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This research article is primarily focused on the investigation of Bayes estimators for 

the scale parameter of the Weibull distribution. Specifically, we focus on a sampling 

method known as Ranked Set Sample with Unequal Samples (RSSU), as introduced 

and studied by Bhoj (2001). Our objective is to derive Bayes estimates for the scale 

parameter utilizing two distinct loss functions: the squared error loss (SEL) function 

and the linear exponential (LINEX) loss function. We consider the scenario where 

the scale parameter follows either a gamma prior distribution or a Jeffreys prior 

distribution. To evaluate the performance of these estimators, we conduct 

simulations and analyse their bias and mean squared error (MSE). Our findings show 

that RSSU-based estimators outperform those based on Simple Random Sampling 

(SRS) and Ranked Set Sampling (RSS), when either Jeffreys prior or gamma prior 

distribution is used.  

 

Keywords: Bayes estimation, Bias, Conjugate prior, Jeffreys prior, Mean squared 

error (MSE), Posterior distribution, Ranked set sampling with unequal samples 

(RSSU).  

 

  

1. Introduction 

Ranked set sampling (RSS) is acknowledged as a valuable sampling methodology 

that enhances the precision and efficiency of statistical procedures, particularly when 

the variable of interest is costly or challenging to measure, yet can be easily and 

inexpensively ranked. Ranked set sampling (RSS) concept was introduced by 

McIntyre (1952) for estimating the mean pasture and forage yields when 

measurement is costly. The mathematical foundation was provided by Takahasi and 

Wakimoto (1968). Dell and Clutter (1972) studied theoretical aspects of this 

technique on the assumption of perfect and imperfect judgement rankings. For an 

extensive review of RSS methods see Chen, Bai, and Sinha (2004) and Al-Omari and 

Bouza (2014) and for new developments in this area of research see Bouza and Al-

Omari (2018) and references therein. The RSS method, as proposed by McIntyre in 

(1952), can be succinctly summarized as follows: Initially, a set of n random samples 
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is drawn from the population of interest, with each sample consisting of n units. 

These units within each sample are then ranked based on a variable of interest, using 

a cost- effective method, such as visual inspection. Subsequently, the smallest and 

second smallest units from the first and second samples are chosen for actual 

measurement. This process is iterated until the largest unit from the nth sample is 

selected for measurement. Consequently, a total of n measured units, completing one 

cycle, are obtained through this procedure. This cycle can be replicated k times, 

resulting in the collection of nk units in total, which collectively constitutes the RSS 

data set. 

The Weibull distribution is widely applicable in various fields, such as reliability 

analysis for assessing factors like electrical circuit voltage breakdown, physics for 

the study of crystallization, climatology to investigate tides, and cognitive 

psychology for analysing task completion times. Rinne (2008) and McCool (2012) 

provide in-depth accounts of the historical background and development of the 

Weibull distribution. In this paper, our primary focus is on methods for estimating 

the scale parameter. Estimating this parameter allows us to compare different data 

sets or populations and determine whether their failure times or event durations 

exhibit statistically significant differences. This capability is valuable for making 

inferences about variations in reliability or survival rates among different groups. 

In Bayesian frame work, Al-Saleh and Muttlak (1998) have studied Bayesian 

estimation for exponential and normal distributions to reduce Bayes risk using RSS. 

Lavine (1999) examined the RSS procedure in some aspects of Bayesian point of 

view and explored some optimality questions. Kim and Arnold (1999) considered 

Bayesian estimation under both balanced and generalized RSS. Al-Saleh et al. (2000) 

studied Bayesian estimation using RSS and found a Bayes estimator of exponential 

distribution under conjugate prior and gave an application of real data. Sadek et al. 

(2009) obtained the Bayes estimator of the scale parameter of exponential 

distribution based on RSS. Amal Helu et al. (2010) have studied Bayes estimators 

under squared error loss function using sampling schemes namely, RSS and 

modified ranked set sampling (MRSS) for shape and scale parameter of Weibull 

distribution and showed the estimators based on RSS and MRSS are better than SRS. 

Sadek and Alharbi (2014) have obtained the Bayes estimator of the scale parameter 

of Weibull distribution under squared error loss (SEL) and LINEX loss functions, 

respectively. They showed the Bayes estimators based on RSS are less biased and 

more efficient than the corresponding Bayes estimators based on SRS. Mohie et al. 

(2015) studied the Bayes estimation and prediction for Pareto distribution based on 

RSS. 

