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Respondent-Generated Intervals (RGI) For Recall in Sample Surveys 
 

 S. James Press 
Department of Statistics 

University of California, Riverside 
 
 
Respondents are asked for both a basic response to a recall-type question, their usage quantity, and are 
asked to provide lower and upper bounds for the (Respondent-Generated) interval in which their true 
values might possibly lie. A Bayesian hierarchical model for estimating the population mean and its 
variance is presented. 
 
Key words: Bayes, bounds, bracketing, range, recall, survey 
 
 

Introduction 
 
Answers to recall-type questions are frequently 
required for surveys carried out by governmental 
agencies. While answers to such questions might 
become available to the agency at considerable 
expense and expenditure of time and effort 
through record checks, if the information is 
available at all, it is sometimes more expedient 
and efficient to directly question samples of the 
subpopulations for which the answers are 
required.  Unfortunately, because respondents 
frequently differ greatly in their abilities to recall 
the correct answers to such questions, estimates 
of the population mean often suffer from 
substantial  response bias, resulting in large non- 
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sampling errors for the population characteristics 
of interest. A new protocol for asking such 
recall-type questions in sample surveys is 
proposed, and an estimation procedure for 
analyzing the results that can improve upon the 
accuracy of the usual sample mean is suggested. 

This new method is called Respondent-
Generated Intervals (RGI). The procedure 
involves asking respondents not only for a basic 
answer to a recall-type question (this basic 
answer is called the “usage quantity”), but also, 
the respondent is asked for a smallest value 
his/her true answer could be, and a largest value 
his/her true answer could be. These values are 
referred to as the lower and upper bounds 
provided. It is assumed that the respondent knew 
the true value at some point but because of 
imperfect recall, he/she is not certain of the true 
value, and also, that the respondent is not 
purposely trying to deceive. 

With the RGI protocol it is being 
implicitly assumed that there is a distinctive 
recall probability distribution associated with 
each respondent. To obtain an estimate of the 
mean usage quantity in a population typically 
the simple average of the responses from 
individuals who may have very different 
abilities to carry out the recall task is formed. 
But such a simple average may not necessarily 
account well for typical unevenness in recall 
ability.  

It may be that an improvement upon 
population estimates can be made by learning 
more about the different recall abilities, and then 
taking them into account in the estimation 
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process. Ideally, the respondents could be asked 
many additional questions about their recall of 
their true answers for the recall question. That 
would permit many fractile points on each of 
their recall distributions to be assessed. Owing 
to the respondent burden of a long questionnaire, 
the sometimes heavy cost limitations of adding 
questions to a survey, the cost of added 
interviewer time, etc., there may sometimes be a 
heavy penalty imposed for each additional 
question posed in the survey questionnaire. The 
RGI protocol proposes adding to the usage 
quantity just two additional bounds questions 
and thereby obtains three points on each 
respondent’s recall distribution. The 
interpretation of these three points is discussed 
in the section on estimation. 

It is being proposed that respondents 
provide bounds on what they believe the true 
value for recall-type questions could possibly be. 
While there are other survey procedures that also 
request that respondents provide bounds-type 
information under certain circumstances, such 
procedures are not quantitatively associated with 
improved estimators, as is the RGI estimator. 
Usually these other procedures ask respondents 
to select their responses from several (analyst-
generated) pre-assigned intervals (sometimes 
called “brackets”).  

Kennickell, (1997) described the 1995 
Survey of Consumer Finances (SCF), carried out 
by the National Opinion Research Center at the 
University of Chicago, as including 
opportunities for the respondents who answered 
either “don’t know”, or “refuse”, to select from 
8 pre-assigned ranges, or to provide their own 
lower and upper bounds (“volunteered ranges”). 
These respondents were addressing what are 
traditionally recognized as sensitive questions 
about their assets. By contrast with the survey 
approach taken in the current research where the 
respondent is asked for both a basic response 
and lower and upper bounds, in the SCF, the 
respondent is given a choice to either give a 
basic response, or to select from one of several 
pre-assigned ranges, or to provide volunteered 
bounds.  The pre-assigned intervals are supplied 
on “range cards” designed for situations in 
which the respondent has indicated that he/she 
does not desire to provide the specific usage 
quantity requested. 

Another related technique that has been 
proposed is called unfolding brackets (Heeringa, 
Hill, & Howard, 1995). In this approach, 
respondents are asked a sequence of binary 
(“yes”/ “no”) types of bracketing questions that 
successively narrow the range in which the 
respondent’s true value might lie. 

