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Hotelling’s T2 VS. The Rank Transform With Real Likert Data

Michael J. Nanna 
Department of Educational Leadership and Policy Studies 

Arizona State University

Monte Carlo research has demonstrated that there are many applications of the rank transformation that result in an 
invalid procedure. Examples include the two dependent samples, the factorial analysis of variance, and the factorial 
analysis of covariance layouts. However, the rank transformation has been shown to be a valid and powerful test in the 
two independent samples layout. This study demonstrates that the rank transformation is also a robust and powerful 
alternative to the Hotellings T2 test when the data are on a likert scale.
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Introduction

Hotelling’s T2 is a specific case of multivariate analysis of 
variance (MANOVA) having one independent variable with 
two levels and multiple dependent variables. It is the mul­
tivariate analogue of the independent samples t-test. In­
stead of examining differences in means between two 
samples on one dependent variable, Hotelling’s T2 tests 
for the equality of centroids (mean vectors) between two 
groups. T2 is a parametric test having the usual assump­
tions that theoretically must be met for its valid applica­
tion. For example, T2 assumes that the data of the underly­
ing distributions is normally distributed, (i.e., assumes 
multivariate normality), that there is independence of ob­
servations, and that the variance/covariance matrices are 
equal.

The Rank Transform (RT) is a set of nonpara- 
metric-like (and sometimes referred to as conditionally 
distribution-free) procedures. The RT is performed by re­
placing original observations with their respective ranks, 
computing a parametric statistic on these ranks, and then 
referring the test statistic to the usual table of critical val­
ues (Conover & Iman, 1981). It has been suggested that 
RT procedures have robustness and power properties simi­
lar to their parametric counterparts when normal theory 
assumptions are met, and have superior robustness and 
power properties when assumptions are not met (Conover 
& Iman, 1981).

Purpose of Current Study
The purpose of this study is to examine the ro­

bustness and power properties of the two independent 
sample Hotelling’s T2 test and the RT using Monte Carlo 
techniques with samples drawn from real data sets that are
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based on ordinal level likert scaled type data. An example 
of a common five-point likert scale is 1 “Strongly Dis­
agree”, 2 “Disagree”, 3 “Neutral”, 4 “Agree”, and 5 
“Strongly Agree”. The discrete nature of the response set 
precludes the normality distribution assumption from be­
ing met.

Relevance to Social and Behavioral Science Research
Using Monte Carlo methods, it is possible to ob­

serve the operating characteristics of a statistic under real 
situations. This is important because statistics frequently 
support and/or drive decisions and policy in real applied 
settings such as education, psychology, medicine, and other 
social and behavioral science disciplines. Using inappro­
priate (or less efficient) statistics can lead to “analyses that 
are less powerful, and potentially to inferences that are 
invalid” (Hunter & May, 1993, p. 386).

The implications are striking as examination of 
statistical power in clinical and applied research settings 
has consistently demonstrated low statistical power. The 
probability of committing a Type II error has been shown 
to reach .91 for detecting small effect sizes in applied data 
analysis (Cohen, 1962; Cohen, 1977; Sedlm eir & 
Gigerenzer, 1989; Matyas & Ottenbacher, 1993).

A discipline marked by studies with low statisti­
cal power means that researchers are unable to detect treat­
ment effects that otherwise might provide the basis for 
developing more effective programs or interventions. Fur­
thermore, strict reliance on statistical significance testing 
without consideration of robustness and power can lead to 
erroneous interpretation of research findings as research­
ers may decide to not follow up statistically insignificant 
results (Keppel, 1975). Lack of consensus and contradic­
tory findings in the literature may also preclude a disci­
pline from establishing a useful and dynamic body of 
knowledge (Ottenbacher, 1995). Issues of robustness and 
power are not theoretical problems, but rather pragmatic 
issues having important consequences in applied settings.