In recent years, there have been several modifications, proposed to the traditional 

ranked set sampling method, specifically addressing situations with varying sample 

sizes. Notable contributions include the works of Bhoj (2001), Al-Odat and Al-Saleh 

(2001), and Biradar and Santosha (2014). They have introduced important 

adaptations like Ranked Set Sampling with Unequal Samples (RSSU), Moving 

Ranked Set Samples (MERSS), and Maximum Ranked Set Sampling with Unequal 

Samples (MaxRSSU). Al-Hadhrami and Al-Omari (2012) addressed Bayesian 

estimation of the mean of the normal distribution using MERSS, while Al-Hadhrami 
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and Al-Omari (2012) studied Bayesian estimation of the mean of the normal 

distribution using MERSS. Furthermore, Al-Hadhrami and Al-Omari (2014) 

extended Bayesian estimation to the mean of the exponential distribution by 

employing MERSS, demonstrating that MERSS estimators outperform SRS 

estimators. Biradar and Shivanna (2016) also contributed by deriving Bayesian 

estimators for the scale parameter of the Weibull distribution based on the 

MaxRSSU. These adaptations find natural applications in various scenarios, such as 

assessing commuters on different public buses or tracking patients waiting in 

doctors’ waiting rooms with varying group sizes. 

Bhoj (2001) proposed a ranked set sampling procedure with unequal set sizes 

(RSSU) to estimate the population mean, and showed that the estimators 

based on RSSU are more efficient than the estimators based on SRS, RSS 

and median ranked set sampling (MRSS, see Muttlak 1997) when the 

distributions under considerations are symmetrical or moderately skewed. In 

RSSU, we draw n samples, where the size of the i-th sample is 2i − 1, for i = 1, 

2, ..., n. The steps in RSSU are the same as in RSS. This process is repeated k 

times in order to get a RSSU of size nk. For one cycle RSSU can be obtained 

as follows: Let {Xj1, Xj2, ..., Xj(2j−1)}, j = 1, 2, ..., n, be n sets of random samples 

from a distribution with pdf f (x, θ) and cdf F (x, θ), where θ is an unknown 

parameter and F is known. Let Yj denote j-th ordered observation from j-th 

sample of size 2j − 1, for j = 1, 2, ..., n. Then Y1, Y2, ..., Yn constitute a RSSU of 

size n, where these n observations are independently distributed. Then Yj has the 

same distribution as the j-th order statistic of a SRS of size (2j − 1) from f (x, 

θ) i.e. the pdf of Yj is 

fj(y, θ) = [B(j, j)]−1 [F (y, θ)]j−1 [1 − F (y, θ)]j−1 f (y, θ) ,                                            (1) 

and cdf 

𝐹𝑗:2𝑗−1(𝑦, 𝜃) = ∑  

2𝑗−1

𝑖=𝑗

(
2𝑗 − 1

𝑖
) 𝐹𝑖(𝑦, 𝜃)[1 − 𝐹(𝑦, 𝜃)]2𝑗−1−𝑖. 

Here 𝐵(𝑗, 𝑗) =
(𝑗−1)!(𝑗−1)!

(2𝑗−1)!
. 

Zhang et al. (2014) proposed sign test based on RSSU. They have provided weighted 

sign test and it is shown that optimal weighted sign test under RSSU is more efficient 

than optimal sign test under RSS and MRSS. Biradar and Shivanna (2023) have 

studied Bayesian estimation of the mean of the exponential distribution by 

employing RSSU, demonstrating that RSSU estimators outperform SRS estimators. 

Recently, Biradar (2022) developed maximum likelihood estimators for the location- 

scale family of distributions based on RSSU. As far as we know, no Bayes 

estimators based on RSSU for Weibull distribution has been studied, therefore, our 

main objective of this study is to develop Bayes estimators based on RSSU and 

explore various properties. 



 

BIRADAR ET AL. 

5 

 

In this paper, Bayes estimator based on SRS is given in Section 2. Bayes estimator 

based on RSSU is discussed in Section 3. In Section 4, we conduct a simulation 

study and perform numerical comparisons to evaluate the effectiveness of these pro- 

posed estimators. Finally, the paper is concluded in Section 5. 

 

2. Bayes estimates of scale parameter α based on SRS 

Let X1, X2, . . . , Xn be independent and identically distributed (iid)random variables 

following a Weibull distribution with the probability density function (pdf) given by 

𝑓(𝑥, 𝛼, 𝛽) = {𝛼𝛽𝑥𝛽−1𝑒−𝛼𝑥𝛽
,  𝑥 ≥ 0,  𝛼 > 0,  𝛽 > 0

0,   otherwise 
                                                 (2) 

and the cumulative distribution function (cdf) is given by 

𝐹(𝑥, 𝛼, 𝛽) = 1 − 𝑒−𝛼𝑥𝛽
,  𝑥 ≥ 0,  𝛼 > 0,  𝛽 > 0. 

We assume that shape parameter β is known and our objective is to obtain the Bayes 

estimates of the scale parameter α. When the shape parameter is known, the scale 

parameter has a conjugate gamma prior distribution with pdf given by 

𝜋(𝛼 ∣ 𝑎, 𝑏) = {
𝑏𝑎

Γ(𝑎)
𝛼𝑎−1𝑒−𝑏𝛼, 𝛼 > 0

0,  otherwise 
                                                              (3) 

where a > 0, b > 0, are hyperparameters and T(a) = ∫ 𝑥𝑎−1𝑒−𝑥𝑑𝑥.
∞

0
 

The likelihood function of the observed SRS x = (x1, . . . , xn), is 

𝐿(𝛼|𝑥) = 𝛼𝑛𝛽𝑛(∏ 𝑥𝑖
𝑛
𝑖=1 )𝛽−1𝑒𝑥𝑝[−𝛼 ∑ 𝑥𝑖

𝛽𝑛
𝑖=1 ],                                                       (4) 

where β is known and α has a prior pdf given in (3). 