Several issues about these bounds-, or 
range-related techniques are not yet resolved. 
Which of these approaches, RGI, Range, 
Unfolding Brackets, or more traditional 
techniques yields the best results? How do these 
methods compare to one another under various 
circumstances?   How do these different options 
affect response rate? 

Schwartz and Paulin (2000) carried out 
a study comparing response rates of different 
groups of randomly assigned participants who 
used either range cards, unfolding brackets, or 
RGI, with respect to income questions. To 
include RGI in their study, Schwartz and Paulin 
used an early manuscript version of RGI. 
Schwartz and Paulin (2000) found that all three 
approaches studied reduced item non-response 
in that all three techniques presented a viable 
method for obtaining some income information 
from respondents who might otherwise have 
provided none.  

In fact, 30% of the participants in the 
study selected RGI as their favorite range 
technique. The participants “claimed that they 
liked this technique because it allowed them to 
have control over their disclosures; the RGI 
intervals they provided tended to be narrower 
than pre-defined intervals; the RGI intervals did 
not systematically increase with income levels 
(as did the other techniques); RGI was the only 
technique that prompted respondents to provide 
exact values rather than ranges; and RGI 
allowed respondents to feel the most confident 
in the accuracy of the information they were 
providing.” 

Conrad and Brown (1994; 1996) and 
Conrad, Brown and Cashman (1998) studied 
strategies for estimating behavioral frequency 
using survey interviews. Conrad and his 
colleagues suggested that when respondents are 
faced with a question asking about the frequency 
of a behavior (the usage quantity), if that 
behavior is infrequent, respondents attempt to 
count the instances; if it is frequent, they attempt 
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to estimate.  When the respondents count they 
tend to underreport, but when they estimate they 
tend to over-report. This finding may be relevant 
to RGI reporting. 

 
Methodology 

 
Let , ,i i iy a b  denote the basic usage quantity 
response, the lower bound response, and the 
upper bound response, respectively, of 
respondent i, i = 1,…,n. Suppose that  the iy ’s 

are all normally distributed 2( , )i iN θ σ , that the 

'i sθ  are exchangeable, and ~iθ
2

0( , )N θ τ . It 
is shown in the Appendix, using a hierarchical 
Bayesian model, that in such a situation, the 
conditional posterior distribution of the 
population mean, 0θ , is given by: 
 
( 0θ data, 2 2,iσ τ ) 2~ ( ,N θ ω ),                    (3.1) 
 
where the posterior mean, θ , conditional on the 
data and 2 2( , )iσ τ  is expressible as a weighted 
average of the usage quantities and the iy ’s, and 
the weights are expressible approximately as 
simple algebraic functions of the interval lengths 
defined by the bounds. The conditional posterior 
variance, 2ω , drives the associated credibility 
intervals; it is discussed below. 

For normally distributed data it is 
commonly assumed that lower and upper bounds 
that represent extreme possible values for the 
respondents can be associated with 3 standard 
deviations below, and above, the mean, 
respectively. That interpretation is used to assess 
values for the 2

iσ  parameters from: 

1 i i i ik b a rσ = − ≡ , the respondent interval 

lengths. Analogously, a value for 2τ  is assessed 
from: 2 0k b a rτ = − ≡ , the average respondent 
interval length. It will generally be assumed that 

1 2 6k k k= = =  (corresponding to 3 standard 
deviations above and below the mean).  The 
assumption of “3” standard deviations is 
examined numerically in the examples section, 
and is applied more generally in the Appendix. 

The conditional posterior mean is shown 
in the Appendix to be given by: 
 

 
1

n

i iyθ λ=∑ ,                                                      (3.2) 

where the iλ ’s are weights that are given 
approximately by: 
 

   iλ
2 2

0

2 2
1 0

1

1
i

n

i

r r

r r

⎛ ⎞
⎜ ⎟

+⎝ ⎠
⎛ ⎞
⎜ ⎟

+⎝ ⎠
∑

.                                  (3.3) 

 
Note the following characteristics of this 
estimator: 

1. The weighted average in Eq (3.3) is 
simple and quick to calculate, without requiring 
any computer-intensive sampling techniques.  A 
simple Minitab macro is available for 
calculating it.   

2. It will be seen in the examples section 
that if the respondents who give short intervals 
are also the more accurate ones, RGI will tend to 
give an estimate of the population mean that has 
smaller bias than that of the sample mean. In the 
special case in which the interval lengths are all 
the same, the weighted average reduces to the 
sample mean, y , where the weights all equal 
(1/n).   In any case, the lambda weights are 
allnon-negative, and must sum to one. 