83
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Hotelling’s T2
Many studies on Hotelling’s T2 indicated it has 

acceptable Type I error rates under normal and various 
non-normal conditions (Jensen, 1982; Mardia, 1975; 
Kariya, 1981;Everitt, 1979; Harwell &Serlin; 1995; Blair, 
Higgins, Kamiski, & Kromrey; 1994; Hopkins & Clay; 
1963; Algina & Oshima; 1990; Ito & Schull; 1964; 
Holloway & Dunn, 1967). Other studies, however, have 
shown T2 displays inflated Type I error under asymmetry, 
even when sample sizes are relatively large (Chase & 
Bulgren, 1971; Serlin & Harwell, 1989; Utts & 
Hettsmanperger, 1980; andEveritt, 1979).

Hakstian, Roed & Lind (1979) offer the follow­
ing summary concerning the robustness of T2:

1. “The HT2 procedure is generally robust with respect 
to violation of the homogeneity of covariance matrix 
assumption for equal sample sizes, even when the ra­
tio of sample size to number of dependent variables is 
small.

2. “For n ^ n 2, however, the test moves rapidly towards 
unacceptable Type I error rates as the degree of popu­
lation covariance matrix heterogeneity is increased.

3. “The T2 procedure is not robust in the face of covari­
ance matrix heterogeneity coupled with unequal n’s, 
even for relatively mild departures from equality of 
the covariance matrices, sample sizes, or both.” (p. 
1,261)

Rank Transformation
The RT is a set of procedures that substitutes the 

ranks of data for the raw data values and then calculates a 
usual parametric statistic on the ranked data. It has been 
suggested that rank tests provide a useful alternative method 
of analysis when the assumptions of parametric tests (i.e., 
t and F) are not met. Initial simulation results indicated 
that the RT’s robustness and power properties are similar 
to its normal theory counterpart when assumptions are met, 
and are often superior when assumptions are not met 
(Conover & Iman, 1981).

Conover and Iman (1981) suggested the use of 
the RT as a bridge between parametric and nonparametric 
statistics for many different data analysis situations. Sub­
sequently, however, considerable journal space has been 
given to the RT’s lack of robustness and power for the two 
dependent samples, factorial analysis of variance, and fac­
torial analysis of covariance layouts, so there is no need to 
review those results here. The RT has been shown, how­
ever, to be a robust and powerful alternative to its para­
metric counterpart in the context of both the two indepen­
dent samples and the one-way analysis o f variance

layouts.
In terms of the multivariate two independent 

samples layout, Bhattacharyya, Johnson andNeave (1971), 
Tiku and Singh (1982), and Nath (1982) examined the ro­
bustness and comparative power properties of T2 and the 
rank transformed T2 (FR) and found both statistics to be 
robust for data samples from a uniform distribution. How­
ever, Type I error rates for both statistics exceeded that of 
nominal alpha under the exponential and lognormal distri­
butions (Everitt, 1979). Similar results were also found by 
Nath and Duran (1983). Zwick (1986) demonstrated that 
the RT is robust and often more powerful than the F test, 
but did not recommend its routine application due to its 
highly specific and volatile behavior. These studies, how­
ever, were limited to artificial distributions.

Scaling: Ordinal Measurement
The robustness and power of a statistic using data 

which is scaled at the ordinal level of measurement is im­
portant given the number of measures that exist in reha­
bilitation medicine, psychology, and education use ordinal 
data -  particularly Likert scales. There are numerous stud­
ies that address the issue of scales of measurement and its 
impact on a statistics performance but are beyond the scope 
of this paper. For a review on this issue, consult Anderson 
(1961); Boneau (1961); Senders (1958); Siegal (1956); 
Stevens (1946, 1951); Hsu and Feldt (1969); Heeren and 
D ’Agostino (1987); Nanna & Sawilowsky, (1998); Siegal, 
(1956); Stevens, (1946); Gaito, (1986); Lord, (1953); and 
Zumbo & Zimmerman, (1991).

Indeed, measurement issues have been debated 
in the statistics and measurement literature for decades in 
the context of the “weak measurement vs. strong statis­
tics” controversy. On the basis of considerable simulation 
evidence (see, e.g., Sawilowsky, 1990; Hunter & May, 
1993; Zumbo & Zimmermen, 1993; and Sawilowsky, 
1993), additional discussion on this issue will be dismissed 
from consideration in choosing between parametric and 
nonparametric tests.