By combining the prior distribution given in equation (3) and the likelihood function 

of α given in (4), the posterior distribution of α given the observed SRS sample x = 

(x1, . . . , xn) is denoted as π(α|x), which can be expressed as 

𝛱(𝛼|𝑥) =  
𝛼(𝑛+𝛼−1) 𝑒

−𝛼(∑ 𝑥
𝑖
𝛽

+𝑏𝑛
𝑖=1 )

 (∑ 𝑥𝑖
𝛽

+𝑏𝑛
𝑖=1 )

(𝑛+𝑎)

𝑇(𝑛+𝑎)
                                                        (5) 

It’s worth noting that the posterior distribution of α follows a gamma distribution 

with parameters(𝑛 + 𝑎1 ∑ 𝑥𝑖
𝛽

𝑛

𝑖=1
+ 𝑏). Therefore, the Bayes estimate of α under the 

squared error loss (SEL) function is 

�̂�𝑆𝑒𝑙(𝑥) =  
𝑛+𝑎

∑ 𝑥𝑖
𝛽𝑛

𝑖=1 +𝑏
                                                                                                      (6) 

It should be noted that the use of the SEL function is appropriate only when the 

losses are symmetric. For instance, in the case of estimating the survival function, 

the symmetric loss function may not be suitable. Therefore, asymmetric loss 

functions have been explored in the literature. One of the commonly used 
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asymmetric loss functions is the linear exponential (LINEX) loss function, which is a 

natural extension of SEL function. This loss function was introduced by Varian 

(1975) and was popularized by Zellner (1986). The LINEX loss function for the 

parameter α can be expressed as 

L(∆, c)  =  d(ec∆ − c∆ − 1), 

where ∆ = (�̂� − α); �̂� is an estimate of α and c ≠ 0, c and d are shape and scale 

parameters. The sign and magnitude of the shape parameter c indicate that the 

direction and degree of symmetry. The Bayes estimator of α under the LINEX loss 

function, denoted by 𝛼ˆLnx, is the value which minimizes E [(L( α̂ − α)] and is given 

by 

�̂�𝐿𝑛𝑥 =  −
1

𝑐
𝑙𝑛𝐸(𝑒−𝑐𝛼)                                                                                                                     (7) 

Therefore, the Bayes estimator of α under LINEX loss function is 

�̂�𝐿𝑛𝑥(𝑥) = −
1

𝑐
ln [

∫  
∞

0
 𝛼(𝑛+𝑎−1)𝑒−𝛼(∑  𝑛

𝑖=1  𝑥𝑖
𝛽

+𝑏+𝑐)(∑  𝑛
𝑖=1  𝑥𝑖

𝛽
+ 𝑏)

(𝑛+𝑎)

𝑑𝛼

Γ(𝑛 + 𝑎)
] 

=  (
𝑛+𝑎

𝑐
) 𝑙𝑛 [

𝑐

∑ 𝑥
𝑖
𝛽

+𝑏𝑛
𝑖=1

]                                                                                               (8) 

Now consider the Jeffreys prior distribution of α and its pdf is given by 

𝜋(𝛼) ∝
1

𝛼
,  𝛼 > 0                                                                                                       (9) 

Then we can obtain posterior density of α given the SRS sample as 

𝜋(𝛼 ∣ 𝑥) =
𝛼𝑛−1𝑒−𝛼 ∑  𝑛

𝑖=1  𝑥𝑖
𝛽

(∑  𝑛
𝑖=1  𝑥𝑖

𝛽
)

𝑛

Γ(𝑛)
 

We can observe that the posterior distribution of α is a gamma distribution with 

parameters (𝑛, 𝛴𝑖
𝑛 = 1 𝑥𝑖

𝛽
). The Bayes estimator of α with Jeffreys prior distribution 

under SEL function is 

�̂�𝑆𝑒𝑙
𝑗

(𝑥) =  
𝑛

∑ 𝑥
𝑖
𝛽𝑛

𝑖=1

                                                                                                                          (10) 

The Bayes estimator of α under LINEX loss function is given by 

�̂�𝐿𝑛𝑥
𝐽 (𝑥) =  (

𝑛

𝑐
) ln [1 +  

𝑐

∑ 𝑥
𝑖
𝛽𝑛

𝑖=1

]                                                                               (11) 
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3. Bayes estimates of scale parameter α based on RSSU 

Suppose that the random variable X has a Weibull distribution with pdf given by (2) 

with θ = (α, β), then from (1) the pdf of Yj is 

𝑓𝑗(𝑦, 𝛼, 𝛽) = 𝛼𝛽𝑦𝛽−1 ∑ 𝑎𝑘(𝑗)𝑒−𝛼(𝑘+𝑗)𝑦𝛽,𝑗−1
𝑘=0     𝑦 > 0, 𝛼 > 0,                                

(12) 

Where 𝑎𝑘(𝑗) =  (
𝑗 − 1

𝑘
) (−1)𝑘[𝐵(𝑗, 𝑗)]−1, and the shape parameter β is known and 

the scale parameter α is unknown. 