3. The longer the interval a respondent 
gives, the less weight is applied to that 
respondent’s usage quantity in the weighted 
average. The length of respondent i’s interval 
seems intuitively to be a measure of his/her 
degree of confidence in the usage quantity 
he/she gives, so that the shorter the interval, the 
greater degree of confidence that respondent 
seems to have in the usage quantity he/she 
reports. Of course a high degree of confidence 
does not necessarily imply an answer close to 
the true value.       

4. The lambda weights can be thought of 
as a probability distribution over the values of 
the usage quantities in the sample. So iλ  
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represents the probability that iy y=  in the 
posterior mean. 

5. From equation (A23) in the Appendix 
it is seen that the conditional variance of the 
posterior distribution is given by:  
 

2

2 2
1

22
1 0

2 2
1 2

1 1 .
1

1
( )

n

n
i

i ib a r
k k

ω

σ τ

=
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎜ ⎟

⎜ ⎟−
+⎜ ⎟

⎝ ⎠

∑
∑

 

                                  (3.4) 
 
As explained in the discussion just above 
equation (3.2), it will sometimes be taken to be 
the case that 1k  = 2k  = k = 6 (other values of k 
are also being studied). So if the precision of a 
distribution is defined as its reciprocal variance, 

the quantity {
2 2

0

36
ir r+

} is the conditional 

variance in the posterior distribution 
corresponding to respondent i, and therefore, its 
reciprocal represents the conditional precision 
corresponding to respondent i.  Summing over 
all respondent’s precisions gives: 
total conditional posterior variance  
 

                = 2

2 2
1 0

1
36n

ir r

ω
⎛ ⎞
⎜ ⎟

+⎝ ⎠
∑

.                 (3.5) 

 
Thus, another interpretation of iλ  is that it is the 
proportion of the total conditional posterior 
precision in the data attributable to respondent i. 

The variance of the conditional posterior 
distribution is given in equation. (3.4). The 
posterior variance is the reciprocal of the 
posterior total precision. Because the posterior 
distribution of the population mean, 0θ , is 
normal, it is straightforward to find credibility 
intervals for 0θ .  For example, a 95% credibility 
interval for 0θ  is given by: 

 
                   ( 1.96 , 1.96 )θ ω θ ω− + .           (3.6) 

That is,  
 

0{( 1.96 1.96 ) } 95%.P dataθ ω θ θ ω− ≤ ≤ + =  
                                                                      (3.7) 
 
More general credibility intervals for other 
percentiles are given in the appendix. From eqn. 
(3.1) it is seen that the posterior distribution of 
the population mean, 0θ , is normal. It is 
therefore straightforward to test hypotheses 
about 0θ  using the Jeffreys procedure for 
Bayesian hypothesis testing; (Jeffreys, 1961). 

The behavior of the RGI Bayesian 
estimator is illustrated and examined using some 
numerical examples. It will be seen that for these 
examples, the way the RGI estimator works is to 
assign greater weight to the usage quantities of 
respondents who give relatively short bounding 
intervals, and less weight to the usage quantities 
of those who give relatively long intervals. If the 
respondents who give short intervals are also the 
more accurate ones, RGI will tend to give an 
estimate of the population mean that has smaller 
bias than the sample mean. Also, the credibility 
intervals will tend to be shorter and closer to the 
true population values than the associated 
confidence intervals. 
 
Example 1 

Suppose there is a sample survey of size 
n = 100 in which the RGI protocol has been 
used.   Suppose also that the true population 
mean of interest is to be estimated, and it is 
given by 0 1000.θ =  In this example the usage 
quantities and the respondents’ bounds, ( , )i ia b  
are fixed at , 1,..., ,i i ir b a i n= − =  arbitrarily, 
whereas in Example 2 it will be assumed that the 
data are generated randomly. Define 0r b a= − . 
This quantity will be used as an assessment for 
τ , the common standard deviation of iθ , the 
mean for respondent i. 

Assume that the first 50 respondents all 
have excellent memories and are quite accurate 
in their responses. Suppose the intervals these 
accurate respondents give are:  
 

1 1 50 50( , ),..., ( , ) (975,975),..., (975,975)a b a b = . 
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That is, they are all not only pretty 
accurate, but they all believe that they are 
accurate, so they respond to the bounds 
questions with degenerate intervals whose lower 
and upper bounds are the same. Accordingly, 
these accurate respondents all report intervals of 
length 0ir = , and usages of equal amounts, 

975iy =  (compared with the true value of 
1000). 