There is a paucity of research on the properties 
of statistics applied to likert scaled data. The independent 
samples t-test was shown to be robust with respect to Type 
I errors in simulation studies conducted by Heeren & 
D’Agostino (1987) and Hsu & Feldt (1969). These results 
were replicated, and extended in terms of statistical power, 
for both the t-test and its rank transformation counterpart 
by Nanna & Sawilowsky (1998) for likert scaled data.

The likert scaled data used for this study was ob­
tained from the Functional Independence Measure (FIM), 
which is one of the most widely used assessment instru­
ments in medical rehabilitation. In fact, “about 60% of re­
habilitation facilities nationwide use the FIM” (Stineman, 
etal., 1996, p. 1101; see also Granger, etal., 1986). It was 
developed to provide uniform assessment of severity of
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disability and to specify medical rehabilitation outcomes, 
(e.g., physical, cognitive and social variables associated 
with disability.) It is an 18 item assessment tool comprised 
of multiple, 7-point likert scales which consist of scores 
which range from complete dependence (1) to complete 
independence (7). The scale was originally designed so 
that ratings on all 18 items were summed into a single score 
that was then used to estimate overall burden of care 
(Stineman, et al. 1996). Total FIM scores range from 18 
(complete dependence) to 126 (complete independence).

FIM scores are based on the observation of a pa­
tient meeting specific objective physical and behavioral 
criteria and are usually rated by clinical observation at the 
time of admission, and again prior to discharge from reha­
bilitation services. It is intended to measure levels of dis­
ability regardless of the underlying pathological condition 
and is considered independent of the rater’s clinical back­
ground (Brynes & Powers, 1989; Keith, et al., 1987; 
Granger, et al., 1990). Previous studies have indicated high 
levels of instrument reliability (r = .95, Byrnes & Powers, 
1989) and interrater agreement (.93 & .97, Hamilton, et 
al., 1991). Ottenbacher, et al., (1996), concluded that the 
FIM “provided good interrater reliability across a wide 
variety of raters with different professional backgrounds 
and levels of training. The median interrater reliability value 
was .95 and was based on a large cumulative sample of 
patients representing a wide variety of disability levels and 
medical conditions” (p. 1230).

Methodology

Monte Carlo techniques were used to independently sample 
from both admit and discharge data sets of several FIM 
score distributions. As suggested by Micceri (1989), real 
data sets were used to model admit and discharge popula­
tions (as opposed to using mathematically convenient dis­
tributions) associated with each FIM score.

The FIM scores used in this study were obtained 
by evaluating 903 geriatric patients admitted to a large Mid- 
Western rehabilitation facility from 1991 to 1995. Patients 
were evaluated using the FIM at the time of admission, 
and again at the time of discharge. Seven (1, 3, 4, 5, 6, 7, 
13) of the eighteen individual admit and discharge FIM 
score distributions were selected for further study and are 
depicted in Figures 1-7. The histograms of the remaining 
FIM score distributions were similar to these seven, and 
for parsimony, are not addressed in the current study.

Differences obtained from independently sam­
pling with replacement from the pre-test (admit) and then 
post-test (discharge) scores were used to represent gain 
due to treatment interventions (i.e., real treatment effects) 
as opposed to artificially modeled treatments (i.e., adding 
a constant to the initial distribution of scores to model a 
shift in location parameter) as has been done in previous

studies. Although no formal effect sizes are calculated for 
this study, differences between the admit and discharge 
populations may serve as evidence of the presence of ef­
fect sizes. Because the distributions used in this study are 
meant to represent the actual populations, effect sizes are 
implicit in the difference between the means of the admit 
and discharge populations (see Table 1.). Therefore, sam­
pling directly from the population distributions obviated 
the need to model synthetic treatment effects in this Monte 
Carlo study. Upon admission to the hospital, patients par­
ticipated in multiple treatment regimens during their stay 
at the hospital before being discharged. The treatment in­
terventions are presumed to account for the difference in 
means between admit and discharge distributions.

