRD) by Ateek et al. [21]. 

Goodness of fit measures as follows:  

▪ Akaike information criterion (∆1= 𝐴𝐼𝐶) by Akaike [37] 

Δ1 = 2𝑚 − 2ℓ, 

▪ Akaike information criterion with correction (∆2= 𝐴𝐼𝐶𝐶) by Hurvich and Tsai 

[38]. 

Δ2 = Δ1 + 
2𝑚(𝑚 + 1)

𝑘 − 𝑚 + 1
, 

▪ Bayesian information criterion (∆3= 𝐵𝐼𝐶) by Schwarz [39]. 

Δ3 = 𝑛 ln(𝑘) − 2ℓ, 

▪ Hannan-Quinn information criterion  (∆4= 𝐻𝑄𝐼𝐶) by Hannan and Quinn [40] 

Δ4 = 2𝑛 ln[ln(𝑘)] − 2ℓ, 

▪ Kolmogorov Smirnov (∆5= 𝐾 − 𝑆) statistic,  

Δ5 = 𝑠𝑢𝑝𝑥 |𝐹𝑘(𝑥) − �̂�(𝑥)|, 
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▪ The determination coefficient (∆6= 𝑅
2): 

Δ6 =
∑ (�̂�(𝑥𝑗) − �̅�(𝑥𝑗))

2
𝑘
𝑗=1

∑ (�̂�(𝑥𝑗) − �̅�(𝑥𝑗))
2

𝑘
𝑗=1 + ∑ (𝐹𝑘(𝑥𝑗) − �̂�(𝑥𝑗))

2
𝑘
𝑗=1

 

▪ The root mean square error (∆7= 𝑅𝑀𝑆𝐸): 

Δ7 = [
1

𝑘
∑(𝐹𝑘(𝑥𝑗) − �̂�(𝑥𝑗))

2
𝑘

𝑗=1

]

1

2

 

have been used, where 𝑚 represents the number of parameters and 𝑘  represents the 

sample size, �̂�(𝑥) is estimated CDF and 𝐹𝑘(𝑥) is the empirical distribution function, 

  �̅�(𝑥) =
1

𝑘
 ∑�̂�(𝑥𝑗)

𝑘

𝑗=1

,             𝐹𝑘  (𝑥) =
1

𝑘
 ∑𝐼(𝑥(𝑗) ≤  𝑥)

𝑘

𝑗=1

 

and 

𝐼(𝑥(𝑗) ≤  𝑥 ) = {
1, if  𝑥(𝑗) ≤  𝑥

0, otherwise
  

If the proposed model has the lowest value of goodness of fit measures among all 

fitted model, then this new model can be opted as the best fit. 

Dataset 1: The following data is extracted from Nicholas and Padgett [41]. These are 

breaking stress of carbon fibers of 50 mm length (GPa).  

0.39 0.85 1.08 1.25 1.47 1.57 1.61 1.61 1.69 1.80 1.84 

1.87 1.89 2.03 2.03 2.05 2.12 2.35 2.41 2.43 2.48 2.50 

2.53 2.55 2.55 2.56 2.59 2.67 2.73 2.74 2.79 2.81 2.82 

2.85 2.87 2.88 2.93 2.95 2.96 2.97 3.09 3.11 3.11 3.15 

3.15 3.19 3.22 3.22 3.27 3.28 3.31 3.31 3.33 3.39 3.39 

3.56 3.60 3.65 3.68 3.70 3.75 4.20 4.38 4.42 4.70 4.90 

Table 1 describes MLEs and goodness of fit measures for dataset 1. 
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Table 1. MLEs and goodness of fit measures 

Models  MLEs Goodness of fit measures 

 �̂� �̂� ℒ ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 𝑝 -value 

RD 2.049 - -98.208 198.417 198.479 200.606 199.282 0.227 0.760 0.119 0.002 

RRD 0.966 2.897 -96.498 196.995 197.186 201.375 198.726 0.628 0.347 0.378 1.01E-23 

LB-RR 1.322 1.761 -91.602 187.204 187.394 191.583 188.934 0.117 0.966 0.057 0.314 

 

It concluded that we get a more significant result as compared to others. Hence, LB-

RR distribution is best fit for the considered data.   

The V-C matrix is given as  

𝑉 = (

1.216 × 104         − 3.241 × 104

 
−3.241 × 104        8.636 × 104

) 

Then the 95% C. I. for 𝛽 and  𝜎  for LB-RR distribution are (0, 217.475) and (0, 

577.756), respectively.  

It is shown that the LF has a unique solution by Figures 3-5. 

 

  

Figure 3: The depiction of log-LF. 