Let Y1, ..., Yn be RSSU sample of size n from the Weibull distribution with known 

shape parameter β and unknown scale parameter α, then the likelihood function of 

the RSSU sample y = (y1, . . . , yn) is 

𝐿(𝛼 ∣ 𝑦) = ∑  0
𝑖1=0 ∑  1

𝑖2=0 … ∑  𝑛−1
𝑖𝑛=0 [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦𝑗

𝛽−1
] 𝛼𝑛𝛽𝑛𝑒

−𝛼 ∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦𝑗

𝛽

        (13) 

3.1 Conjugate prior for α 

We assume that the scale parameter α follows a gamma prior distribution with pdf 

given by (3). Then the posterior density of α given the RSSU sample becomes 

𝜋(𝛼 ∣ 𝑦) =
𝛼𝑛+𝑎−1 ∑  0

𝑖1=0  ∑  1
𝑖2=0  ⋯ ∑  𝑛−1

𝑖𝑛=0  [∏  𝑛
𝑗=1  𝑎𝑖𝑗

(𝑗)𝑦𝑗
𝛽−1

]𝑒
−𝛼(∑  𝑛

𝑗=1  (𝑖𝑗+𝑗)𝑦
𝑗
𝛽

+𝑏)

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦

𝑗
𝛽−1

]Γ(𝑛+𝑎)[∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦

𝑗
𝛽

+𝑏]
−(𝑛+𝑎).             (14) 

Thus, the Bayes estimator of the parameter α based on RSSU under the SEL function 

can be simplified to 

�̂�𝑆𝑒𝑙(𝑦) =
(𝑛+𝑎) ∑  0

𝑖1=0  ∑  1
𝑖2=0  ⋯ ∑  𝑛−1

𝑖𝑛=0  [∏  𝑛
𝑗=1  𝑎𝑖𝑗

(𝑗)𝑦𝑗
𝛽−1

][∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦𝑗

𝛽
+𝑏]

−(𝑛+𝑎+1)

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦

𝑗
𝛽−1

][∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦

𝑗
𝛽

+𝑏]
−(𝑛+𝑎) .             (15) 

In order to obtain the Bayes estimator of α, assuming a gamma prior distribution 

based on RSSU under the LINEX loss function, we find that 

𝐸(𝑒−𝑐𝛼) =
∑  0

𝑖1=0  ∑  1
𝑖2=0  ⋯ ∑  𝑛−1

𝑖𝑛=0  [∏  𝑛
𝑗=1  𝑎𝑖𝑗

(𝑗)𝑦𝑗
𝛽−1

][∑  𝑛
𝑗=1  𝑦𝑗

𝛽
(𝑖𝑗+𝑗)+𝑏+𝑐]

−(𝑛+𝑎)

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦

𝑗
𝛽−1

][∑  𝑛
𝑗=1  𝑦

𝑗
𝛽

(𝑖𝑗+𝑗)+𝑏]
−(𝑛+𝑎)                      (16) 

Using expression for E(e−cα) in the following equation we obtain Bayes estimator for 

α under the LINEX function 

�̂�𝐿𝑛𝑥 (𝑦) =  −
1

𝑐
 𝑙𝑛[𝐸(𝑒−𝑐𝛼)].                                                                                 (17) 

3.2 Jeffreys prior for α 

Now assume that the parameter α follows a Jeffreys prior distribution with its pdf 

given by (9). Subsequently, the posterior density of α given a RSSU sample y can be 

simplified to 
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𝜋(𝛼 ∣ 𝑦) =
∑  0

𝑖1=0  ∑  1
𝑖2=0  ⋯ ∑  𝑛−1

𝑖𝑛=0  [∏  𝑛
𝑗=1  𝑎𝑖𝑗

(𝑗)𝑦𝑗
𝛽−1

]𝛼𝑛−1𝑒
−𝛼(∑  𝑛

𝑗=1  (𝑖𝑗+𝑗)𝑦
𝑗
𝛽

)

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦

𝑗
𝛽−1

]Γ(𝑛)(∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦

𝑗
𝛽

)
−𝑛 .                         (18) 

Considering the Jeffreys prior the Bayes estimator of the parameter α under the SEL 

function simplifies to 

�̂�𝑆𝑒𝑙
𝐽 (𝑦) =

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦𝑗

𝛽−1
]𝑛(∑  𝑛

𝑗=1  (𝑖𝑗+𝑗)𝑦𝑗
𝛽

)
−(𝑛+1)