Next suppose that the last 50 
respondents all have poor memories and are 
inaccurate. They report the intervals:   

 

                   51 51 100 100( , ),..., ( , )
(500,1500),..., (500,1500)

a b a b
=

,   

 
that have lengths of 1000ir = , and they report 
equal usage quantities of iy  = 550. Their true 
values, iθ , may all be different from one 
another, but assume that they all guess 550. It is 
now found that: 737.5,a = and 1237.5,b = so 

0 500.r b a= − =  

 
RGI Bayesian Point Estimate of the 

Population Mean 
The weights are calculated to be given 

by: 
.0167, 1,...50
.0033, 51,...,100i

i
i

λ
=⎧

= ⎨ =⎩
 

 

It is easy to check that:  
100

1
1.iλ =∑ It may now 

be readily found that the conditional posterior 
mean RGI estimator of the population mean, 0θ , 
is given by: 

       

100

1
904.167.i i

i
yθ λ

=

= =∑
 

 
The corresponding sample mean is given by: 

 762.5.y =  The numerical error (bias) of the 

posterior mean is given by 1000 - θ  = 1000-
904.167 = 95.833. The numerical error (bias) of 
the sample mean is given by 

1000 1000 762.5 237.5.y− = − =  The RGI 
estimator has reduced the bias error by 237.5 - 
95.833 = 141.667, or about 60%, compared with 
the standard error of the sample mean. 

It is also interesting to compare interval 
estimates of the population mean by comparing 
the standard error of y , with ω , the standard 

deviation of the posterior distribution of θ . 
These estimates give rise to the corresponding 
confidence and credibility intervals for 0θ , 
respectively. 

From Eq (3.4) it may readily be found 
that for the data in this example, 10.76.ω =  It 
is also easy to check that for the data, the 
standard deviation of the data is 213.56. So the 
standard error for a sample of size 100 is 
213.56/10, or 21.36. Thus, the RGI estimate of 
standard deviation is less than half that of the 
sample mean. 

Correspondingly, the length of the 95% 
credibility interval 2(1.96)ω  = 42.18, while the 
length of the 95% confidence interval is 
2(1.96)(21.36) = 83.74. The 95% confidence 
interval is about twice as long as the 95% 
credibility interval. The 95% credibility interval 
is given by:  (883.081, 925.253). The 95% 
confidence interval is given by: (720.63, 
804.37).  Note in this example that:  

1. Neither the RGI credibility interval 
nor the confidence interval covers the true value 
of 1000 (all usage quantities were biased 
downward). 

2. The confidence and credibility 
intervals do not even overlap (but the entire 
credibility interval is closer to the true value). 

3. It is expected to find many situations 
for which the bias error of the RGI estimator is  
smaller than that of  the sample mean; however, 
the differences may be more, or less, dramatic 
compared with their values in this example. 

Now examine some variations of the 
conditions in this example to explore the 
robustness of the RGI estimator with respect to 
variations in the assumptions. 
 
Variation 1 

Suppose that there were only 30 
accurate respondents (instead of the 50 assumed 
in this example), responding in exactly the same 
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way, and 70 inaccurate respondents (instead of 
the 50 assumed in the example), the RGI 
estimate would still have been an improvement 
in bias error over that of the sample mean, 
although the improvement in bias error would 
have been smaller (35.03%). 
 
Variation2 

Now take the example to the extreme by 
supposing that there were only 1 accurate 
respondent (instead of the original 50 assumed 
in the example), responding in exactly the same 
way, and 99 inaccurate respondents (instead of 
the 50 assumed in the example), the RGI 
estimate would still have been an improvement 
in bias error over that of the sample mean, 
although the improvement in bias error would 
have been only 9.5%. 

 
Variation 3 

How are the population mean estimates 
affected by the values selected for 1k  and 2k ? 
First recall that as long as 1k  and 2k  are the 
same, the posterior mean is unaffected by the 
value of k. However, the posterior variance and 
the credibility intervals are affected. Continue to 
take k1 = k2 = k but vary the value of k and 
assume the original split of 50 accurately-
reporting respondents and 50 inaccurately-
reporting respondents. Table 1 below compares 
results as a function of the common 1 2k k k= =  
selected. 

That is, if ia  denotes the lower bound 
provided by respondent i, and ib denotes the 
same respondent’s upper bound, the assessment 
method being used has been to take 

1

1 ( ) ,
n

i i
i

b a b a
n

τ
=

= − = −∑  where the bar 

denotes average. But consider as an alternative 
the range assessment: 0 0 ,b aτ = −  where 

0 0min( ), max( )i ii i
a a b b≡ ≡ .   