A subscale score was constructed for a separate 
study and, for this study, was used to model data scaled at 
a more continuous level of measurement. This subscale 
distribution, named OT, is a composite score comprised of 
seven FIM items that measure domains commonly assessed 
by occupational therapists. A list of descriptive statistics 
(e.g., mean, standard deviation, skew, and kurtosis) for each 
admit and discharge distribution used in this study can be 
found in Table 1.

A Fortran program was written for the IBM com­
patible Pentium PC accessing IMSL (1987) subroutines to 
sample with replacement for sample sizes n{ = n2 = (5,15), 
(10,10), (10,20), (15,15), (15,45), (30,30), (25,75), and 
(50,50) for the number of dependent variable combina­
tions of 2 and 5. In order to insure the validity of the 
Monte Carlo simulation, samples were initially taken from 
a multivariate normal distribution to examine actual Type 
I error rates produced under normality.

The first portion of this study consisted of exam­
ining the robustness of both T2 and the RT in both two- 
dependent and five-dependent variable combinations. The 
robustness portion of the study was performed by inde­
pendently sampling with replacement from each FIM ad­
mit distribution using different sample size and dependent 
variable combinations, calculating the appropriate statis­
tic, and comparing obtained alpha with nominal alpha lev­
els. A similar technique was employed for the five depen­
dent variable layout. For five dependent variables, addi­
tional runs were performed when sampling from each in­
dividual distribution five times (e.g., FIM 7 distribution 
serving as each dependent variable). A subset of the re­
sults are presented in this paper and are representative of 
the remaining results. A copy of the remaining results for 
dependent variable combinations are available from the 
author.

The second portion of this study consisted of ex­
amining the comparative power of T2 vs. the RT. This was 
accomplished by independently sampling, with replace­
ment, from FIM admit distributions, and then comparing 
that with a sample taken from the related discharge
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Table 1. Descriptive Statistics for Admit and Discharge Fim Distributions.
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Distribution Mean

Fim 1 Admit 5.37

Fim 1 Disch. 5.93

Fim 3 Admit 3.64

Fim 3 Disch. 4.81

Fim 4 Admit 4.40

Fim 4 Disch. 5.25

Fim 5 Admit 3.19

Fim 5 Disch. 4.45

Fim 6 Admit 3.87

Fim 6 Disch. 4.96

Fim 7 Admit 4.32

Fim 7 Disch. 5.29

Fim 13 Admit 1.15

Fim 13 Disch. 2.25

OTFim Admit 28.34

OTFim Disch. 35.54

distributions. The T2 test and the RT were calculated for 
the sample size and FIM admit/discharge distribution com­
binations outlined previously in the robustness portion of 
the simulation study. Each experiment was repeated at the 
.10, .05, and .01 alpha levels.

For the power portion of the study, group (admit 
vs. discharge) served as the primary independent variable 
(i.e., group one consisted of scores obtained from the ad­
mit distributions, and group two consisted of scores ob­
tained from the associated discharge distributions). FIM 
scores served as the dependent variables for each group 
(i.e., combinations of either 2 or 5 FIM scores which served 
as the dependent variables). Differences in randomly se­
lected FIM scores from the admit distributions were tested 
against randomly selected scores from their related dis­
charge distributions. Random and independent samples

Std. Dev. Kurtosis Skew

1.50 .69 -1.00

1.30 3.63 -1.79

1.33 -.22 -.05

1.47 -.02 -.84

1.47 .09 -.49

1.48 .61 -.96

1.44 -.51 .29

1.66 -.73 -.58

1.61 -1.01 -.17

1.71 -.22 -.92

1.88 -1.07 -.41

1.88 -.14 -1.05

.65 22.38 4.73

1.62 -.37 1.02

8.53 .67 -.05

9.02 .59 -.80

with replacement were selected for each sample size and 
number of dependent variable combinations.