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦

𝑗
𝛽−1

](∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦

𝑗
𝛽

)
−𝑛 .                          (19) 

Finally, the Bayes estimator of α under the LINEX loss function with Jeffreys prior 

distribution can be obtained as 

�̂�𝐿𝑛𝑥
𝐽 (𝑦) = −

1

𝑐
𝑙𝑛 [

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦𝑗

𝛽−1
](∑  𝑛

𝑗=1  (𝑖𝑗+𝑗)𝑦𝑗
𝛽

+𝑐)
−𝑛

∑  0
𝑖1=0  ∑  1

𝑖2=0  ⋯ ∑  𝑛−1
𝑖𝑛=0  [∏  𝑛

𝑗=1  𝑎𝑖𝑗
(𝑗)𝑦

𝑗
𝛽−1

][∑  𝑛
𝑗=1  (𝑖𝑗+𝑗)𝑦

𝑗
𝛽

]
−𝑛 ].               (20) 

 

4. Simulation study 

In this section, we carry out a Monte Carlo simulation to assess and compare the 

effectiveness of Bayes estimators based on RSSU with their counterparts based on 

RSS and SRS. For simulation studies we assume that prior distribution of α follows 

Gamma (1, 0.5). Sadek and Alharbi (2014) have obtained Bayes estimators based 

RSS sample for the scale parameter α of Weibull distribution with gamma prior and 

Jeffreys prior when the shape parameter β is known. We generate SRS, RSS and 

RSSU samples of sizes n = 2(1)5 for 1000 simulation runs from a Weibull 

distribution with gamma prior and Jeffreys prior distribution for the scale parameter 

α when the shape parameter β is known. We compute bias and mean squared error 

(MSE) of theses Bayes estimators for α = 0.5 and 1 when, β = .5 and c = 1, −1. We 

compute bias and MSE of these estimators as under: 

1. Bias is computed as bias (�̂�, 𝛼) = �̂� − 𝛼, where �̂� is the average of the 1000 

estimates of α is the value that is used in the simulation. 

2. MSE of an estimator is computed from the simulated sample as MSE(�̂�𝑗) =
1

100
∑ (�̂�𝑖𝑗 − 𝛼)

21000
𝑖=1 , where �̂�ij is the Bayes estimate of α for the ith simulated 

data for the jth estimate, j = 1, 2, ..., 12. 

3. Let e1 to e4 denote relative efficiencies of Bayes estimators of α based on RSS 

w.r.t. SRS and RSSU w.r.t. SRS respectively, under SEL loss function, can be 

expressed as 

𝑒1 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝐽

𝑆𝑒𝑙)

𝑀𝑆𝐸𝑅𝑆𝑆(�̂�𝐽
𝑆𝑒𝑙)

, 𝑒2 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝑆𝑒𝑙)

𝑀𝑆𝐸𝑅𝑆𝑆(�̂�𝑆𝑒𝑙)
,  
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𝑒3 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝐽

𝑆𝑒𝑙)

𝑀𝑆𝐸𝑅𝑆𝑆𝑈(�̂�𝐽
𝑆𝑒𝑙)

, 𝑒4 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝑆𝑒𝑙)

𝑀𝑆𝐸𝑅𝑆𝑆𝑈(�̂�𝑆𝑒𝑙)
. 

Similarly, e5 to e8 represent relative efficiencies of Bayes estimator of α based on 

RSS w.r.t. SRS and RSSU w.r.t. SRS respectively, under LINEX loss function, can 

be expressed as 

𝑒5 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝐿𝑛𝑥

𝐽 )

𝑀𝑆𝐸𝑅𝑆𝑆(�̂�𝐿𝑛𝑥
𝐽 )

, 𝑒6 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝐿𝑛𝑥)

𝑀𝑆𝐸𝑅𝑆𝑆(�̂�𝐿𝑛𝑥)
,  

𝑒7 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝐿𝑛𝑥

𝐽 )

𝑀𝑆𝐸𝑅𝑆𝑆𝑈(�̂�𝐿𝑛𝑥
𝐽 )

, 𝑒8 =
𝑀𝑆𝐸𝑆𝑅𝑆(�̂�𝐿𝑛𝑥)

𝑀𝑆𝐸𝑅𝑆𝑆𝑈(�̂�𝐿𝑛𝑥)
. 

Note that e1 > 1 implies that Bayes estimator of α based on RSS performs better than 

the corresponding estimator based on SRS. A similar interpretation can be applied to 

ei for i = 2(1)8. The numerical results on bias, MSE and relative efficiencies of the 

Bayes estimators based on SRS, RSS and RSSU are presented in Tables 1 - 6. All the 

computations has been performed using R software. 

Upon examining Tables 1 and 2, it becomes evident that the bias and MSE of the 

Bayes estimators for the scale parameter α, using RSSU sampling scheme under SEL 

and LINEX loss functions and adopting either the gamma or the Jeffrey prior 

distributions, are significantly smaller compared to the corresponding estimators 

based on SRS. Additionally, the Bayes estimator demonstrates a marginal reduction 

in bias and MSE compared to the estimators based on RSS, except for the case n = 2, 

where the MSE differs. 