 
 
 
 
 
 

Table 1. Effect Of Common Value of  “k” 
 
 

k 

ω  = 
posterior 
standard 
deviation 

 
95% credibility 

interval 

 
Length of 
credibility 
interval 

4 16.14 (872.54, 935.80) 63.26 

5 12.91 (878.86, 929.47) 50.61 

6 10.76 (883.08, 925.25) 42.17 

7 9.22 (886.09, 922.24) 36.15 

8 8.07 (888.35, 919.98) 31.63 

 
Examination of Table 1 suggests that for general 
purposes, selecting a common k and taking it to 
be k = 6 (bold face) is a reasonable compromise. 
 

Note that the range of belief is reflected 
by the interval 0 0( , ) (500,1500)a b ≡ . How will 
the estimates of the population mean be 
affected? Results are shown in Table 2 for the 
two different methods for the 50/50 split of 
accurate and inaccurate respondents used in the 
original example. 

Table 2 demonstrates that in this 
example, the “average” procedure used for 
assessing produces better results than the range 
procedure: there is less bias, smaller posterior 
variance, a shorter credibility interval, and a 
credibility interval that is also closer to the true 
population mean (the population mean in this 
example was 1000). It is therefore recommended 
that τ be assessed by using the average, rather 
than the range procedure. 
 
Example 2 

In this example the usage quantities 
from appropriate normal distributions are 
simulated while the respondents’ bounds are 
fixed conveniently. Again assume a survey of 
100 respondents and again use k1 = k2 = 6. 
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Adopt usage quantities that are 

generated from distinct normal distributions, the 
average of whose means  is 0 1000θ = , and 
whose standard deviations are all 300. Such 
usage data are included within the framework of 
the model. The actual usage quantities that were 
generated are given in Tables 3a and 3b. Assign 
lower and upper bound intervals of (900, 1100) 
for the 26 usage quantities (out of 100) between 
900 and 1100 (usages that lie close to the true 
population value), and assign lower and upper 
bound intervals of (200, 1900) for the other 74 
usage quantities (those usages that lie further 
from the true population value). The lower and 
upper bounds adopted are given in Tables 3a 3b, 
as are the values of the calculated lambda 
weights (which sum to one). 

 
Bias Reduction 

The sample mean for this example is 
964.497. The posterior mean or RGI estimator is 
973.816.   The bias error for the sample mean is 
35.503, while that for the RGI estimator is 
26.184. The RGI estimator has reduced the bias 
by 9.319, or 26.2%. 

The standard deviation of the usage 
quantities is 324.1 while the standard error of the 
sample mean is 32.4. So a 95% confidence 
interval is (900.993, 1028.001). It has length 
127.008. 

The standard deviation of the RGI 
estimator (standard deviation of the posterior 
distribution of the population mean estimator) is 
about 30.0, so a 95% credibility interval is 
(915.023, 1032.61).  It has length 117.587. 
 The result is that both the 95% 
confidence interval and the 95% credibility 
intervals cover the true population values, but 
the credibility interval is shorter.   

 
Conclusion 

 
A new method for asking recall-type questions 
in sample surveys has been proposed. The 
method can substantially reduce the non-
sampling bias error compared with the error of 
the sample mean. It is anticipated that over time, 
even better techniques will be developed to take 
advantage of this path to improved estimation 
accuracy. Such techniques will likely prompt 
respondents who believe they are accurate in 
their recollection to provide short bounding 
intervals, and conversely, the techniques will 
prompt respondents who are uncertain of the 
quantity to be recalled to give longer bounding 
intervals. 

The RGI technique may also prove to be less 
threatening to respondents faced with answering 
sensitive questions.  Respondents who might not 
answer such questions at all, might be willing at 
least to provide bounds, thereby increasing 
response rate. Therefore, there also may be a 
response rate benefit that accrues from the use of 
the RGI protocol in surveys containing sensitive 
questions. 

The RGI estimator proposed appears to be 
robust with respect to variations in the 
distributions of the data and in the assumptions 
of the model. The data selected for Example 1 
didn’t follow any familiar distribution. What is 
important is that one or more accurate 
respondents also gave short bounding intervals 
that could be used in the weighted average, 
independently of any distributional assumptions. 
This robustness property appears to be very 
promising for survey applications.      
 