It is emphasized that independent samples tests 
are appropriate for this study as individual scores were 
randomly selected with replacement from each distribu­
tion and not pairs of scores. In a separate study using the 
same data distributions, Nanna & Sawilowsky (1998) took 
independent random samples from several of the admit dis­
tributions used in this study and using Monte Carlo meth­
ods correlated them with independent samples drawn from 
their corresponding discharge distributions. They repeated 
this experiment 1,000,000 times, and found the long run 
correlation to be r = -.0083.
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Figure  1. Distribution of FIM 1 Scores

Figure 2. Distribution of FIM 3 Scores
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Figure 3. Distribution of FIM 4 Scores

Results
Robustness - Two Dependent Variables

Results of each test were recorded for both statis­
tics. The number of replications per experiment was 10,000 
and the proportion of rejections served as an indication of 
robustness or power for each statistic. The one-tailed power 
of T2 and the RT test were compared at the 0.10, 0.05, and 
0.01 alpha levels. Results for the .05 alpha level are pre­
sented in this paper with the remaining results (.10 and .01 
alpha levels) available from the first author.

The ability to detect differences between the ad­
mit and discharge data distributions (i.e., differences in the 
centroids or mean vectors), served as an estimate of power 
for each statistic. Power results in this study are estimates 
only as effect sizes may be different between the T2 and 
RT tests. However, the results do reflect realistic 
conditions.

It is important to note that the discharge distribu­
tions are comprised of scores from the same individuals as 
in the admit distributions after receiving treatment. The 
null hypothesis being tested is the independent hypothesis 
and not the matched-pairs hypothesis as samples are drawn 
independently and separately from both the admit and dis­
charge distributions. An example of the null hypothesis 
being tested in the power portion of this study using three 
dependent variables (e.g., FIM 1, FIM 3, and FIM 5) is as 
follows:
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Figure 4. Distribution of FIM 5 Scores

Figure 5. Distribution of FIM 6 Scores
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Figure 6. Distribution of FIM 7 Scores

90

Figure 7. Distribution of FIM 13 Scores
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In general, both T2 and RT were robust with re­
spect to Type I error using Bradley’s (1978) “liberal” 
(p. 146) criteria (|p~a| < a/2) but often non-robust using 
more stringent criteria in other reasonable conditions. This 
is particularly true the presence of a highly skewed distri­
bution such as FIM 13. The presence of the highly skewed 
FIM 13 distribution caused both tests to become very con­
servative. This was true for each alpha level examined (i.e., 
.10, .05, and .01).

This distribution is roughly analogous to the L- 
shaped distribution investigated by Bradley (1977; 1980; 
1982) which led to similar occurrences in the univariate 
case. Indeed, in situations where Fim 13 was sampled, the 
degree of non-robustness was quite pronounced with Type 
I error rates for both T2 and RT becoming extremely con­
servative, reaching a low of .0177 (normal alpha = .05) at 
sample size (5,15) using the combination of FIM 1 and 
FIM 13.

Levels of non-robustness, as expected, were de­
pendent on the interplay of several factors including sample 
size and alpha level. It is evident that, as in the univariate 
case, blanket statements concerning robustness of T2 and 
RT cannot be made. Moreover, where non-robustness was 
present, the RT was frequently more conservative than T2 
and, in general, levels of robustness did not improve as 
sample size increased.

Robustness - Five Dependent Variables
Results for the five-dependent variable condition 

were similar to the two-dependent variable and are located 
in Table 4. Both T2 and RT were relatively robust with 
respect to Type I error under most combinations but rela­
tively non-robust at others. As in the two-dependent vari­
able condition, when levels of non-robustness were found 
they tended to be conservative in the presence of extreme 
asymmetry such as that displayed in FIM 13. What is re­
markable is that each test became conservative when FIM 
13 was present, regardless of the combinations of other 
shapes. That is, the effect of a skewed distribution was not 
offset by the presence of more “tame” distributions. Un­
like the two-dependent variable condition, however, both 
tests tended to improve as sample size increased. There 
were, of course, several noted exceptions.

The levels of robustness had little deviation from 
nominal alpha except when the distribution sampled was 
highly skewed (e.g., FIM 13). See Table 5.