 

 

Dataset 2:  The second data set is taken by workers at the UK National Physical 

Laboratory on the strengths of 1.5 cm glass fibers. These data are also analyzed by 

Smith and Naylor [42] and Bourguignon et al. [43]. The values are as follows: 
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0.55 0.74 0.77 0.81 0.84 0.93 1.04 1.11 1.13 1.24 1.25 1.27 

1.28 1.29 1.3 1.36 1.39 1.42 1.48 1.48 1.49 1.49 1.5 1.5 

1.51 1.52 1.53 1.54 1.55 1.55 1.58 1.59 1.6 1.61 1.61 1.61 

1.61 1.62 1.62 1.63 1.64 1.66 1.66 1.66 1.67 1.68 1.68 1.69 

1.7 1.7 1.73 1.76 1.76 1.77 1.78 1.81 1.82 1.84 1.84 1.89 

2 2.01 2.24 
         

Table 2 describes MLEs and goodness of fit measures for dataset 2. 

 

Table 2. MLEs and goodness of fit measures 

Models  MLEs Goodness of fit measures 

 �̂� �̂� ℒ ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 𝑝 -value 

RD 1.089 -- -49.791 101.582 101.647 103.725 102.425 0.334 0.415 0.188 9.851E-07 

RRD 1.545 0.375 -20.839 45.678 45.878 49.965 47.364 0.664 0.243 0.416 2.434E-25 

LB-RR 1.432 0.391 -18.118 40.235 40.435 44.522 41.921 0.213 0.890 0.088 0.006 

 

It has been indicated from Table 2 that LB-RR distribution is a better fit than other 

distributions for dataset 2.   

The V-C matrix is given as  

𝑉 = (

3.516 × 103         − 1.919 × 103

 
−1.919 × 103        1.048 × 103

) 

Then the 95% C. I. for 𝛽 and  𝜎  for LB-RR distribution are (0, 117.645) and (0, 

63.841), respectively.  

 



 

LENGTH BIASED EXTENDED RAYLEIGH DISTRIBUTION AND ITS 

APPLICATIONS 

  

14 

 

  

Figure 4: The depiction of log-LF. 

 

 

Dataset 3: The real data is recorded for 100 Australian female athletes (height in cm). 

See (Raid et al. [44]). 

148.9 149.0 156.0 156.9 157.9 158.9 162.0 162.0 162.5 163.0 

163.9 165.0 166.1 166.7 167.3 167.9 168.0 168.6 169.1 169.8 

169.9 170.0 170.0 170.3 170.8 171.1 171.4 171.4 171.6 171.7 

172.0 172.2 172.3 172.5 172.6 172.7 173.0 173.3 173.3 173.5 

173.6 173.7 173.8 174.0 174.0 174.0 174.1 174.1 174.4 175.0 

180.2 180.5 180.5 180.9 181.0 181.3 182.1 182.7 183.0 183.3 

177.3 177.5 177.5 177.8 177.9 178.0 178.2 178.7 178.9 179.3 

175.0 175.0 175.3 175.6 176.0 176.0 176.0 176.0 176.8 177.0 

183.3 184.6 184.7 185.0 185.2 186.2 186.3 188.7 189.7 193.4 

179.5 179.6 179.6 179.7 179.7 179.8 179.9 180.2 177.3 195.9 

Table 3 describes MLEs and goodness of fit measures for dataset 3. 
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Table 3. MLEs and goodness of fit measures 

Models MLEs Goodness of fit measures 

�̂� �̂� ℒ ∆1 ∆2 ∆3 ∆4 ∆5 ∆6 ∆7 𝑝 -value 

RD 123.59

3 

-- -547.265 1097 1097 1099 1098 0.529 

0.015 0.285 

2.552E-25 

RRD 15.747 43.746 -479.249 962.499 962.623 967.709 964.608 0.899 0.001 0.544 2.498E-72 

LB-RR 29.256 11.336 -466.966 937.931 938.055 943.142 940.04 0.430 0.092 0.242 2.238E-11 

 

Table 3 reveals that LB-RR distribution can be taken as a best fit.   

The V-C. Matrix is given as  

𝑉 = (

1.538 × 105         − 1.192 × 105

 
−1.192 × 105           9.236 × 104

) 

Then the 95% C. I. for 𝛽 and  𝜎  for LB-RR distribution are (0, 797.908) and (0, 

606.994), respectively.  

  

Figure 5: The depiction of log-LF. 

 

 

6. Conclusion 

The LB-RRD has been introduced. The basic statistical characteristics are 

successfully attained. The model has increasing failure rates depending on numeric 

value of the parameters. The MLE for complete sample data has been applied to 

estimate the unknown parameters. Numerical studies are applied for LB-RRD. We 

notice that the performance of LB-RRD is better than the competitive distributions. 
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