Table 2.  Comparing Methods For Assessing τ  

 posterior mean posterior 
variance 

95% credibility 
interval 

length of 95% credibility 
interval 

average 
assessment 

procedure for τ  

              
904.167 

             
115.741 

                   
(883.081, 925.253) 

                          
42.172 

range 
assessment 

procedure for τ  

              
833.333 

             
370.370 

                 
(795.614, 871.053) 

                          
75.439 
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Table 3a. Raw Data and Lambda Weights for Normal Data Example 

 
       Number    usage    lo-bound   up-bound    lambda       Number      usage    lo-bound   up-bound   lambda 

 
1 518.67 200 1900 0.007033 

 
26 414.04 200 1900 0.007033 

2 1428.18 200 1900 0.007033 27 1282.15 200 1900 0.007033 
3 1352.09 200 1900 0.007033 28 1317.67 200 1900 0.007033 
4 919.02 900 1100 0.018446 29 466.53 200 1900 0.007033 
5 572.47 200 1900 0.007033 30 869.69 200 1900 0.007033 
6 822.51 200 1900 0.007033 31 820.92 200 1900 0.007033 
7 814.42 200 1900 0.007033 32 1223.39 200 1900 0.007033 
8 431.61 200 1900 0.007033 33 1330.02 200 1900 0.007033 
9 1099.68 900 1100 0.018446 34 1267.04 200 1900 0.007033 
10 1318.16 200 1900 0.007033 35 1123.93 200 1900 0.007033 
11 704.25 200 1900 0.007033 36 1155.08 200 1900 0.007033 
12 918.67 900 1100 0.018446 37 1206.36 200 1900 0.007033 
13 1105.79 200 1900 0.007033 38 1082.61 900 1100 0.018446 
14 931.64 900 1100 0.018446 39 997.76 900 1100 0.018446 
15 1839.33 200 1900 0.007033 40 1205.7 200 1900 0.007033 
16 625.11 200 1900 0.007033 41 675.03 200 1900 0.007033 
17 1482.88 200 1900 0.007033 42 1642.04 200 1900 0.007033 
18 691.66 200 1900 0.007033 43 909.12 900 1100 0.018446 
19 1218.58 200 1900 0.007033 44 834.9 200 1900 0.007033 
20 761.49 200 1900 0.007033 45 439.11 200 1900 0.007033 
21 1041.2 900 1100 0.018446 46 279.14 200 1900 0.007033 
22 283.22 200 1900 0.007033 47 996.48 900 1100 0.018446 
23 1276.98 200 1900 0.007033 48 237.63 200 1900 0.007033 
24 640.76 200 1900 0.007033 49 1284.94 200 1900 0.007033 
25 1442.09 200 1900 0.007033 50 1143.45 200 1900 0.007033 
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Appendix 
 

In this Appendix, a hierarchical Bayesian model 
is developed for estimating the posterior 
distribution of the population mean for data 
obtained by using the RGI protocol. Suppose 
respondent i gives a point response iy , and 
bounds ( , )i ia b , i ia b≤ , i = 1,…, n, as his/her 
answers to a factual recall question. Assume:   
  
        2 2( , ) ~ ( , ).i i i i iy Nθ σ θ σ     (A1)                                           
 
The normal distribution will often be appropriate 
in situations for which the usage quantity 
corresponds to a change in some quantity of 
interest. Assume the means of the usage 
quantities are themselves exchangeable, and 
normally distributed about some unknown 
population mean of fundamental interest, 0θ : 
 
             2 2

0 0( , ) ~ ( , ).i Nθ θ τ θ τ  (A2)                                                                    
 
Thus, respondent i has a recall distribution 
whose true value is iθ  (each respondent is 
attempting to recall a different number of visits 
to the doctor last year). It is desired to estimate 

0θ . Assume 2 2 2
1( ,..., , )nσ σ τ  are known; they 

will be assigned later. Denote the column vector 
of usage quantities by ( )iy y= , and the column 

vector of means by ( )iθ θ= . Let 2 2( )iσ σ=  
denote the column vector of data variances.  The 
joint density of the 'iy s  is given in summary 
form by:                           

2
2

1

1( , ) exp ( ) .
2

n
i i

i

yp y θθ σ
σ

⎧ ⎫⎛ ⎞−⎪ ⎪∝ −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑     

 
                                                       (A3) 

The joint density of the 'i sθ  is given by: 
                                                   

2
2 0

0
1

1( , ) exp ( ) .
2

n
ip θ θθ θ τ
τ

⎧ ⎫−⎪ ⎪⎛ ⎞∝ −⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪⎩ ⎭

∑                                   

 
    (A4) 
 