Power - Two Dependent Variables
Results for this portion of the study are located in 

Table 3. In general, across all data sets, alpha levels, and 
sample size combinations, the RT was consistently more 
powerful than T2. Although, the power of both tests, as 
expected, increased with increased sample size, the RT, on

Figure 8. Distribution of OT Composite Score

10 -

7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 48

□ Admit 
■ Discharge
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Table 2: Type I Error Rates for Two-dependent Variable Combinations at Alpha = .05.
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Sample Size
Fim
Distributions Statistic 5.15 10,10 10,20 15,15 15,45 30,30 25,75 50,50

1,3 HT2 .0468 .0468 .0371 .0513 .0487 .0469 .0507 .0496
RT .0486 .0510 .0382 .0527 .0491 .0499 .0534 .0513

1,7 HT2 .0456 .0529 .0503 .0493 .0427 .0520 .0501 .0468
RT .0497 .0570 .0522 .0515 .0458 .0503 .0503 .0501

1,13 HT2 .0365 .0199 .0265 .0177 .0463 .0246 .0470 .0308

RT .0329 .0211 .0253 .0199 .0426 .0233 .0467 .0309

l,O t HT2 .0496 .0469 .0484 .0477 .0464 .0467 .0532 .0449
RT .0532 .0527 .0525 .0514 .0472 .0486 .0527 .0485

3,7 HT2 .0486 .0494 .0487 .0523 .0500 .0463 .0530 .0472
RT .0485 .0506 .0511 .0522 .0479 .0457 .0511 .0484

3,13 HT2 .0368 .0200 .0279 .0204 .0413 .0244 .0425 .0312
RT .0316 .0186 .0252 .0210 .0386 .0247 .0413 .0296

4,7 HT2 .0486 .0482 .0454 .0487 .0514 .0520 .0514 .0501
RT .0518 .0491 .0489 .0512 .0498 .0532 .0507 .0508

4,13 HT2 .0392 .0192 .0249 .0201 .0396 .0233 .0477 .0315
RT .0342 .0187 .0239 .0209 .0367 .0233 .0490 .0302

4, Ot HT2 .0512 .0521 .0487 .0516 .0478 .0493 .0487 .0488
RT .0513 .0564 .0503 .0541 .0486 .0511 .0504 .0500

6,7 HT2 .0496 .0537 .0517 .0510 .0502 .0537 .0500 .0532
RT .0506 .0536 .0512 .0523 .0503 .0540 .0508 .0531

6,13 HT2 .0399 .0223 .0255 .0192 .0451 .0259 .0500 .0327
RT .0319 .0203 .0225 .0192 .0412 .0246 .0444 .0307

6,Ot HT2 .0512 .0509 .0482 .0513 .0456 .0496 .0510 .0525
RT .0502 .0547 .0511 .0544 .0460 .0511 .0501 .0506

13,Ot HT2 .0375 .0208 .0256 .0203 .0489 .0215 .0447 .0290
RT .0314 .0218 .0243 .0208 .0412 .0226 .0422 .0296

average, tended to reject the null hypothesis anywhere from impact on power at small sample sizes compared with other
1% to 17% more often thanT2. And although differences distribution combinations, but each test generally rehabili-
were moderate at times, the power of RT was rarely less tated itself as sample size increased. However, power in
than T2. The distribution of FIM 13 scores had a negative the presence of FIM 13 scores must be interpreted in the
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Table 3: Type I Error Rates for Five-dependent Variable Combinations at Alpha = .05.