     

Table 1. Bias of the Bayes estimators based on SRS, RSS and RSSU for α = 0.5, 

(when β = 0.5, a = 1, b = 0.5)    

 Bias(α̂Sel) Bias(α̂Sel)  Bias(α̂Lnx) Bias(α̂Lnx) 

 JP GP  JP GP 

n SRS RSS RSSU SRS RSS RSSU c SRS RSS RSSU SRS RSS RSSU 

2 0.4591 0.2613 0.2334 0.4909 0.3530 0.3243 1 

-1 

0.1850 

0.5859 

-0.5541 

1.1260 

0.1219 

0.3985 

0.3139 

0.8153 

-0.8515 

1.6489 

0.2271 

0.4996 

3 0.2487 0.1065 0.1035 0.3420 0.1705 0.1645 1 

-1 

0.1379 

0.4071 

0.0675 

0.1588 

0.0679 

0.1485 

0.2433 

0.5318 

0.1308 

0.2211 

0.1283 

0.2089 

4 0.1585 0.0734 0.0580 0.2355 0.1143 0.0963 1 

-1 

0.0914 

0.2454 

0.0443 

0.0858 

0.0405 

0.0773 

0.1733 

0.3207 

0.0852 

0.1282 

0.0783 

0.1162 
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5 0.1255 0.0432 0.0376 0.1936 0.0718 0.0635 1 

-1 

0.0794 

0.1831 

0.0313 

0.0560 

0.0270 

0.0488 

0.1481 

0.2536 

0.0594 

0.0850 

0.0526 

0.0750 

 

Table 2. MSE of the Bayes estimators based on SRS, RSS and RSSU for α = 0.5, 

(when β = 0.5, a = 1, b = 0.5) 

 MSE(α̂Sel) MSE(α̂Sel)  MSE(α̂Lnx ) MSE(α̂Lnx ) 

 Jeffreys prior Gamma prior  Jeffreys prior Gamma prior 

n SRS RSS RSSU SRS RSS RSSU c SRS RSS RSSU SRS RSS RSSU 

2 1.8610 0.2613 0.4746 0.7696 0.4165 0.3791 1 

-1 

0.3395 

2.4829 

0.4758 

2.1225 

0.1840 

1.0394 

0.3348 

2.7866 

0.8793 

3.6327 

0.2083 

1.1047 

3 0.4193 0.1179 0.1047 0.3899 0.1368 0.1233 1 

-1 

0.1849 

1.0296 

0.0828 

0.1931 

0.0756 

0.1574 

0.2179 

1.2535 

0.0993 

0.2026 

0.0914 

0.1749 

4 0.2850 0.1046 0.0446 0.2470 0.1247 0.0530 1 

-1 

0.1389 

0.4709 

0.0397 

0.0602 

0.0376 

0.0539 

0.1524 

0.4577 

0.0474 

0.0716 

0.0445 

0.0639 

5 0.1584 0.0282 0.0253 0.1696 0.0329 0.0291 1 

-1 

0.1004 

0.2593 

0.0249 

0.0322 

0.0227 

0.0285 

0.1170 

0.2823 

0.0288 

0.0378 

0.0259 

0.0330 

 

Table 3. Bias of the Bayes estimators based on SRS, RSS and RSSU for α = 1, 

(when β = 0.5, a = 1, b = 0.5) 

 Bias(α̂Sel) Bias(α̂Sel)  Bias(α̂Lnx) Bias(α̂Lnx) 

 Jeffreys prior Gamma prior  Jeffreys prior Gamma prior 

n SRS RSS RSSU SRS RSS RSSU c SRS RSS RSSU SRS RSS RSSU 

2 0.9182 -0.2387 -0.2666 0.6050 -0.1470 -0.1757 1 

-1 

0.1453 

0.5509 

-1.0541 

0.6260 

-0.3781 

-0.1015 

0.2305 

1.3181 

-1.3515 

1.1489 

-0.2729 

-0.0004 

3 0.4975 -0.3935 -0.3965 0.4778 0.4778 -0.3355 1 

-1 

0.1369 

0.8876 

-0.4325 

-0.3412 

-0.4321 

-0.3515 

0.2209 

1.0272 

-0.3692 

-0.2789 

-0.3717 

-0.2911 

4 0.3171 -0.4291 -0.4420 0.3422 0.3422 -0.4037 1 

-1 

0.0883 

0.7232 

-0.4557 

-0.4142 

-0.4595 

-0.4227 

0.1626 

0.6499 

-0.4148 

-0.3718 

-0.4217 

-0.3838 

5 0.2510 -0.4568 -0.4624 0.2939 0.2939 -0.4365 1 

-1 

0.0864 

0.5139 

-0.4687 

-0.4440 

-0.4730 

-0.4512 

0.1523 

0.5115 

-0.4406 

-0.4150 

-0.4474 

-0.4250 
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Table 4. MSE of the Bayes estimators based on SRS, RSS and RSSU for α = 1, 