So the joint density of ( , )y θ  is given by: 

                                                                 
2 2 2 2

0 0( , , , ) ( , ) ( , )p y p y pθ θ τ σ θ σ θ θ τ=  

 
or, multiplying (A3) and (A4), gives: 
                                   

2 2
0

2 2
0

1 1

( , , , )

1exp ( )
2

( )exp ( ) ,
2

n n
i i i

i

p y

y
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⎩ ⎭

∑ ∑

θ θ τ σ

θ θ θ
σ τ

θ

                                                                 (A5) 
 
where:                             

2 2
0

1 1

( ) .
n n

i i i

i

yA θ θ θθ
σ τ

⎛ ⎞− −⎛ ⎞≡ +⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠

∑ ∑                                         

                                                                 (A6) 
 
Expand (A6) in terms of the 'i sθ  by completing 
the square. This takes some algebra. Then: 
 

2 2

2
1

( ) ,
n

i i i
i i

i i i

A β γ βθ α θ
α α α

⎧ ⎫⎡ ⎤⎛ ⎞ ⎛ ⎞⎪ ⎪⎢ ⎥= − + −⎨ ⎬⎜ ⎟ ⎜ ⎟
⎢ ⎥⎝ ⎠ ⎝ ⎠⎪ ⎪⎣ ⎦⎩ ⎭

∑    

                                                                 (A7) 
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2 2

0 0
2 2 2 2 2 2

1 1 , , .i i
i i i

i i i

y yθ θα β γ
σ τ σ τ τ σ

= + = + = +

      (A8) 
 
 
Now find the marginal density of y  by 

integrating (A5) with respect to θ . Then: 
 

2 2
0 0

1

1( , , ) ( ) exp ,
2

n

i ip y Jθ τ σ θ α δ
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βα θ θθ
α

γ βδ
α α

                    

 (A9) 
 
Rewriting (A9) in vector and matrix form, to 
simplify the integration, it is found that if  
 
                                                 

1
1, ( ,..., )i

n
i

f K diagβ α α
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2

1

1

( ) ' ( ) .
n

i
i i

i

f K f βθ θ α θ
α

− ⎛ ⎞
− − = −⎜ ⎟

⎝ ⎠
∑                                     

 (A10) 
 
Carrying out the (normal) integration gives: 
                                              

1
2

2 2
0 1 1

1 1( , , ) exp .
2

n

i ip y
K

θ τ σ α δ
−

⎧ ⎫⎛ ⎞∝ −⎨ ⎬⎜ ⎟
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∑

 (A11) 

Now note that 1

1

n

iK α− = =∏ constant and the 

constant can be absorbed into the proportionality 
constant, but iδ  depends on 0.θ  So: 
 
                                              

2 2
0

1

1( , , ) exp .
2

n

i ip y θ τ σ α δ
⎧ ⎫⎛ ⎞∝ −⎨ ⎬⎜ ⎟
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∑                                 

 (A12) 
 
Now apply Bayes’ theorem to 0θ  in (A12).   
                                              

2 2
0 0

1

1( , , ) ( ) exp ,
2

n

i ip y pθ τ σ θ α δ
⎧ ⎫⎛ ⎞

∝ −⎨ ⎬⎜ ⎟
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∑                           

 (A13) 
 
where 0( )p θ  denotes a prior density for 0θ . 
Prior belief (prior to observing the point and 
bound estimates of the respondents) is that for 
the large sample sizes typically associated with 
sample surveys, the population mean, 0θ , might 
lie, with equal probability, anywhere in the 
interval 0 0( , ),a b where 0a denotes the smallest 
lower bound given by any respondent, and 0b  
denotes the largest. So adopt a uniform prior 
distribution on 0 0( , ).a b  To be fully confident of 
covering all possibilities, however, adopt the 
(improper) prior density on the entire positive 
real line. Therefore adopt a prior density of the 
form: 
 
 0( )p θ ∝ constant, (A14) 
 
for all 0θ  on the positive half line. (In some 
survey situations the same survey is carried out 
repeatedly so that there is strong prior 
information available for providing a realistic 
finite range for 0θ ; in such cases it is possible to 
improve on the estimator by using a proper prior 
distribution for 0θ  instead of the one given in 
eqn. (A14).)  Inserting (A14) into (A13), and 
noting that 0( )p θ ∝ constant, gives: 
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2 2
0