Sample Size

Fim

Distributions Statistic 5,15 10,10 10,20 15,15 15,45 30,30 25,75 50,50

1,4,5,6,7 HT2 .0499 .0501 .0529 .0480 .0515 .0508 .0501 .0494
RT .0515 .0544 .0524 .0499 .0509 .0529 .0516 .0497

1, 5,6,7,13 HT2 .0439 .0350 .0359 .0322 .0445 .0343 .0478 .0408
RT .0410 .0363 .0356 .0342 .0422 .0346 .0444 .0410

l,6,7,13,Ot HT2 .0424 .0349 .0381 .0368 .0464 .0374 .0472 .0453

RT .0371 .0362 .0362 .0370 .0451 .0361 .0491 .0427

3,4,5,6,7 HT2 .0487 .0535 .0508 .0509 .0456 .0527 .0511 .0465
RT .0499 .0547 .0520 .0515 .0489 .0524 .0519 .0479

3,5,6,7,13 HT2 .0470 .0354 .0365 .0327 .0490 .0373 .0496 .0411
RT .0435 .0359 .0352 .0330 .0463 .0365 .0466 .0401

3,6,7,13,Ot HT2 .0443 .0374 .0380 .0362 .0445 .0351 .0505 .0439
RT .0371 .0399 .0354 .0378 .0422 .0366 .0492 .0418

4,5,6,7,13 HT2 .0431 .0372 .0395 .0347 .0467 .0397 .0508 .0386
RT .0418 .0361 .0385 .0343 .0461 .0376 .0463 .0394

4,6,7,13,Ot HT2 .0485 .0346 .0362 .0365 .0470 .0373 .0463 .0446
RT .0444 .0363 .0342 .0372 .0428 .0367 .0452 .0412

5,6,7,13,Ot HT2 .0418 .0341 .0378 .0335 .0453 .0355 .0506 .0397
RT .0392 .0333 .0379 .0355 .0438 .0368 .0474 .0375

context of its associated Type I error.

Power - Five Dependent Variables.
Results for this portion of the study are located in 

Table 6. Although the RT maintained power over T2 in most 
situations, the difference in magnitude tended to be less 
than in the two-dependent variable condition. There are 
instances, however, where the RT is substantially more pow­
erful than T2. However, large differences in power were 
less frequent and both tests tended to perform equally well 
with greater frequency as sample size increased. An addi­
tional result seemed to be that the impact of FIM 13 scores 
was less profound. Under the conditions where each dis­
tribution was sampled multiple times (see Table 7), the 
only remarkable results were, again, when Fim 13 served

as the sole dependent variable distribution (i.e., FIM 13 
sampled five times). In general, RT worked better at small 
sample sizes, but T2 recovered as sample size increased.

Summary of Results
Results suggest that both T2 and the RT are ro­

bust under most non-normal situations in the independent 
samples case when data are scaled at the Ordinal level. 
These results hold for both the two-dependent variable and 
five-dependent variable conditions. The most noted excep­
tion for both conditions was in the presence of a highly 
skewed distribution such as the FIM 13 used in this study. 
With respect to power, T2 recovers somewhat as sample 
size reaches (25,75) and (50,50), however, RT maintains a 
m odest pow er advantage at all sample sizes and
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Table 4: Type I Error Rates for Five-dependent Variables Sampling Using One Distribution for Each Variable at
Alpha = .05.

Sample Size
Fim

13

Ot

Statistic 5,15 10,10 10,20 15,15 15,45 30,30 25,75 50,50

HT2 .0485 .0476 .0474 .0491 .0520 .0515 .0462 .0529
RT .0460 .0546 .0512 .0564 .0524 .0527 .0461 .0522

HT2 .0495 .0487 .0469 .0515 .0488 .0481 .0531 .0509
RT .0493 .0580 .0467 .0496 .0492 .0516 .0505 .0521

HT2 .0505 .0513 .0531 .0540 .0516 .0523 .0531 .0475

RT .0506 .0560 .0526 .0546 .0509 .0545 .0529 .0489

HT2 _ _ _ _ .0382 .0015 .0422 .0079
RT - - - - .0296 .0008 .0351 .0069

HT2 .0453 .0475 .0535 .0507 .0467 .0484 .0508 .0475
RT .0478 .0529 .0562 .0559 .0507 .0505 .0483 .0493

* Results were not available for sample sizes less than (15,45) for FIM 13. Due to the highly skewed and discrete nature 
of this distribution and given the restrictions on the number of repetitions in this simulation study, no variance could be 
calculated for small sample sizes.

distribution combinations. There were noted exceptions. 
For instance, T2 displayed almost negligible power advan­
tages over RT when distribution combinations (1,3), (1,7), 
and (1,13) were sampled for reasons unknown.