(when β = 0.5, a = 1, b = 0.5) 

 MSE(α̂Sel) MSE(α̂Sel)  MSE(α̂Lnx ) MSE(α̂Lnx ) 

 Jeffreys prior Gamma prior  Jeffreys prior Gamma prior 

n SRS RSS RSSU SRS RSS RSSU c SRS RSS RSSU SRS RSS RSSU 

2 7.4439 0.4972 0.4911 1.2351 0.3134 0.3048 1 

-1 

0.6239 

2.7370 

1.2899 

1.2464 

0.3121 

0.8909 

0.3681 

3.1726 

1.9908 

2.2338 

0.2312 

0.8551 

3 1.6772 0.2614 0.2512 0.8381 0.2163 0.2088 1 

-1 

0.4288 

2.6104 

0.2653 

0.2843 

0.2577 

0.2588 

0.3299 

2.8436 

0.2185 

0.2315 

0.2131 

0.2160 

4 1.1400 0.2490 0.2366 0.5929 0.2023 0.2066 1 

-1 

0.3550 

2.0419 

0.2454 

0.2244 

0.2471 

0.2266 

0.2771 

1.7406 

0.2122 

0.1934 

0.2122 

0.1977 

5 0.6337 0.2350 0.2357 0.4605 0.2011 0.2057 1 

-1 

0.2852 

1.6544 

0.2437 

0.2162 

0.2457 

0.2257 

0.2464 

1.0991 

0.2014 

0.1828 

0.2033 

0.1680 

 

Table 5. Relative Efficiencies of Bayes estimators under SEL function when α = 0.5 

and α = 1. 

 eff-Jeffreys(Sel) eff-Gamma(Sel) 

 α = 0.5 α = 1 α = 0.5 α = 1 

n e1 e3 e1 e3 e2 e4 e2 e4 

2 7.1220 3.9212 14.9716 15.1576 1.8478 2.0300 3.9409 4.0522 

3 3.5564 4.0048 6.4162 6.6768 2.8501 3.1623 3.8747 4.0139 

4 2.7247 6.3901 4.5783 4.8183 1.9807 4.6604 2.9308 2.8698 

5 5.6170 6.26087 2.6966 2.6886 5.1550 5.8282 2.2899 2.2387 

 

From Table 3 we can see that, for the case of scale parameter α = 1, the bias values 

of the Bayes estimator based on RSS under SEL function are smaller than the bias 

values of the corresponding estimators based on SRS and RSSU when n = 2, 3. 

However, for sample sizes of n = 4, 5, the bias values of the estimator using SRS are 

smaller than the corresponding estimators based on both the ranked set sampling 

schemes (RSS and RSSU). When c = 1 for sample sizes between 2 ≤ n ≤ 5 the Bayes 
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estimators based on SRS under LINEX loss function show smaller bias compared to 

the estimators based on RSS and RSSU schemes. In case of c = −1 bias values of 

estimators based on RSS are smaller than the estimators based on RSSU and SRS 

schemes except for n = 2. 

In Table 4, we can observe that for the sample sizes n = 2, 3, MSE of the Bayes 

estimators based on RSSU scheme are smaller than the MSE’s of their competing 

estimators based on RSS and SRS schemes. However, for sample sizes n = 4, 5, the 

MSE’s of the Bayes estimators based on both ranked set sampling schemes (RSS and 

RSSU) are close to each other, and they are significantly smaller than the MSE’s of 

the corresponding estimators based on the SRS scheme. 

From Table 5, we can observe that e1 to e4 values are larger than 1, which indi- cates 

that Bayes estimators based on RSS and RSSU outperforms the corresponding 

estimators based on SRS scheme. Moreover, e1 and e3 values are significantly larger 

than the corresponding values of e2 and e4 for α = .5, 1 for all values of 2 ≤ n ≤ 5. 

This indicates that Bayes estimators of α with Jeffreys prior distribution are more 

efficient than the corresponding estimators with gamma prior distribution under SEL 

function. Further, we can note that for all values of 2 ≤ n ≤ 5 and α = 0.5, 1, except 

when n = 5 and α = 1, it holds true that e3 is greater than e1 and e4 is greater than e2. 

This suggests that when utilizing RSSU, the Bayes estimator of α under SEL loss 

function tends to outperform its counterparts derived from RSS and SRS, except in 

the specific case where n = 5 and α = 1. 