1

1( , , ) exp .
2

n

i ip yθ τ σ α δ
⎧ ⎫⎛ ⎞

∝ −⎨ ⎬⎜ ⎟
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∑                                

 (A15) 
 
Next substitute for iδ  and complete the square 
in 0θ  to get the final result: 

2
2 2

0 0( , , ) exp ,
2
u vp y

u
θ τ σ θ
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1 1
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yu v
τ α τ α σ τ
⎛ ⎞ ⎛ ⎞

= − =⎜ ⎟ ⎜ ⎟
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 (A17) 
 
Thus, the conditional posterior density of 0θ  is 
seen to be expressible as: 
 

2 2 2
0( , , ) ~ ( , ),y Nθ τ σ θ ω                                             

 (A18) 

  where:  ,v
u

θ ≡   and  2 1 .
u

ω ≡                                            

 (A 19) 
 
Conditional Posterior Mean Of 0θ  As A Convex 
Mixture Of Usages 

The appropriate measure of location of 
the posterior distribution in Eq. (A18) to use in 
any given situation depends upon the loss 
function that is appropriate. For many cases of 
interest the quadratic loss function (mean 
squared error) is appropriate. For such 
situations, interest centers on the posterior mean 
(under the normality assumptions in the current 
model, the conditional posterior distribution of 

0θ  is also normal, so the posterior mean, 
median, and mode are all the same). It can be 
readily found by simple algebra that if: 

                                               

2 2
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2 2

1

1

, 1,
1

n
i

i in

i

σ τ
λ λ

σ τ
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 (A20) 
 
  
                                                                                      

1

n

i iyθ λ=∑ . 

 
Thus, the mean of the conditional 

posterior density of the population mean is a 
convex combination of the respondents’ point 
estimates, that is, their usage quantities. It is an 
unequally weighted average of the usage 
quantities, as compared with the sample 
estimator of the population mean, which is an 
equally weighted estimator, .y  Interpret 
( 2 2

iσ τ+ )-1  as the precision attributable to 

respondent i’s response, and 2 2 1

1
( )

n

iσ τ −+∑ as 

the total precision attributable to all respondents; 
then, iλ  is interpretable as the proportion of 
total precision attributable to respondent i. Thus, 
the greater his/her precision proportion, the 
greater the weight that is automatically assigned 
to respondent i’s usage response.    
 
Assessing the Variance Parameters 

Take:  a)  1 ( ),i i ik b aσ = −  for all i = 
1,…, n; for some 1k , such as k1 = 4,5,6. 
Typically, take k = 6 (3 standard deviations on 
either side of the mean). Define, as above:  b)  

1

1 n

ia a
n

= ∑ ,  and  
1

1 n

ib b
n

= ∑ . Then, take c)  

2k b aτ = −  for some pre-assigned 2k . τ  is the 
same for all respondents. Use an interval of 3 
standard deviations on either side of the 
(normal) mean of the individual recall 
distribution means for the respondents. It is 
required to have an assessment that will be 
reasonable for all respondents. Use the average 
respondent interval. 
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Different analysts might interpret the k’s 
somewhat differently. Using these variance 
assessments, the weights become approximately: 
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 (A21) 
 
where:   0r b a≡ − . Note that in the special case 
that 1 2k k= , the k’s cancel out in numerator and 
denominator, so that the weights do not depend 
upon the 'k s . Then, the weights become: 
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 (A22) 
 
Conditional Posterior Variance Of 0θ  

It is straightforward to check that the 
conditional posterior variance of 0θ  is given by: 
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 (A23) 
 
the reciprocal of the total precision for all 
respondents in the sample. For 1 2 ,k k k= =   
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i i
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− +⎝ ⎠
∑
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 (A24) 
 
so that in this case, while the conditional 
posterior mean does not depend upon k, the 
conditional posterior variance does. So the 
conditional posterior distribution of the 
population mean is given by: 
                                                                     

2 2 2
0( , , ) ~ ( , ),y Nθ τ σ θ ω  (A25) 

where θ  and 2ω  are given, respectively, in 
(A19), (A20), and (A23) or (A24). 
 
Credibility Intervals 

Let zγ  denote the / 2γ -percentile of the 
standard normal distribution. Then, from (A25), 
a  (100-γ )% credibility interval for the 
population mean, 0θ  is given by: 
                                                                      
( , ).z zγ γθ ω θ ω− +  (A26) 
 
That is, 
 

2 2
0{ , , } (100 )%.P z z yγ γθ ω θ θ ω τ σ γ− ≤ ≤ + = −

 (A27). 
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