Although T2 is more powerful under normality, 
the RT has been shown to be only slightly less powerful 
(Bhattacharyya, Johnson, & Neave, 1971; Tiku & Singh, 
1982; Nath & Duran, 1983) and in non-normal situations 
is accepted as being more powerful in many cases (Nath, 
1982; Nath & Duran, 1983; Zwick, 1986). In this study, 
the RT consistently outperformed T2 at nearly every sample 
size, alpha level, and dependent variable combination. 
Unlike previous studies examining robustness and power 
which often employ the use of artificial distributions and/ 
or treatment effects, this study examined the operating 
characteristics of T2 and the RT under real conditions. In 
fact, the results of this study have direct implications to 
the substantive field from which these distributions came, 
as well as other fields with similar types of data.

Conclusion

With respect to ordinal scaled data in the form of likert 
scaled data commonly obtained in applied data analysis 
situations and its inherent violation of normality when

testing for equality of centroids, the Rank Transformation 
procedure provides an increase in power over Hotelling’s 
T2 while maintaining acceptable Type I error rates. This is 
particularly true with two-dependent variables and smaller 
sample sizes. The results must not be extrapolated beyond 
the context of this study to other data analysis layouts, such 
as the multivariate factorial analysis of variance. The ro­
bustness results of this study on the multivariate two inde­
pendent samples layout with likert scaled data were in 
agreement with, and extend the results found by Heeren & 
D ’Agostino (1987) and Hsu & Feldt (1969) on the 
univariate independent samples t-test; and the robustness 
and power results found by Nanna & Sawilowsky (1998) 
for the rank transformation analog to the univariate two 
independent samples layout with likert scaled data.
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Table 5: Power for Two-dependent Variable Combinations at Alpha = .05.

Sample Size
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6,13 HT2 .1604 .3638 .4498 .6422 .8290 .9739 .9903 .9998
RT .1803 .4690 .6042 .7822 .9476 .9946 .9986 1.000
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Table 6: Power for Five-dependent Variable Combinations at Alpha = .05.

Sample Size
Fim
Distributions Statistic 5,15 10,10 10,20 15,15 15,45 30,30 25,75 50,50

1,4,5,6,7 HT2 .3811 .4998 .6751 .7382 .9282 .9831 .9960 .9998
RT .3904 .5705 .7524 .8066 .9694 .9942 .9996 1.000

1,5,6,7,13 HT2 .3202 .4950 .6665 .7930 .9544 .9953 .9999 1.0 0 0
RT .3302 .5882 .7694 .8798 .9881 .9995 1.000 1.000

1,6,7,13,Ot HT2 .3312 .5105 .6891 .8065 .9600 .9964 .9999 .9999

RT .3528 .6197 .8080 .9003 .9932 .9999 1.000 1.000

3,4,5,6,7 HT2 .4549 .6134 .7919 .8506 .9758 .9970 .9997 1.0 0 0
RT .4853 .6824 .8626 .9020 .9937 .9992 1.000 1.0 0 0

3,5,6,7,13 HT2 .3920 .6135 .7923 .8892 .9873 .9991 .9999 1.0 0 0
RT .4251 .7005 .8781 .9440 .9977 .9999 1.0 0 0 1.000

3,6,7,13,Ot HT2 .4116 .6232 .7979 .8926 .9869 .9997 1.0 0 0 1.0 0 0
RT .4474 .7194 .8929 .9547 .9989 .9999 1.0 0 0 1.000

4,5,6,7,13 HT2 .3416 .5370 .7097 .8235 .9720 .9995 .9998 1.0 0 0
RT .3636 .6275 .8222 .9061 .9945 .9999 1.0 0 0 1.0 0 0

4,6,7,13,Ot HT2 .3574 .5447 .7290 .8378 .9744 .9984 .9996 1.0 0 0
RT .3886 .6595 .8460 .9254 .9963 .9997 1.0 0 0 1.000

5,6,7,13,Ot HT2 .3949 .6108 .7912 .8870 .9869 .9996 1.0 0 0 1.0 0 0
RT .4204 .7065 .8814 .9472 .9982 1.0 0 0 1.000 1.0 0 0
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