 

Table 6. Relative efficiencies of Bayes estimators under LINEX loss function when 

α = 0.5 and α = 1. 

  eff-Jeffreys(Lnx) eff-Gamma(Lnx) 

  α = 0.5 α = 1 α = 0.5 α = 1 

n c e5 e7 e5 e7 e6 e8 e6 e8 

2 1 

-1 

0.7135 

1.1698 

1.8451 

2.3887 

0.4837 

2.1959 

1.9990 

3.0723 

0.3808 

0.7671 

1.6073 

2.5224 

0.1849 

1.4203 

1.5923 

3.7102 

3 1 

-1 

2.2331 

5.3320 

2.4452 

6.5418 

1.6163 

9.1834 

1.6638 

10.0848 

2.1943 

6.1870 

2.3843 

7.1673 

1.5100 

12.2833 

1.5482 

13.1669 

4 1 

-1 

3.4987 

7.8222 

3.6932 

8.7319 

1.4468 

9.0994 

1.4367 

9.0101 

3.2151 

6.3925 

3.4272 

7.1601 

1.3059 

8.9984 

1.3058 

8.8033 

5 1 

-1 

4.0321 

8.0528 

4.4229 

9.0982 

1.1702 

7.6522 

1.1608 

7.3301 

4.0625 

7.4683 

4.5174 

8.5545 

1.2234 

6.0126 

1.2120 

6.5422 
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From Table 6 we can examine that e7 > e5 and e8 > e6 for all values of 2 ≤ n ≤ 5 and α 

= .5 and c = −1, 1 indicates that Bayes estimators based on RSSU scheme under 

LINEX loss function when the scale parameter follows either gamma or Jef- freys 

prior distribution outperforms its competing estimators based on RSS and SRS 

schemes. However, when α = 1 and c = −1, 1 the same inequality holds true initially 

but the inequality reverses for 4 ≤ n ≤ 5. More specifically when c = −1 denoting an 

exponential increase in the LINEX loss function, the Bayes estimator based on the 

RSSU and RSS schemes significantly outperforms the estimators based on the SRS 

scheme. 

 

Table 7. Relative efficiencies of Bayes Estimators based on RSSU w.r.t. RSS under 

SEL function when α = 0.5 and α = 1. 

 eff-Jeffrey(Sel) eff-Gamma(Sel) 

 α = 0.5 α = 1 α = 0.5 α = 1 

n e3/e1 e3/e1 e4/e2 e4/e2 

2 0.5506 1.0124 1.0986 1.0282 

3 1.1261 1.0406 1.1095 1.0359 

4 2.3453 1.0524 2.3528 0.9792 

5 1.1146 0.9970 1.1306 0.97764 

 

Table 8. Relative efficiencies of Bayes estimators baed on RSSU w.r.t.RSS under 

LINEX loss function when α = 0.5 and α = 1. 

  eff-Jeffreys(Lnx) eff-Gamma(Lnx) 

  α = 0.5 α = 1 α = 0.5 α = 1 

n c e7/e5 e7/e5 e8/e6 e8/e6 

2 1 

-1 

2.5859 

2.0420 

4.1330 

1.3990 

4.2213 

3.2884 

8.611 

2.6123 

3 1 

-1 

1.0952 

1.2268 

1.0295 

1.0985 

1.0864 

1.1584 

1.0253 

1.0718 

4 1 

-1 

1.0559 

1.1169 

0.9931 

0.9903 

1.0652 

1.1205 

1.0000 

0.9782 

5 1 

-1 

1.0969 

1.1298 

0.9919 

0.9579 

1.1120 

1.1455 

0.9907 

1.0881 
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Tables 7 and 8 display the efficiencies of Bayes estimators employing RSSU as 

opposed to RSS, under the SEL and LINEX loss functions. Notably, the results indi- 

cate that, for the majority of cases, the estimators based on RSSU outperform those 

based on RSS. However, its worth noting an exception to this trend, which occurs 

when the sample size n ≥ 4 is and the value of α = 1. 

We can conclude that Bayes estimators using ranked set sampling (RSS, RSSU) 

schemes outperform the estimators based on simple random sampling (SRS) scheme. 

Specifically, the Bayes estimator employing the RSSU scheme demonstrates 

superior performance compared to estimators based on the RSS scheme in the 

majority of cases examined in this study. 

 

5. Summary and conclusions 

In this paper, Bayesian estimation of the scale parameter of Weibull distribution 

based on SRS, RSS and RSSU sampling schemes are considered. Bayes estimators 

are derived under SEL and LINEX loss functions, assuming the scale parameter 

follows either gamma prior or Jeffreys prior distribution. A simulation study is 

conducted to compare the different estimators. Bayes estimators of α with Jeffreys 

prior distribution under SEL loss function based on RSS and RSSU are found to 

perform better than corresponding Bayes estimators of α with gamma prior 

distribution under SEL loss function. The Bayes estimator based on RSS and RSSU 

methods is observed to perform more effectively when using a LINEX loss function 

with a shape parameter of −1, in comparison to the case when the shape parameter is 

1. This paper considered only the case of Bayesian estimation of scale parameter. 

Therefore, in our upcoming research, we will study Bayesian estimation for Weibull 

distribution parameters, including cases where the scale and shape parameters are 

both unknown, using ranked set samples with unequal sample sizes. 
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